数学选修2-2定积分的简单应用练习题含答案
- 格式:docx
- 大小:202.54 KB
- 文档页数:31
积分练习题简单在数学中,积分是一个重要的概念和工具。
通过对函数进行积分,我们可以求得其在某个区间上的面积、体积,以及求得函数的平均值等等。
为了帮助大家更好地理解积分,接下来我将给大家介绍一些简单的积分练习题。
1. 题目一:计算函数f(x) = 2x的不定积分。
解析:对于给定的函数f(x) = 2x,我们需要求其不定积分。
根据积分的定义,我们可以得到:∫(2x)dx = x^2 + C其中,C为常数。
因此,函数f(x) = 2x的不定积分为x^2 + C。
2. 题目二:计算函数f(x) = 3x^2 + 2x的定积分,区间为[0, 3]。
解析:对于给定的函数f(x) = 3x^2 + 2x,我们需要求其在区间[0, 3]上的定积分。
根据积分的定义,我们可以得到:∫[0, 3](3x^2 + 2x)dx= (x^3 + x^2)∣[0, 3]= (3^3 + 3^2) - (0^3 + 0^2)= 27 + 9 - 0 - 0= 36因此,函数f(x) = 3x^2 + 2x在区间[0, 3]上的定积分为36。
3. 题目三:计算函数f(x) = sin(x)的不定积分。
解析:对于给定的函数f(x) = sin(x),我们需要求其不定积分。
根据积分的定义,我们可以得到:∫sin(x)dx = -cos(x) + C其中,C为常数。
因此,函数f(x) = sin(x)的不定积分为-cos(x) + C。
4. 题目四:计算函数f(x) = e^x的定积分,区间为[1, 2]。
解析:对于给定的函数f(x) = e^x,我们需要求其在区间[1, 2]上的定积分。
根据积分的定义,我们可以得到:∫[1, 2]e^xdx= e^x∣[1, 2]= e^2 - e^1因此,函数f(x) = e^x在区间[1, 2]上的定积分为e^2 - e。
5. 题目五:计算函数f(x) = 1/x的不定积分。
解析:对于给定的函数f(x) = 1/x,我们需要求其不定积分。
图3 定积分应用1、直角坐标系下平面图形面积的计算①连续曲线()(()0),y f x f x x a x b =≥==及及x 轴所围成的平面图形面积为()baA f x dx =⎰②设平面图形由上下两条曲线y f 上(x )及y f 下(x )及左右两条直线x a 及x b 所围成 则面积元素为[f 上(x ) f 下(x )]dx 于是平面图形的面积为: dxx f x f S b a ⎰-=)]()([下上③连续曲线()(()0),x y y c y d φφ=≥==及y 及y 轴所围成的平面图形面积为()dc A y dy φ=⎰④由方程1()x y φ=及2()x y φ=以及,y c y d ==所围成的平面图形面积为12[()()]d c A y y dy φφ=-⎰ 12()φφ>例1 计算两条抛物线2x y =及2y x =所围成的面积.解 求解面积问题,一般需要先画一草图(图3),我们要求的是阴影部分的面积.需要先找出交点坐标以便确定积分限,为此解方程组:⎩⎨⎧==22y x x y得交点(0,0)和(1,1).选取x 为积分变量,则积分区间为]1,0[,根据公式(1) ,所求的面积为一般地,求解面积问题的步骤为:(1) 作草图,求曲线的交点,确定积分变量和积分限.(2) 写出积分公式. (3) 计算定积分. 例2 计算抛物线y22x 及直线y x 4所围成的图形的面积解 (1)画图(2)确定在y 轴上的投影区间: [2 4](3)确定左右曲线4)( ,21)(2+==y y y y 右左ϕϕ(4)计算积分例3 求在区间[21,2 ]上连续曲线 y=ln x ,x 轴及二直线 x =21,及x = 2所围成平面区域(如图2)的面积 。
解:已知在[21,2 ]上,ln x ≤ 0 ; 在区间[ 1 , 2 ]上,ln x ≥0 ,则此区域的面积为: A = dx x ⎰221ln = dx x ⎰-221ln + dx x ⎰21ln例4 求抛物线 y 2=x 及x-2y-3=0所围成的平面图形(图 3)的面积 A 。
【高考数学】定积分的概念、基本定理及其简单应用8未命名一、单选题1.下列各命题中,不正确的是( )A .若()f x 是连续的奇函数,则()0aa f x dx -=⎰B .若()f x 是连续的偶函数,则()2()aaaf x dx f x dx -=⎰⎰C .若()f x 在[],a b 上连续且恒为正,则()0baf x dx >⎰D .若()f x 在[],a b 上连续且()0baf x dx >⎰,则()f x 在[],a b 上恒为正.【答案】D 【解析】分析: A ,若()f x 是连续的奇函数,根据奇函数的对称性及定积分的几何意义可判断出结论; B ,若()f x 是连续的偶函数,根据偶函数的对称性及定积分的几何意义可判断出结论;C ,若()f x 在[],a b 上连续且恒为正,根据其单调性即可判断出是否正确;D ,举出反例即可否定.详解:().A f x 是连续的奇函数,()()()()()0000a a aaaf x dx f x dx f x dx f x dx f x dx --∴=+=-+=⎰⎰⎰⎰⎰,故A 正确;().B f x 是连续的偶函数,()()()()00002a aaaf x dx f x dx f x dx f x dx --∴=+=⎰⎰⎰⎰,故B 正确;().C f x 在[],a b 上连续且恒正,()00bbaaf x dx dx ∴>=⎰⎰,故C 正确;D .举反例2432111|4044x x dx --==->⎰,而()2f x x =在区间[)1,0-上恒小于0, 即函数()f x 在区间[]1,2-上不恒为正,故D 不正确,故选D.点睛:本题主要考查定积分的定积分的性质与计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解. 2.220(1)x dx +=⎰( )A .143B .6C .8D .10【答案】A 【解析】分析:先求出x 2+1的原函数,再结合微积分基本定理即可求出. 详解:∵∫02(x 2+1)dx=(13x 3+x )|02 =13⨯23+2=143. 故选:A .点睛:本题主要考查直定积分的简单应用、利用导数研究原函数等基础知识,考查运算求解能力.属于基础题.3.由抛物线2y x =与直线2y x =-所围成的图形的面积是( ).A .4B .92C .5D .316【答案】B 【解析】分析:先把直线方程和抛物线方程联立求得交点坐标,进而用定积分的知识求得图中阴影部分的面积.详解:22y x y x ⎧=⎨=-⎩解得x=1,y=﹣1或x=4,y=2,即交点坐标为(1,﹣1),(4,2)∴图中阴影部分的面积是34212001122392211||223322x x -⨯⨯++⨯⨯=+-=.故选:B .点睛:本题主要利用定积分计算曲边图象的面积,属于基础题.4.若e 是自然对数的底数,则322xedx -=⎰( )A .11e-B .11e- C .1e -D .1e -【答案】A 【解析】分析:根据微积分的运算性质和微积分基本定理求解即可.详解:3322232322221()|()1xx x edx e e dx e e e e e e -----==⋅-=--=-⎰⎰. 故选A .点睛:定积分的计算是考查定积分的一种常见形式,能否快速、准确地求解原函数是解决问题的关键,然后再根据微积分基本定理求解.5.由直线x=﹣2,x=2,y=0及曲线y=x 2﹣x 所围成的平面图形的面积为 ( ) A .163B .173C .83D .53【答案】B 【解析】分析:作出函数2y x x =-的图象及直线2x =-,2x =,确定积分的上下限.详解:如图,01222221()()()S x x dx x x dx x x dx -=--++-⎰⎰⎰+323232012111111()()()201323232x x x x x x =-+-++--173=.故选B .点睛:在用积分求曲边梯形面积时,要注意面积的与积分的关系:设在区间[,]a b 上,()f x 的图象在()g x 的上方,则由(),()y f x y g x ==的图象及直线,x a x b ==围成图形的面积为[()()]baS f x g x dx =-⎰.6.如图,阴影部分的面积是( )A .B .-C .353D .323【答案】D 【解析】123(32)S x x dx -=⎰--,3213133x x x ⎛⎫=--+- ⎪⎝⎭, 323=, 本题选择D 选项.点睛:定积分的计算:(1)用微积分基本定理求定积分,关键是求出被积函数的原函数.此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加.(2)根据定积分的几何意义可利用面积求定积分. (3)若y =f (x )为奇函数,则()()0aa f x dx a ->⎰ =0.7.由曲线y =2y x =-及y 轴所围成的封闭图形的面积为( )A .163 B .103C .4D .6【答案】A 【解析】分析:先求y =2y x =-交点,再根据定积分42x dx +⎰)求封闭图形的面积.详解:由y =2y x =-解得4x =,所以围成的封闭图形的面积为34224162(2),3232x x x dx x +=-+=⎰) 选A.点睛:利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.8.已知复数(2)z a a i =+-(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为( ) A .2π+ B .22π+C .42π+D .44π+【答案】A 【解析】试题分析:因为()2()z a a i a R =+-∈为实数,所以2a =,)ax dx ⎰=222001|2dx x +⎰,由定积分的几何意义知,)2x dx ⎰的值为以原点为圆心,以2为半径的圆的面积的四分之一,即是π,所以222001|2dx x +⎰的值为2π+,故选A.考点:1、复数的概念;2、定积分的几何意义. 9.定积分()313dx -⎰等于( )A .3B .6C .-3D .-6【答案】D 【解析】分析:利用微积分基本定理进行求解. 详解:由微积分基本定理,得:3311(3)(3)|936dx x -=-=-+=-⎰. 点睛:本题考查微积分基本定理等知识,意在考查学生的基本计算能力.10.若函数()()0,06f x Asin x A πωω⎛⎫=->> ⎪⎝⎭的图象如图所示,则图中的阴影部分的面积为( )A .12B .14CD【答案】C 【解析】分析:由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.详解:由图可知,1A =,()2362T πππ=--=,即T π=. ∴2ω=,则()sin(2)6f x x π=-.∴图中的阴影部分面积为120111sin(2)cos(2)[cos()cos()](112626266620S x dx x πππππππ=--=-=---==⎰ 故选C.点睛:本题考查了导数在求解面积中的应用,关键是利用图形求解的函数解析式,在运用积分求解.定积分的计算一般有三个方法:①利用微积分基本定理求原函数;②利用定积分的几何意义,利用面积求定积分;③利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0. 11.定积分()12132xx dx -+=⎰( )A .1B .2C .3D .4【答案】B 【解析】分析:由题意首先求得原函数,然后利用微积分基本定理求解定积分的值即可. 详解:由微积分基本定理可得:()()()()123211132|11112xx dx x x --+=+=+--+=⎰.本题选择B 选项.点睛:本题主要考查定积分的求解,微积分基本定理的应用等知识,意在考查学生的转化能力和计算求解能力.12.右图阴影部分的面积是( )A .B .C .D .【答案】B【解析】试题分析:二次函数与x 轴交点坐标为 ,设x 轴上方的面积为 ,x 轴下方的面积为,考点:定积分求曲边型面积点评:当阴影部分在x 轴上方时,面积等于定积分值,当阴影部分在x 轴下方时,面积等于定积分的相反数,因此将阴影部分分成x 轴上方和下方两部分分别求解13.设()22f x x x =-,在区间[]01,上随机产生10000个随机数,构成5000 个数对()(),1,2...5000i i x y i =,记满足()()1,2...5000i i f x y i ≥=的数对(),i i x y 的个数为X ,则X 估计值约为( )A .3333B .3000C .2000D .1667【答案】A 【解析】分析:设事件A 为“[]0,1上随机产生数对(),x y ,满足()y f x ≤ ”,则总的基本事件为0101x y ≤≤⎧⎨≤≤⎩,对应的测度为正方形的面积1,而随机事件A 对应的测度为为曲边梯形()01y f x x ⎧≤⎨≤≤⎩的面积,它可利用定积分来计算. 详解:满足()i i y f x ≤是在曲线()y f x =、0,1y x ==所围成的区域内(含边界),又该区域的面积为()1223100122|33x x dx x x -=-=⎰, 故X 的估计值为2500033333⨯≈,,故选A.点睛:对于曲边梯形的面积,我们可以用定积分来计算.14.由抛物线2x y =和直线1y =所围成的封闭图形的面积等于( ) A .1 B .43C .23D .13【答案】B 【解析】 分析:由定积分的几何意义可求封闭图形的面积. 详解:联立21x y y ⎧=⎨=⎩,解得11x y =⎧⎨=⎩和11x y =-⎧⎨=⎩. 所以抛物线2x y =和直线1y =所围成的封闭图形的面积等于()12311111141|113333x dx x x --⎛⎫⎛⎫⎛⎫-=-=---+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰.故选B. 点睛:定积分的计算一般有三个方法: (1)利用微积分基本定理求原函数;(2)利用定积分的几何意义,利用面积求定积分;(3)利用奇偶性对称求定积分,奇函数在对称区间的定积分值为015.已知某物体作变速直线运动,其速度v 单位:m/s )关于时间t (单位:s)的关系是41v t =+,则在第2s 至第3s 间经过的位移是 A .10m B .11m C .12m D .13m【答案】B 【解析】分析:先利用定积分表示出在第2s 至第3s 间经过的位移,再求定积分即得在第2s 至第3s 间经过的位移.详解:由题得在第2s 至第3s 间经过的位移为3232222(41)2)|=23+3-22+2=11t dt t t +=+⨯⨯⎰(()(). 故选B.点睛:本题主要考查定积分的实际应用和定积分的运算,属于基础题.16.已知()2sin d x x πϕ-=⎰,则sin2ϕ=A .34 B .916 C .34-D.4-【答案】B 【解析】由题意,根据微积分定理,得()2sin sin cos x dx πϕϕϕ-=-=⎰,两边平方,得71sin 216ϕ-=,所以79sin 211616ϕ=-=,故正确答案为B.17.1011dx x =⎰ A .1 B .ln101-C .ln10D .10【答案】C 【解析】101101(ln )ln10ln1ln101dx x x ==-=⎰. 故选C.点睛:本题主要考查了微积分基本定理的应用,其中解答中根据题意列出积分式,确定被积函数的原函数是解得关键,同时熟记基本初等函数的导数公式是解答的基础.18.已知222|2|a x x dx -=-⎰,在2(1)(1)a ax y +-的展开式中,记m n x y 的系数为(,)f m n ,则(2,3)f (7,2)f +=( ) A .64- B .64 C .160- D .160【答案】A 【解析】202222322322002112(2)(2)()()82033a x x dx x x dx x x dx x x x x --=-=-+-=-+-=-⎰⎰⎰,所以842(1)(1)(1)(1)aax y x y +-=+-,由已知有(2,3)f 指23x y 的系数,(7,2)f 指72x y 的系数,所以23728484(2,3)(7,2)()64f f C C C C +=-+=-,选A. 19.定积分1(2)xx e dx -⎰的值为( )A .2e -B .-eC .eD .2+e【答案】A 【解析】定积分1201(2)()(1)(01)20x xx e dx x e e e -=-=---=-⎰.故选A.20.由直线y= x - 4,曲线y =x 轴所围成的图形面积为( )A .15B .13C .252D .403【答案】D 【解析】根据题意,画出如图所示:∴由直线4y x =-,,曲线y =x轴所围成的面积为:82481404)4)423x dx x x ++=+-+=⎰.故选D.21.曲线2y x x =--与x 轴所围成图形的面积被直线y kx =分成面积相等的两部分,则k 的值为( )A .14-B .2-C .12--D .12- 【答案】D 【解析】如图所示,2y x x =--与x 轴的交点为(-1,0)和0,0(),2y x x =--与y kx =的交点为2(1,)k k k ----和0,0().由题意和定积分的几何意义得:2211()2()kxx dx xx kx dx -----=---⎰⎰化简得:331(1)(1)=2632k k ⎛⎫++-+ ⎪⎝⎭即31=1+2k (),解得:112k =-=-.故选:D .点睛:1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用, 但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限; (3)确定被积函数,注意分清函数图形的上、下位置; (4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分.22.由直线12x =,2x =,曲线1y x =及x 轴所围成的图形的面积是( )A .174B .154C .1ln 22D .2ln 2【答案】D 【解析】由题意得曲线所围成面积可用定积分求,交点11(,2),(2,)22,积分上下限分别为1,22,所以22112211ln |ln 2ln 2ln 22S dx x x ===-=⎰,选D. 【点睛】1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用, 但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限; (3)确定被积函数,注意分清函数图形的上、下位置; (4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分.23.已知曲线33y x x =-和直线y x =所围成图形的面积是m ,则5()y x m ++的展开式中3x 项的系数为( ) A .480 B .160C .1280D .640【答案】D 【解析】由题意得到两曲线围成的面积为()232420012422|84x x x d x x ⎛⎫-=-= ⎪⎝⎭⎰ ()5y x m ++=()532588640.x y C ++⇒=故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.24.在()12201820170a a x ⎛⎫> ⎪⎝⎭的展开式中,5x 项的系数等于264,则()02ax e x dx+⎰等于( ) A .23e + B .24e + C .1e + D .2e +【答案】A 【解析】(1211220182017Crrrr T a x -+⎛⎫=+- ⎪⎝⎭,必须1212,0r r -==,(1213T a =+,5x 的系数为21012C264a =,解得2a =,所以()()22200e 2e |x x x x +=+⎰23e =+【点睛】本题主要考查多项式的展开式,考查定积分计算.由于本题多项式的12次方的式子中,有一个2018x ,这个数的指数很大,采用二项式定理展开,写出通项的后可知它的指数一定是0,才能使得存在5x 的项,由此可求得0r =,进而求得a 的值,最后求得定积分.25.已知402cos 2d t x x π=⎰,执行下面的程序框图,如果输入的,2a t b t ==,那么输出的n 的值为( )A .3B .4C .5D .6【答案】B由题意得4402cos2d sin 2|sin 12t x x x πππ====⎰.所以输入的1,2a b ==. 执行如图所示的程序,可得:①3,5,5,2a b S n ====,不满足条件,继续运行; ②8,13,18,3a b S n ====,不满足条件,继续运行;③21,33,51,4a b S n ====,满足条件,停止运行,输出4.选B .26.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则的值等于( )A .56B .12C .23D .16【答案】A 【解析】由于f (x )=x m +ax 的导函数f ′(x )=2x +1,所以f (x )=x 2+x ,于是222322111115()()()|326f x dx x x dx x x -=-=-=⎰⎰. 故选A. 27.10|1|x dx -=⎰A .12B .1C .2D .3【答案】A 【解析】112011111(1)()10222x dx x dx x x -=-=-=-=⎰⎰.故选A.28.已知函数()f x 在R 上可导,且()()()34120f x x x f f '+'=-,则()10f x dx =⎰( ) A .1 B .1-C .394D .394-【答案】 C由题意得()()2'431f x x f =-',故()04f '=,()()1431f f =-'',得到()11f '=所以()348f x x x =-+所以()1432013948dx 28x 044x x x x ⎛⎫-+=-+= ⎪⎝⎭⎰.故选:C29.正项等比数列{}n a 中,34,a a 的等比中项为11eedx x⎰,令123n n T a a a a =⋅⋅⋅⋅,则6T =( )A .6B .16C .32D .64【答案】D 【解析】 因为1111ln |ln ln 2ee eedx x e x e ==-=⎰,即344a a =, 又1625344a a a a a a ===,所以33612634()464T a a a a a =⋅⋅⋅===.本题选择D 选项.30.如图,长方形的四个顶点为O (0,0),A (4,0),B (4,2),C (0,2),曲线yB ,现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是( )A .512B .12C .23D .3 4【答案】C 【解析】由已知易得:S 长方形=4×2=8, S 阴影=∫04dx=34202|3x =32243⋅=163, 故质点落在图中阴影区域的概率P=S S 阴影矩形=23, 故选:C .31.从图中所示的矩形OABC 区域内任取一点M(x,y),则点M 取自阴影部分的概率为( )A .13B .12C .14D .23【答案】B 【解析】阴影部分面积1033222102121(2)()||133x x S x x dx x dx x ------=--+=--+=⎰⎰, 由几何概型性质可知11212P ==⨯. 本题选择B 选项. 32.若()1128ln 31ax dx a x ⎛⎫+=+> ⎪⎝⎭⎰,则a 的值是( ) A .2 B .3C .4D .6【答案】B 【解析】()221112ln |ln 1aa x dx x x a a x ⎛⎫+=+=+- ⎪⎝⎭⎰, 由题意可得:2ln 18ln3a a +-=+, 构造函数()()2ln 10f x x x x =+->,则()()1'20,f x x f x x=+>∴单调递增, 注意到()38ln3f =+,据此可得:a =3是方程的唯一解. 本题选择B 选项.33.计算πsin d 0x x ⎰=( )A .2B .0C .2-D .4【答案】A【解析】ππsin d (cos )1(1)200x x x ⎰=-=--=,故选A . 34.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 【答案】B 【解析】 由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B35.已知物体运动的速度与事件的关系式为49v t =-,则落体从0t =到5t =所走的路程为( ) A .11 B .5C .1014D .20【答案】B 【解析】由积分的物理意义可知运动从t=0到t=5所走的路程为()()525004929|50455t dt t t -=-=-=⎰, 故选:B .36.的值为( ) A .0 B .C .2D .4 【答案】C【解析】试题分析:由题意根据定积分的性质故选C.考点:定积分的概念、定积分的性质、定积分的运算. 37.已知11()em dx x ⎰-=32e -,则m 的值为 A .12B .-12C .14e e- D .-1【答案】A 【解析】由微积分基本定理可得:()111|1eem dx lnx mx m me x ⎛⎫-=-=+- ⎪⎝⎭⎰, 结合题意可得:312e m me -+-=,解得:12m =. 故选:A .38.若()4sin cos 2ax x dx π+=⎰,则a的值不可能为( )A .1312πB .74π C .2912πD .3712π【答案】B 【解析】 由题得()4cos sin |cossincos sin cos sin 4442a x x a a a a a ππππ⎛⎫-+=-+--+=-=-= ⎪⎝⎭, 所以1sin 42a π⎛⎫-=⎪⎝⎭,把74a π=代入,31sin 22π⎛⎫-= ⎪⎝⎭, 显然不成立,故选B. 39.下列定积分不大于0的是( )A .11-⎰|x |d x B .11-⎰(1-|x |)d x C .11-⎰|x -1|d x D .11-⎰(|x |-1)d x【答案】D 【解析】则定积分的几何意义为求图形面积相关,要求定积分不大于0,只需被积函数在被积区间在下方,或x 轴下方面积大于x 轴下方面积。
高三数学积分试题答案及解析1..【答案】【解析】=.考点:定积分2.由直线y=2与函数y=2cos2(0≤x≤2π)的图象围成的封闭图形的面积为________.【答案】2π【解析】y=2cos2=cos x+1,则所求面积为S=dx=(x-sin x)=2π.3.(e x+2x)dx等于()A.1B.e﹣1C.e D.e2+1【答案】C1=e+1﹣1=e【解析】(e x+2x)dx=(e x+x2)|故选C.4.设.若曲线与直线所围成封闭图形的面积为,则______.【答案】【解析】.5.已知通过点(1,2),与有一个交点,交点横坐标为,且.如图所示:设与所围成的面积为S,则S取得最小值为.【答案】【解析】由通过点(1,2)可得,即,由与联立方程组,解得.则与所围成的面积S为.∵由得,由得或,所以当时,S取得极小值,即最小值.此时,最小值.6.设函数,若,则x的值为______.【答案】【解析】,又,∴.7.下列结论中正确命题的序号是(写出所有正确命题的序号).①积分的值为2;②若,则与的夹角为钝角;③若,则不等式成立的概率是;④函数的最小值为2.【答案】①③【解析】,①正确;时,与的夹角为钝角或为,②不正确;由几何概型概率的计算公式得,时,不等式成立的概率是,③正确;,令在是减函数,在是增函数,所以,函数的无最小值,④不正确;综上知,答案为①③.【考点】定积分,平面向量的数量积,几何概型,指数函数的性质.8.已知,若,则= ( )A.1B.-2C.-2或4D.4【答案】D【解析】,即,解得,(因为),故选D.【考点】定积分基本定理9..给出下列命题:①已知线性回归方程,当变量增加2个单位,其预报值平均增加4个单位;②在进制计算中,;③若,且,则;④ “”是“函数的最小正周期为4”的充要条件;⑤设函数的最大值为M,最小值为m,则M+m=4027,其中正确命题的个数是个。
【解析】①由线性回归方程的意义可得结论正确;②,正确③由正态分布函数的性质可知正确;④由定积分的知识得:a=,所以根据周期公式知T=4,正确;⑤根据函数f(x)在单调递增和是一个奇函数,然后进行整体运算.【考点】(1)线性回归方程;(2)正态分布函数;(3)定积分;(4)函数的性质.10.由曲线,直线所围成封闭的平面图形的面积为()A.B.C.D.【答案】B【解析】如图所示,由曲线与直线的交点为.方法一:则封闭的平面图形的面积为.方法二:.【考点】定积分的简单应用11.已知函数与的图象所围成的阴影部分(如图所示)的面积为,则_____.【答案】【解析】,解得.【考点】定积分的几何意义.12.由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A.B.2-ln 3C.4+ln 3D.4-ln 3【解析】如图所示,所求面积为S=3-d x-=8-ln x-4=4-ln 3,故选D.13.d x=________.【答案】π【解析】设y=,则x2+y2=4(y≥0),由定积分的几何意义知d x的值等于半径为2的圆的面积的.∴d x=×4π=π.14.________.【答案】1【解析】.【考点】定积分的应用.15.设a=,b=,c=,则下列关系式成立的是().A.<<B.< <C.D.【答案】C【解析】a==ln x=ln 2,b==ln x=ln3,c==ln x=ln5,所以,,,因为,()6=32=9,所以,()10=25=32,()10=52=25,所以<,即<<,所以16.把函数的图像向左平移后,得到的图像,则与的图像所围成的图形的面积为( )A.4B.C.D.2【答案】D【解析】函数的图像向左平移后,得到,得交点为,,则与的图像所围成的图形的面积为.【考点】三角函数平移变化,定积分.17.若,则f(2016)等于()A.0B.C.D.【答案】D【解析】,选D.【考点】1、分段函数及函数的周期性;2、定积分.18.= .【答案】0.【解析】因为是奇函数,所以=0.【考点】定积分的计算.19.由曲线与直线所围成的平面图形(图中的阴影部分)的面积是 .【答案】【解析】.【考点】1.积分的运算;2.利用积分求面积.20.已知,,记则的大小关系是()A.B.C.D.【答案】C.【解析】由已知,联想到定积分的几何意义得:为在上的定积分,即为曲边梯形的面积,而梯形的面积(如图),,故选C.【考点】定积分的几何意义.21.已知为常数,则使得成立的一个充分而不必要条件是 ( )A.B.C.D.【答案】C.【解析】由已知及牛顿-莱布尼茨公式得.由已知要求选项能推出,但不能推出选项.,但不能推出,故选C.【考点】1.定积分的计算;2充分、必要、充要条件的判断.22.在平面直角坐标系中,记抛物线y=x-与x轴所围成的平面区域为M,该抛物线与直线y =kx(k>0)所围成的平面区域为A,向区域M内随机抛掷一点P,若点P落在区域A内的概率为,则k的值为__________.【答案】【解析】根据题意画出图象如图,则,,则区域的面积,区域的面积为,由题意知,化简得,解得.【考点】定积分的计算.23.已知,直线交圆于两点,则.【答案】.【解析】由定积分的几何意义可知,,圆心到直线的距离.【考点】1.定积分的计算;2.直线与圆(相交弦长公式).24.由曲线,直线及轴所围成的图形的面积为_______.【答案】【解析】曲线y=,直线y=x-2及y轴所围成的图形如图所示,故:=.【考点】定积分的计算25.曲线,所围成的封闭图形的面积为 .【答案】【解析】曲线,的交点为,所求封闭图形面积为.【考点】曲边梯形面积.26.若,,,则从小到大的顺序为 .【答案】【解析】,,,故.【考点】微积分基本定理.27.=.【答案】3【解析】,或画出函数的图象,可以求出它在区间与轴围成的面积是3,由定积分的几何意义知答案为3.【考点】定积分的计算、定积分的几何意义.28.曲线和曲线围成的图形面积是.【答案】【解析】解得,或,则所求面积为 .【考点】定积分29.设,则二项式展开式中的第四项为()A.B.C.D.【答案】A【解析】∵,∴,∴,选A.【考点】微积分基本定理,二项式定理.30.在的展开式中的常数项为p,则 .【答案】11【解析】,令,即,,则.【考点】二项展开式的通项、定积分的运算.31.设函数,其中则的展开式中的系数为()A.-360B.360C.-60D.60【答案】D【解析】令的系数为【考点】定积分函数导数与二项式定理点评:本题中涉及到的知识点较多,主要有定积分的计算(首要找到被积函数的原函数)函数求导数及二项式定理:的展开式中通项为32.设的展开式中的常数项等于 .【答案】-160【解析】所以常数项为-160.【考点】定积分;二项式定理。
高三数学积分试题答案及解析1.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.2.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2C.D.【答案】C【解析】抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=( x﹣)|=.故选C.3.设.若曲线与直线所围成封闭图形的面积为,则______.【答案】【解析】.4.设,若,则;【答案】1【解析】由题知,解得.【考点】定积分、分段函数.5.直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形面积为( )A.B.C.D.【答案】B【解析】由题可得直线l的斜率为,抛物线的焦点为,所以直线l的方程为.联立直线与抛物线方程,则可知直线与抛物线围成的封闭图形面积为,故选B.【考点】直线方程定积分6.的展开式中的常数项为a,则直线与曲线围成图形的面积为【答案】【解析】解:所以答案应填:.【考点】1、二项式定理;2、利用定积分求曲边多边形的面积.7.定积分的值为____________.【答案】【解析】.【考点】定积分.8.根据=0推断直线x=0,x=2π,y=0和正弦曲线y=sinx所围成的曲边梯形的面积时,正确结论为()A.面积为0B.曲边梯形在x轴上方的面积大于在x轴下方的面积C.曲边梯形在x轴上方的面积小于在x轴下方的面积D.曲边梯形在x轴上方的面积等于在x轴下方的面积【答案】D【解析】【思路点拨】y=sinx的图象在[0,2π]上关于(π,0)对称,据此结合定积分的几何意义判断. 解:y=sinx的图象在[0,2π]上关于(π,0)对称,sinxdx=+sinxdx=0.9.(x2-x)dx=.【答案】【解析】(x2-x)dx=(x3-x2)=-=.10.如图,设点P从原点沿曲线y=x2向点A(2,4)移动,记直线OP、曲线y=x2及直线x=2所围成的面积分别记为S1,S2,若S1=S2,则点P的坐标为.【答案】(,)【解析】【思路点拨】设直线OP的方程为y=kx,P点的坐标为(x0,y),由S1=S2求出k的值,再求点P的坐标.解:设直线OP的方程为y=kx,P点的坐标为(x0,y),则(kx-x2)dx=(x2-kx)dx,即(kx2-x3)=(x3-kx2),即k-=-2k-(-k),解得k=,即直线OP的方程为y=x,所以点P的坐标为(,).11.若S1=x2d x,S2=d x,S3=e x d x,则S1,S2,S3的大小关系为().A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1=x2d x=x3=,S2=d x=ln 2,S3=e x d x=e2-e,∴S2<S1<S3.12.由曲线,直线,和轴围成的封闭图形的面积(如图)可表示为()A.B.C.D.【答案】B【解析】由定积分的含义表示,自变量从对应的函数的值的和,所以当函数的图像在x轴的下方时表示在这个区间对应的函数值小于零,所以与面积的概念不同.所以曲线,直线,和轴围成的封闭图形的面积,应该根据图形的对称性表示为.故选B.【考点】1.定积分的概念.2.定积分的几何意义.13.设,则二项式的展开式中,项的系数为【答案】60【解析】=(-6cosx)=(-6cos)-(-6cos0)="6." 二项式的展开式的通项为Tr+1=,由=2解得r=2,所以项的系数为=4×15=60.【考点】1.定积分;2.二项式定理.14.二项式的展开式的第二项的系数为,则的值为()A.3B.C.3或D.3或【答案】B【解析】∵,第二项的系数为,∴,∴.【考点】1.二项展开式的系数;2.积分的计算.15.定积分等于()A.B.C.D.【答案】A【解析】,故选A.【考点】定积分基本定理16.若函数f(a)=,则f等于【答案】p+1【解析】因为f(a)==.所以.故填p+1.本题考查定积分的知识点,易错点:求函数的导数的逆运算易错,最后结果的两组数对减易错.【考点】1.定积分的知识.2.函数的导数的逆运算.17.= .【答案】0.【解析】因为是奇函数,所以=0.【考点】定积分的计算.18.从如图所示的正方形区域内任取一个点,则点取自阴影部分的概率为()A.B.C.D.【答案】B【解析】阴影部分的面积,而正方形的面积,故点取自阴影部分的概率为,故选B.【考点】1.定积分;2.几何概型19. 定积分( ) A .5B .6C .7D .8【答案】D 【解析】.【考点】积分的运算. 20. 曲线与直线及所围成的封闭图形的面积为( )A .B .C .D .【答案】D【解析】令x=4,代入直线y=x-1得A (4,3),同理得C (4,),由=x-1,解得x=2,所以曲线y=与直线y=x-1交于点B (2,1),∴S ABC =S 梯形ABEF -S BCEF 而S BCEF ==(2lnx+C ),(其中C 是常数)=2ln4-2ln2=2ln2,∵S 梯形ABEF =(1+3)×2=4,∴封闭图形ABC 的面积S ABC =S 梯形ABEF -S BCEF =4-2ln2,故选D. 【考点】定积分在求面积中的应用21. 一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为 焦. 【答案】.【解析】由题意知,力所做的功为焦.【考点】定积分 22. 已知,,记则的大小关系是( ) A .B .C .D .【答案】C .【解析】由已知,联想到定积分的几何意义得:为在上的定积分,即为曲边梯形的面积,而梯形的面积(如图),,故选C.【考点】定积分的几何意义.23.设,则的值为()A.B.C.D.【答案】C【解析】,选C.【考点】1.分段函数;2.定积分24.___________.【答案】2【解析】,故答案为2.【考点】定积分的计算25.已知,直线交圆于两点,则.【答案】.【解析】由定积分的几何意义可知,,圆心到直线的距离.【考点】1.定积分的计算;2.直线与圆(相交弦长公式).26.由曲线,直线及轴所围成的图形的面积为_______.【答案】【解析】曲线y=,直线y=x-2及y轴所围成的图形如图所示,故:= .【考点】定积分的计算27.若,则实数的值是 .【答案】【解析】由,解得,又因为,所以.【考点】积分的计算.28.抛物线与直线所围成的图形的面积为____.【答案】【解析】如图所示,抛物线与直线所围成的图形的面积为.【考点】积分求面积.29.从如图所示的正方形OABC区域内任取一个点,则点M取自阴影部分的概率为()A.B.C.D.【答案】B【解析】根据题意由定积分的几何意义可得如图所示阴影部分的面积为,所以点取自阴影部分的概率为.【考点】定积分的几何意义及几何概率.30.一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.【答案】36【解析】把0到4的积分根据题意分成2段,再分别求积分,即.【考点】考查积分的运算.31.____________________.【答案】【解析】【考点】定积分点评:本题主要考查了定积分的运算,定积分的题目往往先求出被积函数的原函数,属于基础题.32.设函数,其中则的展开式中的系数为()A.-360B.360C.-60D.60【答案】D【解析】令的系数为【考点】定积分函数导数与二项式定理点评:本题中涉及到的知识点较多,主要有定积分的计算(首要找到被积函数的原函数)函数求导数及二项式定理:的展开式中通项为33.计算定积分;【答案】【解析】。
[学习目标] 1.了解导数和微积分的关系.2.掌握微积分基本定理.3.会用微积分基本定理求一些函数的定积分.知识点一 导数与定积分的关系f (x )d x 等于函数f (x )的任意一个原函数F (x )(F ′(x )=f (x ))在积分区间[a ,b ]上的改变量F (b )-F (a ).以路程和速度之间的关系为例解释如下:如果物体运动的速度函数为v =v (t ),那么在时间区间[a ,b ]内物体的位移s 可以用定积分表示为s =v (t )d t .另一方面,如果已知该变速直线运动的路程函数为s =s (t ),那么在时间区间[a ,b ]内物体的位移为s (b )-s (a ),所以有v (t )d t =s (b )-s (a ).由于s ′(t )=v (t ),即s (t )为v (t )的原函数,这就是说,定积分v (t )d t 等于被积函数v (t )的原函数s (t )在区间[a ,b ]上的增量s (b )-s (a ).思考 函数f (x )与其一个原函数的关系: (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos x ; (7)若f (x )=cos x ,则F (x )=sin x . 知识点二 微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么f (x )d x =F (b )-F (a ). 思考 (1)函数f (x )的原函数F (x )是否唯一?(2)用微积分基本定理计算简单定积分的步骤是什么? 答案 (1)不唯一.(2)①把被积函数f (x )变为幂函数、正弦函数、余弦函数、指数函数等初等函数与常数的和或差;②用求导公式找到F (x ),使得F ′(x )=f (x ); ③利用微积分基本定理求出定积分的值.题型一 求简单函数的定积分 例1 计算下列定积分. (1)3d x ;(2)(2x +3)d x ; (3) (4x -x 2)d x ;(4)(x -1)5d x . 解 (1)因为(3x )′=3,所以3d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以 (x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 反思与感悟 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②若F (x )是f (x )的原函数,则F (x )+C (C 为常数)也是f (x )的原函数.随着常数C 的变化,f (x )有无穷多个原函数,这是因为F ′(x )=f (x ),则[F (x )+C ]′=F ′(x )=f (x )的缘故.因为⎠⎛ab f (x )d x=[F (x )+C ]|b a =[F (b )+C ]-[F (a )+C ]=F (b )-F (a )=F (x )|b a ,所以利用f (x )的原函数计算定积分时,一般只写一个最简单的原函数,不用再加任意常数C 了. 跟踪训练1 求下列函数的定积分: (1)⎝⎛⎭⎫x +1x 2d x ;(2)x (1+x )d x . 解 (1)⎝⎛⎭⎫x +1x 2d x =⎠⎛12⎝⎛⎭⎫x 2+2+1x 2d x =⎠⎛12x 2d x +⎠⎛122d x +⎠⎛121x2d x =13x 3⎪⎪⎪ 21+2 x ⎪⎪⎪ 21 +⎝⎛⎭⎫-12⎪⎪⎪21=13×(23-13)+2×(2-1)-⎝⎛⎭⎫12-1 =296. (2)⎠⎛49x (1+x )d x=⎠⎛49(x +x )d x=⎝⎛⎭⎫23x x +12x 2⎪⎪⎪94=⎝⎛⎭⎫23×9×3+12×92-⎝⎛⎭⎫23×4×2+12×42 =2716. 题型二 求分段函数的定积分 例2 求函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),x 2,x ∈[1,2),2x ,x ∈[2,3]在区间[0,3]上的定积分.解 由定积分的性质知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x 2d x +⎠⎛232x d x=x 44⎪⎪⎪10+x 33⎪⎪⎪21+2x ln 2⎪⎪⎪32=14+83-13+8ln 2-4ln 2 =3112+4ln 2. 反思与感悟 (1)分段函数在区间[a ,b ]上的定积分可分成几个定积分的和的形式.(2)分段的标准是确定每一段上的函数表达式,即按照原函数分段的情况分就可以. 跟踪训练2 求下列定积分: (1)⎠⎛02|x 2-1|d x ;(2) ⎠⎜⎛0π21-sin 2x d x .解 (1)∵y =|x 2-1|=⎩⎪⎨⎪⎧1-x 2,0≤x <1,x 2-1,1≤x ≤2,∴⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎝⎛⎭⎫x -x 33⎪⎪⎪10+⎝⎛⎭⎫x 33-x ⎪⎪⎪21=⎝⎛⎭⎫1-13+⎝⎛⎭⎫83-2-⎝⎛⎭⎫13-1 =2.(2) ⎠⎜⎛0π21-sin 2x d x=⎠⎜⎛0π2|sin x -cos x |d x=⎠⎜⎛0π4 (cos x -sin x )d x +⎠⎜⎜⎛π4π2 (sin x -cos x )d x =(sin x +cos x )⎪⎪⎪π4+(-cos x -sin x )⎪⎪⎪⎪π2π4=⎝⎛⎭⎫22+22-1+(-1)-⎝⎛⎭⎫-22-22 =22-2.题型三 定积分的简单应用例3 已知f (a )=⎠⎛01 (2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛01 (2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10 =23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.反思与感悟 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪训练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2.① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01 (ax 2+bx +c )d x=⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10 =13a +12b +c , ∴13a +12b +c =-2,③ 由①②③式得a =6,b =0,c =-4.1.⎠⎜⎛0π4cos 2xcos x +sin x d x 等于( )A.2(2-1)B.2+1C.2-1D.2-2答案 C解析 结合微积分基本定理,得⎠⎜⎛0π4cos 2x -sin 2xcos x +sin x d x =⎠⎜⎛0π4 (cos x -sin x )d x =(sin x +cos x )⎪⎪⎪π40=2-1. 2.下列定积分的值等于1的是( )A.⎠⎛01x d xB.⎠⎛01(x +1)d xC.⎠⎛011d xD.⎠⎛0112d x 答案 C解析 ⎠⎛01x d x =12x 2⎪⎪⎪ 10=12,⎠⎛01(x +1)d x =⎝⎛⎭⎫12x 2+x ⎪⎪⎪ 10=12+1=32,⎠⎛011d x =x ⎪⎪⎪10=1,⎠⎛0112d x=12x ⎪⎪⎪10=12.故选C.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x = . 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪20-x 23⎪⎪⎪20=83-43=43. 4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,0≤x <1,3-x ,1≤x ≤2,则⎠⎛02f (x )d x = .答案176解析 ⎠⎛02f (x )d x =⎠⎛01(x 2+1)d x +⎠⎛12(3-x )d x=⎝⎛⎭⎫x 33+x ⎪⎪⎪10+⎝⎛⎭⎫3x -x 22⎪⎪⎪21=176.5.已知函数f (x )为偶函数,且⎠⎛06f (x )d x =8,则⎠⎛-66 f (x )d x = .答案 16解析 因为函数f (x )为偶函数, 且⎠⎛06f (x )d x =8,所以⎠⎛-66f (x )d x =2⎠⎛06f (x )d x =16.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.函数y =⎠⎛0x cos x d x 的导数是( )A.cos xB.-sin xC.cos x -1D.sin x 答案 A解析 (sin x )′=cos x ,⎠⎛0x cos x d x =sin x ⎪⎪⎪x0=sin x ,故选A. 2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A.F (x )=13x 3B.F (x )=x 3C.F (x )=13x 3+1D.F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3. ⎠⎛-40|x +2|d x 等于( )A. ⎠⎛-40 (x +2)d xB. ⎠⎛-40 (-x -2)d xC.⎠⎛-4-2(x +2)d x +⎠⎛-202(-x -2)d xD.⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴⎠⎛-40|x +2|d x =⎠⎛-4-2(-x -2)d x +⎠⎛-20 (x +2)d x .故选D.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32B.43C.23D.-23 答案 B解析 ⎠⎛-11f (x )d x =⎠⎛-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+x |10=13+1=43,故选B. 5.⎠⎜⎛0π2sin 2x2d x 等于( )A.π4 B.π2-1 C.2 D.π-24答案 D解析 ⎠⎜⎛0π2sin 2x 2d x =⎠⎜⎛0π21-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 6.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A.S 1<S 2<S 3B.S 2<S 1<S 3C.S 2<S 3<S 1D. S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.二、填空题7.⎠⎛-11 (1-x 2+x )d x = .答案 π2解析 ⎠⎛-11 (1-x 2+x )d x =⎠⎛-111-x 2d x +⎠⎛-11x d x ,根据定积分的几何意义可知⎠⎛-111-x 2d x 等于半径为1的半圆的面积, 即⎠⎛-111-x 2d x =π2,⎠⎛-11x d x =12x 2|1-1=0,∴⎠⎛-11 (1-x 2+x )d x =π2.8.若⎠⎛0T x 2d x =9,则常数T 的值为 .答案 3解析 ⎠⎛0T x 2d x = 13x 3⎪⎪⎪t 0=13T 3=9,即T 3=27,解得T =3. 9.设函数f (x )=ax 2+c (a ≠0),⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0= .答案33解析 由⎠⎛01f (x )d x =f (x 0),得⎠⎛1(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =ax 20+c ,∴a 3=ax 20,∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.故填33. 10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a = .答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3⎪⎪⎪a=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1. 三、解答题11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛01bx d x =13a +12b =176. 由⎩⎨⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.即f (x )=4x +3. 12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x=⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x=x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.13.求定积分⎠⎛-43|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛-43(x +a )d x =⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛-a3 (x +a )d x=⎝⎛⎭⎫-x 22-ax ⎪⎪-a-4+⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛-43[-(x +a )]d x =⎝⎛⎭⎫-x 22-ax ⎪⎪⎪3-4=-7a +72. 综上,得⎠⎛-43|x +a |d x =⎩⎪⎨⎪⎧7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。
高二数学积分试题答案及解析1.等于()A.1B.C.D.+ 1【答案】B【解析】.【考点】微积分基本定理的应用.2.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为().A.2B.4C.2D.4【答案】D.【解析】作出直线y=4x与曲线y=x3在第一象限内围成的封闭图形(如图);则.【考点】定积分的几何意义.3.由曲线所围成的图形面积是 .【答案】.【解析】作出图像如图所示(阴影部分),则.【考点】定积分的几何意义.4.等于()A.πB.2C.π﹣2D.π+2【答案】D【解析】,故选D.【考点】定积分.5.如图,阴影部分的面积是( )A.2B.2-C.D.【答案】D【解析】由图易知,阴影部分面积为.故选D.【考点】定积分的应用.6.已知,则二项式展开式中含项的系数是___________.【答案】【解析】,即,二项式展开式的通项公式(),令,则,,所以展开式中含项的系数是.【考点】定积分和二项式定理的应用.7.计算定积分:=_______.【答案】.【解析】,故应填入:.【考点】定积分.8.下列各命题中,不正确的是()A.若是连续的奇函数,则B.若是连续的偶函数,则C.若在上连续且恒正,则D.若在上连续,且,则在上恒正【答案】D【解析】奇函数关于原点成中心对称,其在区间的图像与直线,轴围城的面积(考虑正负)之和为零;偶函数关于轴对称在轴两侧的面积应该相等,B正确;C显然正确;当在区间内负的面积少于正的面积时,,但在上可以为负.【考点】定积分.9.由曲线与直线所围成的平面图形(下图中的阴影部分)的面积是____________.【答案】【解析】显然,根据对称性,只需算左边阴影部分的面积即可,曲线y=sinx,y=cosx的交点坐标为(),∴左边阴影部分的面积=,∴阴影部分面积S=2()=.【考点】定积分求曲边图形的面积.10.曲线与坐标轴围成的面积是()。
A.4B.C.3D.2【答案】3【解析】根据图形的对称性,可得曲线与坐标轴围成的面积【考点】定积分在求面积中的应用11.定积分等于()A.-6B.6C.-3D.3【答案】A【解析】.【考点】定积分的计算.12.下列值等于1的定积分是()A.B.C.D.【答案】C【解析】;;【考点】定积分的计算。
数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。