稳定性高的荧光探针的合成及应用研究
- 格式:docx
- 大小:37.21 KB
- 文档页数:2
生物荧光探针稳定性测试毫无疑问,生物荧光探针对于生物学研究和生物医学应用中的细胞成像和分子探测发挥着重要作用。
然而,荧光探针在体内和体外环境中的稳定性对于有效的实验结果至关重要。
本文将重点讨论生物荧光探针的稳定性测试,并探讨一些常见的测试方法和影响探针稳定性的因素。
稳定性测试是荧光探针的基本特性之一,它衡量了探针在一定时间内保持其荧光特性的能力。
这些特性包括发射光强度、光谱特性和荧光寿命等。
通过定量测量生物荧光探针的稳定性,我们能够评估其在特定环境条件下的应用潜力,并了解其长时间存储的可行性。
在稳定性测试中,荧光探针的质量和选择合适的探针设计至关重要。
设计和合成合适的探针结构,使其具有较高的化学稳定性和荧光效率,是有效测试探针稳定性的前提。
此外,良好的探针质量控制和纯度也是确保稳定性测试准确性的重要因素。
现在我们来介绍一些常见的生物荧光探针稳定性测试方法。
1. 光解荧光法光解荧光法是一种常用的荧光稳定性测试方法,通过观察探针在不同光照条件下的荧光衰减情况来评估其稳定性。
在该方法中,荧光探针被长时间照射,然后测量其荧光信号的降低程度。
通过分析探针的荧光强度衰减速率,我们可以评估其稳定性以及对光敏感的程度。
2. 热稳定性测试热稳定性测试是通过暴露探针样品在不同温度条件下来评估其稳定性。
该方法利用高温处理来模拟探针在体内和体外环境中的稳定性。
通过测量探针的荧光衰减或颜色变化,我们能够得出关于其在高温条件下的稳定性的结论。
3. pH稳定性测试pH稳定性测试是一种评估探针对不同酸碱条件的稳定性的方法。
通过调整溶液的pH值,观察探针的荧光强度和光谱特性的变化,我们能够了解探针在不同pH条件下的稳定性。
这对于控制探针在特定生理环境中的稳定性非常重要,特别是在生物成像领域中的应用。
除了上述测试方法,还有一些其他的影响荧光探针稳定性的因素需要考虑。
1. 光解和氧化荧光探针可能会因光解和氧化反应而失去稳定性。
光解是指在光照条件下,探针分子发生光化学反应,导致荧光信号的损失。
荧光探针在细胞成像中的应用研究随着生物学、化学、物理学等学科的发展,的确有越来越多的技术和方法用于探测、识别和描述生物体系中微观细节。
在这些涉及生物体系的技术中,有一种非常常用的技术:荧光。
由于荧光可以通过荧光显微镜等工具进行成像,所以被广泛应用于细胞成像。
而荧光探针作为荧光技术中的重要一环,其在细胞成像中的应用也引起了很多研究者的关注。
一、荧光探针的原理荧光探针能够通过与目标物相互作用而发生比荧光显微镜更方便和准确的发光效应。
因此,它在生物学的各个领域都有使用。
荧光探针可以通过吸收光子并激发成高能状态,之后重新发射荧光,从而显露出其自身存在的信息。
其中荧光的发生是由荧光分子中的定域激发的势能状态转移到其他状态引起的,这些高能状态的能量交换最终导致荧光发生。
在细胞成像领域中,荧光探针一般可用于以下几个方面:1.可用于探测特定生物分子的存在性及其在细胞中的分布情况。
2.可用于研究细胞的功能状态,比如荧光变化可能反映细胞内部不同化学物质的交互作用或共局域化。
3.可用于研究细胞间相互作用,荧光探针能够实现多种信号转换,从而研究细胞间的相互作用的程度和效果。
二、荧光探针的分类按照用途分类,可以将荧光探针分为下列几类,常见的荧光探针包括了蛋白质和DNA上的染色体荧光蛋白,荧光源,配体标记,细胞膜指示剂和选体等等。
它们可以用于生物学的各个领域,包括蛋白质结构解析,降解和合成、细胞信号转导,细胞凋亡,细胞增殖以及肿瘤细胞测量等。
1.染色体荧光蛋白染色体荧光蛋白指的是由特定基因编码的荧光蛋白,用于标记靶细胞的某些细节。
例如,绿色荧光蛋白(GFP)是在青蛙卵母细胞中首次发现的一种荧光蛋白,它可用于非侵入性地标记细胞中某些特定细节(比如软骨细胞中仅有的一组胆固醇基础树脂化细胞、神经元中的长胶质形态、心肌细胞中的可变性党参膜和肝细胞中各种细胞器)。
2.荧光源和配体标记荧光源和配体标记涉及到一种荧光探针,可用于观察细胞或者分子之间的交互作用。
荧光探针的合成及自由基检测研究摘要荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增,其原因在于荧光分析法具有高灵敏度的优点,且荧光现象具有有利的时间表度。
由于物质分子结构不同,其所吸收光的波长和发射的荧光波长也不同,利用这一特性可以定性鉴别物质。
荧光探针技术是一种利用探针化合物的光物理和光化学特性,在分子水平上研究某些体系的物理、化学过程和检测某种特殊环境材料的结构及物理性质的方法。
该技术不仅可用于对某些体系的稳态性质进行研究,而且还可对某些体系的快速动态过程如对某种新物种的产生和衰变等进行监测。
这种技术具备极高的灵敏性和极宽的动态时间响应范围的基本特点。
羟基自由基(HO·)和超氧阴离子自由基(O2-·)是生物体内活性氧代谢产生的物质,当体内蓄积过量自由基时,它能损伤细胞,进而引起慢性疾病及衰老效应。
因此,近些年来人们为了预防这类疾病的发生,自由基的研究已逐渐成为热点。
而快速、灵敏和实用的自由基检测方法就显得十分重要。
荧光探针检测自由基具有操作简便、响应迅速、选择性高等多种优点,我们将着重研究一类苯并噻唑结构荧光探针的合成及其对超氧阴离子自由基(O2-·)的检测。
关键词:荧光探针,苯并噻唑,超氧阴离子自由基,自由基检测SYNTHESIS OF FLUORESCENT PROBES AND DETECTION OF FREE RADICALSABSTRACTApplications of fluorescence analysis method in biochemistry, medicine, industry and chemical research grow with each passing day, the reason is that fluorescence analysis method has the advantages of high sensitivity, and the flurescence phenomenon has a favorable time characterization. Since the molecular structure of different materials, the absorption wavelength and fluorescence wavelength of the emitted light is different, this feature can be characterized using differential substances. Fluorescent probe technology is a method using photophysical and photochemical properties for researching some systems’physical and chemical process at the molecular level and detecting a particular structure and physical property of the special environment material. This technology not only can be used for steady-state nature of certain system, but also can monitore fast dynamic processes of a certain system such as the production and decay of a new species. This technology has the basic characteristics of a high degree of sensitivity and very wide dynamic range response time. Hydroxyl radical(HO-·)and superoxide anion radical(O2-·) is a substance produced in vivo metabolism of reactive oxygen species. When the body accumulates excess free radicals that will damage cells thereby causing chronic diseases and aging effects. Thus, in recent years people in order to prevent the occurrence of such diseases, the study of free radicals has become a hot spot. And fast, sensitive and practical method for the detection is very important. Using the fluorescent probes for the detection of free radicals is a simple, quick response, high selectivity variety of advantages. We will focus on the study of a classof synthetic fluorescent probes of benzothiazole structure and detection of superoxide anion radical.Key words:Fluorescent probes, Benzothiazole, Superoxide anion radical, Detection of free radicals目录1 绪论 (1)1.1 引言 (1)1.2 荧光 (1)1.2.1 荧光的产生 (1)1.2.2 荧光探针结构特点 (2)1.2.3 荧光探针传感机理 (3)1.2.4 常见荧光团 (3)1.2.5 荧光探针的性能 (5)1.2.6 影响荧光探针性能的因素 (5)1.2.7 荧光淬灭 (5)1.3 自由基 (6)1.3.1 自由基的间接检测技术 (6)1.3.2 自由基的直接检测技术 (7)1.4 研究现状 (8)1.4.1 超氧化物歧化酶(SOD)的检测 (8)1.4.2 2-(2-吡啶)-苯并噻唑啉荧光探针 (8)1.4.3 PF-1和PNF-1 (8)1.4.4 香草醛缩苯胺 (8)1.4.5 Hydroethidine类荧光探针 (9)1.4.6 二(2,4-二硝基苯磺酰基)二氟荧光素 (9)1.5 选题背景和意义 (10)1.6 课题研究内容 (10)2 荧光探针的合成 (11)2.1 引言 (11)2.2 还原文献 (11)2.3 新探针合成 (11)2.3.1 2-(4-二甲氨基苯)-苯并噻唑 (11)2.3.2 2-(4-氰基苯)-苯并噻唑 (12)2.3.3 2-(苯)-苯并噻唑 (12)2.3.4 2-(4-甲基苯)-苯并噻唑 (12)2.3.5 2-(4-硝基苯)-苯并噻唑 (13)2.3.6 2-(水杨醛)-苯并噻唑 (13)2.4 合成小结 (14)2.5 实验药品及规格 (14)2.6 实验仪器及型号 (15)3 实验结果与讨论 (16)3.1 引言 (16)3.2 荧光性能测试 (16)3.2.1 荧光性能待测溶液配制 (16)3.2.2 荧光性能测试结果 (16)3.2.3 测试谱图 (17)3.3 1H NMR数据 (21)3.3.1 2-(2-吡啶)-苯并噻唑 (21)3.3.2 2-(4-二甲氨基苯)-苯并噻唑 (22)3.3.3 2-(4-氰基苯)-苯并噻唑 (23)3.3.4 2-(苯)-苯并噻唑 (24)3.3.5 2-(4-甲基苯)-苯并噻唑 (25)3.3.6 2-(水杨醛)-苯并噻唑 (25)3.3.7 2-(2-噻吩)-苯并噻唑 (26)3.4 反应条件控制及处理 (27)3.5 结论与展望 (27)参考文献 (28)致谢 (30)译文及原文 (31)1 绪论1.1 引言荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增, 其原因在于荧光分析法具有高灵敏度的优点, 且荧光现象具有有利的时间表度。
面向新型能源的荧光探针研究荧光探针是一种能够将样品中的特定物质变成可见光的物质,具有高灵敏度、快速反应、无需加热等优点,所以在许多领域都有应用,如化学、生物医学、环境等领域。
随着新型能源的兴起,荧光探针技术也得到了广泛的发展和应用。
一、荧光探针在新型能源领域的应用新能源产业是当今世界的热点领域,其发展对能源问题和环境问题的解决起到了重要作用。
荧光探针作为新型能源领域的一种关键技术,已经在各种能源研究中得到了广泛应用,如太阳能电池、燃料电池、光催化和光电子器件等。
其中,荧光探针在太阳能电池中的应用特别引人关注。
太阳能电池是将阳光直接转化成电能的一种技术,其发展受制于高效的光电转换材料的开发。
在这方面,荧光探针能够通过高效的光物理性能实现高催化效率,从而提高太阳能电池的性能。
同时,荧光探针可以通过改变分子内部结构或分子间相互作用形成不同颜色的旋转造假体系,从而实现光谱调控。
这一特点为太阳能电池的高效率和长寿命提供了保障。
二、荧光探针的研究现状和发展荧光探针研究在很多年前就已经开始,但其应用范围和性能一直在得到不断的完善和提高。
目前,荧光探针的研究集中在以下方面:第一,荧光探针的设计和合成。
设计和合成高性能的荧光探针是荧光探针研究的核心。
第二,荧光探针的特性研究。
研究荧光探针的特性和性能对于其实际应用的推广是至关重要的。
第三,荧光探针的应用研究。
荧光探针在生命科学、材料科学等领域的实际应用研究是该技术发展的重要方向。
荧光探针的研究和应用还面临着一些挑战。
首先,荧光探针的设计和合成还需要更精确和高效的策略和方法。
其次,荧光探针的应用研究还需要更精确的检测技术和更准确的标定方法。
此外,新能源领域的研究对荧光探针的性能要求也越来越高,如荧光探针的稳定性、荧光强度、荧光响应时间等方面都需要不断提高和完善。
三、荧光探针在新型能源研究中的应用前景在新型能源研究领域,荧光探针的应用前景非常广阔。
未来荧光探针还可以在新能源发电、能源存储、能源转化等方面发挥更加关键的作用。
荧光探针在生物医学领域中的应用研究荧光探针是一种基于化学分子的发光探针,广泛应用于生物医学领域。
随着科技的不断发展,荧光探针的应用领域也越来越广泛,包括生物成像、疾病诊断、药物设计和分子生物学研究等。
本文将从不同方面探讨荧光探针在生物医学领域中的应用研究。
一、生物成像生物成像是指利用各种成像技术对活体组织进行影像学检查,用来观察生物学过程及其病理生理变化。
其中荧光成像是一种基于荧光探针的成像技术。
荧光探针在组织内的针对性标记,可以对细胞、组织或整个生物体进行实时监测。
目前,荧光成像技术已广泛应用于生物成像领域。
例如,通过对荧光探针进行修饰可以实现追踪细胞内靶向蛋白的位置和数量变化。
另外,也可以利用区分染料将荧光探针标记在目标组织或器官上,对活体组织进行成像,例如常用的绿色荧光蛋白标记法可用于对小鼠的肿瘤成像。
二、疾病诊断荧光探针在疾病诊断领域具有广泛的应用前景。
例如,利用荧光探针可以快速、灵敏地检测肿瘤标志物,并可通过变色或发出荧光信号来快速确定样本是否含肿瘤标志物。
另外,荧光探针还有助于检测传染病和其他疾病的特征分子。
例如,利用荧光探针检测人类免疫缺陷病毒(HIV)的核酸,在实验室中已经被广泛运用。
此外,荧光探针还可以用于检测侵略性细胞癌,对癌细胞进行区分和定位,在癌症预后和治疗中有着极其重要的作用。
三、药物设计荧光探针在药物设计中也扮演着非常重要的角色。
通过对荧光探针的药效学研究,可以预测药物的疗效和毒性,也可以设计出更有效的药物。
例如,荧光探针可以用于合成特定的药物分子,同时也可以用于药物分子的靶向性、选择性和药效的测定。
此外,利用荧光探针进行药物代谢动力学的研究,可以了解药物的代谢途径和代谢速率,为临床用药提供重要参考。
四、分子生物学研究荧光探针在分子生物学研究中也广泛应用。
荧光探针可以用于分析细胞内、细胞外生物分子的形态、结构和聚合程度等多个方面。
例如,荧光标记的抗体可以用于检测蛋白质,荧光标记的RNA探针可以用于检测RNA序列,荧光标记的染色体探针可以用于检测DNA序列等。
次氯酸双光子荧光探针的合成及其在生物成像中的应用中文摘要双光子吸收技术自问世以来一直受到了广泛的关注。
与单光子吸收材料相比,双光子吸收材料在分辨率、穿透深度具有显著的优势,可以用于显微成像、微纺织技术、三维数据存储、光限幅、上转换发光、光动力学治疗以及药物靶向释放等诸多领域。
特别是双光子显微技术,以近红外的激光为光源对生物样品进行成像,具有穿透性强,空间分辨率高,背景荧光干扰小,以及对生物样品的光损伤较小等优点,在生物医学领域具有广阔的应用前景。
然而,传统的双光子材料常常具有大共轭结构,水溶性差、细胞穿透能力差、生物毒性也较大,并不适用于生物成像。
因此,设计合成具有较高双光子吸收截面的有机小分子用于生物体内细胞、血管、组织成像,具有重要的研究价值。
本文设计合成了两种具有双光子吸收特性的荧光小分子,对其发光性能进行了系统的研究,探索它们在生物成像中的应用。
具体的研究内容包括:1、设计合成了一类以寡聚苯乙烯为骨架的双光子次氯酸荧光探针OPV-HOCl,并将其应用于活细胞及组织内的双光子成像。
在寡聚苯乙烯骨架上引入次氯酸识别基团——氧硫杂环戊烷,通过1H-NMR、13C-NMR、HRMS 对其结构进行了表征,并通过紫外光谱、荧光光谱等进一步研究了该探针对次氯酸的响应性能,测定了其双光子吸收截面。
加入次氯酸以后,探针分子末端的氧硫杂环戊烷基团被氧化,并生成醛基。
由于分子内强烈的电荷转移导致产物的双光子吸收截面提高了近15倍(从78.9GM提高到1131.5GM),因此OPV-HOCl可以作为一个双光子“turn-on”型次氯酸荧光探针。
此外,该探针还具有反应速度快、选择性好、pH适用范围宽等优点。
MTT实验表明该探针具有较小的细胞毒性。
由于该探针优异的次氯酸响应性能和较小的生物毒性,我们成功地将其用于小鼠胶质瘤细胞BV-2中次氯酸的检测,研究表明该探针可以透过细胞膜,并对细胞中外源性次氯酸和脂多糖诱导产生的内源性次氯酸具有高选择性的快速响应。
基于量子点的纳米荧光探针的制备及其在细胞和生物活体成像中的应用共3篇基于量子点的纳米荧光探针的制备及其在细胞和生物活体成像中的应用1基于量子点的纳米荧光探针的制备及其在细胞和生物活体成像中的应用随着纳米技术的发展,纳米荧光探针越来越受到重视。
基于量子点的纳米荧光探针因其高亮度、宽光谱和强耐光性等优点而成为研究热点。
本篇文章将讨论基于量子点的纳米荧光探针的制备和其在细胞和生物活体成像中的应用。
一、基于量子点的纳米荧光探针的制备1. 合成量子点量子点是一种极小的纳米材料,其尺寸处于纳米级别。
量子点一般由多种半导体元素组成,如硫化镉(CdS)、硫化锌(ZnS)等。
制备量子点通常使用热分解法或光化学合成法。
光化学合成法制备的量子点具有尺寸均一、荧光发射稳定等优点。
2. 包覆量子点为了提高量子点的荧光稳定性和光学性能,常常将量子点包覆在另外一种材料中。
常用的包覆材料包括聚合物、硅和金属等。
包覆后的量子点具有更好的光学稳定性和生物相容性。
3. 修饰量子点为了增加量子点的溶解度和特定的生物识别性,经常需要在量子点表面进行修饰。
修饰分子可以是蛋白质、多肽、核酸或其他分子。
修饰后的量子点可以选择性地靶向到生物区域,从而成为纳米荧光探针。
二、基于量子点的纳米荧光探针的应用1. 细胞成像基于量子点的纳米荧光探针可以应用于生物体中的单细胞成像。
其优点是高分辨率和高灵敏性。
对于细胞表面分子和内部结构的成像,基于量子点的纳米荧光探针是目前最有效的选择之一。
2. 生物活体成像除了单细胞成像,基于量子点的纳米荧光探针在生物活体成像中也起到了重要作用。
因为量子点具有高亮度和良好的光稳定性,能够提供出色的成像结果。
此外,基于量子点的纳米荧光探针还可以被选择性地引导到生物区域,以检测不同的生物分子和过程。
3. 多模态成像多模态成像通常是将几个不同型号的成像技术集成在一起,从而提高图像的质量和信息获取。
基于量子点的纳米荧光探针可以与其他成像技术相结合,如MRI和PET等。
新型荧光探针的设计与合成荧光探针是一种能够发出荧光信号的化学物质,被广泛应用于生物医学、环境监测、材料科学等领域。
随着科学技术的不断发展,研究人员对荧光探针的设计与合成也提出了更高的要求。
本文将探讨新型荧光探针的设计与合成过程。
荧光探针的设计是一个复杂而关键的过程。
首先,需要明确探针的应用目标,例如检测特定生物分子、环境污染物或材料表面活性剂等。
其次,需要选择合适的荧光基团和靶向分子。
荧光基团是探针发出荧光信号的关键部分,可以通过改变基团的结构和性质来调控荧光信号的强度和颜色。
靶向分子是指与目标分子具有特异性结合能力的分子,可以增强探针对目标分子的选择性和灵敏度。
在荧光探针的合成过程中,需要考虑多个因素。
首先,合成路线的选择至关重要。
合成路线应该简洁高效,并且能够合成出高纯度的产物。
其次,合成过程中的反应条件和溶剂选择也需要谨慎考虑。
一些荧光基团对光、温度和酸碱等条件敏感,因此需要选择适当的反应条件来避免对荧光基团的破坏。
此外,溶剂的选择也会影响到探针的溶解度和荧光性能。
在新型荧光探针的设计与合成中,还需要考虑到探针的生物相容性和细胞渗透性。
荧光探针在生物体内的应用需要具备良好的生物相容性,不会对生物体造成毒性和损伤。
此外,荧光探针还需要具备足够的细胞渗透性,能够穿透细胞膜并与目标分子发生特异性反应。
为了实现这一目标,研究人员通常会对探针进行修饰,添加适当的功能基团,如靶向肽、脂质链等,以增强探针的细胞渗透性和选择性。
除了设计和合成,荧光探针的性能评价也是不可忽视的一环。
荧光探针的性能评价包括荧光强度、荧光寿命、荧光稳定性等多个方面。
荧光强度是探针发出的荧光信号的强度,荧光寿命是探针发出的荧光信号的持续时间,荧光稳定性是探针发出的荧光信号的稳定性。
为了评价这些性能,研究人员通常会使用荧光光谱仪等仪器进行测量,并与已有的荧光探针进行比较。
总之,新型荧光探针的设计与合成是一个复杂而关键的过程。
它需要考虑到探针的应用目标、荧光基团和靶向分子的选择、合成路线的设计、反应条件和溶剂选择、生物相容性和细胞渗透性等多个因素。
DNA荧光探针合成原理DNA荧光探针作为一种生物学研究中不可或缺的工具,在细胞生物学、医学诊断和疾病治疗等领域有着广泛的应用。
DNA荧光探针的合成原理对于其性能和应用都具有重要意义。
本文将深入探讨DNA荧光探针的合成原理,以期帮助读者对其有更深入的理解。
一、DNA荧光探针的基本原理DNA荧光探针是一种用于识别和定量DNA或RNA序列的分子工具。
其基本原理是利用DNA或RNA的亲和性结合能力,通过荧光标记的方式将其与目标序列特异性结合,从而实现对目标序列的定量检测。
DNA荧光探针通常包括靶标序列的亲和配对区域和荧光标记,其中亲和配对区域用于与目标序列结合,荧光标记则用于信号的输出。
二、DNA荧光探针的合成方法1.选择合适的荧光染料合成DNA荧光探针的第一步是选择合适的荧光染料。
常用的荧光染料包括荧光素(Fluorescein)、罗丹明(Rhodamine)和荧光素酰胺(Fluorescein amidite,FAM)等。
这些荧光染料在不同波长下具有不同的荧光特性,因此需要根据实际需求选择适合的荧光染料。
2.合成探针序列合成DNA荧光探针的第二步是合成探针序列。
探针序列的合成可以通过化学合成或生物合成的方式进行。
化学合成是利用无机化学合成方法合成DNA探针序列,而生物合成则是利用酶和反应物合成DNA探针序列。
两种方法各有优缺点,需要根据实际需求选取合适的方式进行。
3.荧光标记合成DNA荧光探针的最后一步是进行荧光标记。
荧光标记可以通过多种方法实现,如在合成DNA探针序列时直接加入荧光染料,或者在合成完成后通过化学反应将荧光染料标记在DNA探针序列上。
荧光标记的选择和方法均需根据实验要求和荧光染料的特性进行合理设计。
三、DNA荧光探针的性能和应用DNA荧光探针的性能和应用受到多种因素的影响,包括荧光染料的选择、探针序列的设计、荧光标记的方式等。
合适的荧光染料和探针序列设计可以提高探针的特异性和敏感性,而合适的荧光标记方式可以提高探针的稳定性和信号输出能力。
第61卷 第1期厦门大学学报(自然科学版)V o l .61 N o .1 2022年1月J o u r n a l o f X i a m e nU n i v e r s i t y (N a t u r a l S c i e n c e )J a n .2022h t t p :ʊjx m u .x m u .e d u .c n d o i :10.6043/j.i s s n .0438-0479.202011026㊃综 述㊃近红外二区荧光探针的设计及应用研究进展黄艳芳,李子婧*(厦门大学公共卫生学院,分子影像暨转化医学研究中心,福建厦门361102)摘要:高时空分辨率和高灵敏度的荧光成像技术是一种新兴的活体可视化检测工具.与近红外一区(N I R -Ⅰ,700~900n m )相比,近红外二区(N I R -Ⅱ,1000~1700n m )成像具有更低的自发背景荧光㊁更深的组织穿透性和更高的信背比,因此N I R -Ⅱ荧光成像能促进深部疾病的精确诊断.N I R -Ⅱ荧光探针是N I R -Ⅱ荧光成像的基础.目前已开发一系列基于有机和无机材料的N I R -Ⅱ荧光探针,包括有机小分子染料㊁基于小分子染料的有机纳米粒子㊁共轭聚合物㊁量子点㊁稀土掺杂纳米粒子和单壁碳纳米管等.本文综述近期新型N I R -Ⅱ荧光探针的研究进展及其在生物医学领域的应用.关键词:荧光成像;近红外二区;荧光探针;有机小分子染料中图分类号:R445 文献标志码:A 文章编号:0438-0479(2022)01-0001-12收稿日期:2020-11-16 录用日期:2020-12-09基金项目:国家自然科学基金(81971674);福建省自然科学基金(2019J 06006)*通信作者:z i j i n g.l i @x m u .e d u .c n 引文格式:黄艳芳,李子婧.近红外二区荧光探针的设计及应用研究进展[J ].厦门大学学报(自然科学版),2022,61(1):1-12.C i t a t i o n :H U A N GYF ,L IZJ .R e s e a r c h p r o g r e s s i nd e s i g na n da p pl i c a t i o no f f l u o r e s c e n c e p r o b e s i n t h e s e c o n dn e a r -i n f r a r e d w i n d o w [J ].JX i a m e nU n i vN a t S c i ,2022,61(1):1-12.(i nC h i n e s e) 光学成像技术具有无创㊁安全㊁可视化能力强㊁空间分辨率高㊁成本低等优点,可对生物分子㊁细胞㊁组织和生物体进行实时㊁多维的可视化监测,是生物医学领域中的重要研究手段[1-2].荧光成像由于其灵敏度高㊁分辨率高及操作简单等优点,在生物分子检测成像㊁药物分布代谢跟踪㊁疾病检测和诊断,特别是癌症早期诊断和影像引导治疗中,具有良好应用前景.与可见光相比,发射波长在近红外区域的荧光探针可获得更深的穿透深度和更好的成像质量,因此,近10年来,荧光成像技术主要集中在近红外窗口.近红外一区(N I R -Ⅰ,700~900n m )荧光成像以其高灵敏度㊁快速反馈㊁无危害辐射㊁低成本等优点,在生物医学研究中受到广泛关注.例如,利用N I R -Ⅰ荧光染料可以精确地描绘前哨淋巴结/肿瘤轮廓,并在术中引导切除前哨淋巴结/肿瘤组织[3].最近的研究表明,由于具有散射少㊁组织吸收可忽略和自荧光效应最小化等优势,在近红外二区(N I R -Ⅱ,1000~1700n m )进行生物医学成像可以充分提高成像的时空分辨率(约20m s 和约25m m )以及穿透深度(高达3c m ),从而获得比N I R -Ⅰ更好的图像质量和更高的信背比[4-7].目前,临床批准的近红外荧光染料有两种,分别是吲哚菁绿(I C G ,发射波长800n m )和亚甲基蓝(M B ,发射波长700n m ),两者都是可以快速排泄的小分子,主要用于N I R -Ⅰ成像[2].随着化学合成的不断发展,新的荧光材料不断被发掘.N I R -Ⅱ荧光材料种类也日益丰富,如有机荧光材料㊁量子点㊁稀土纳米材料等被开发应用于近红外生物医学成像.然而,缺乏良好的水溶性㊁稳定性㊁荧光效率和生物相容性等是N I R -Ⅱ荧光材料发展的瓶颈.如何解决这些问题是N I R -Ⅱ荧光成像领域的热点,也是未来发展方向[8-12].因此,开发荧光效率高㊁水溶性好㊁生物相容性好的新型N I R -Ⅱ荧光材料,对荧光成像技术的发展具有重要意义.本文对近期新型N I R -Ⅱ荧光材料的设计理念及其在生物医学领域的应用进行综述和展望,以期为N I R -Ⅱ荧光成像技术的发展提供参考思路.1 有机N I R -Ⅱ荧光探针目前,已经开发出多种性能优良的有机N I R -Ⅱ荧光材料,其具有明确的化学结构,并且易于代谢,生物相容性好[13],因此极具吸引力和发展前景,有望率先在未来的临床中应用.1.1 苯并双噻二唑(B B T D )类具有供体-受体-供体(D -A -D )特征的荧光团,如Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n B B T D 衍生物,具有较大的斯托克斯位移(约200n m )和高成像质量.在D -A -D 支架中,强电子供体与中心电子受体的空间结构可缩小杂化最高占据分子轨道(H O M O )与最低未占据分子轨道(L U M O )能级之间的能隙,将荧光发射波长红移至N I R -Ⅱ窗口[13-16].B B T D 通过调节D -A -D 荧光团的受体和供体结构可以有效地改变吸收和发射光谱特征.通常,B B T D 基荧光团的最大吸收波长和发射波长分别位于800和1000n m 左右,波长相对较短.设计波长更长的新型荧光团将有利于在N I R -Ⅱ对深层组织进行成像[17].F a n g 等[18]研究后发现:用S e 原子取代B B T D 骨架中的S 原子可以使发射波长红移,引入给电子氨基也可以使发射波长延长至N I R -Ⅰ;但是单一的改进措施只能使波长红移ɤ50n m ,如何进一步有效延长波长仍然是一项挑战.通过同时在B B T D 骨架中引入一个S e 原子和一个氨基,开发了一种最大发射波长为1210n m 的新型有机小分子荧光团F M 1210;与S 取代的类似物C F 1065相比,F M 1210的发射波长大幅红移了145n m ,并保持相当的量子产率和亮度,从而使F M 1210的活体成像质量明显高于C F 1065,波长增益约为使用单一修饰的B B TD 衍生物(约50n m )的3倍,超过1200n m 区域波长的大幅增加可归因于S e 原子和氨基的协同作用.这些优点进一步使N I R -Ⅱ荧光探针能够以100帧/s 的速度对小鼠进行成像.此外,该研究还证明纳米尺度的F M 1210脂质体(F M 1210-N P s)能以高信背比对肿瘤及血管系统进行活体成像(图1).图1 F M 1210的结构(a)及其脂质体用于血管及肿瘤的荧光成像(b)[18]F i g .1T h e s t r u c t u r e o f F M 1210(a )a n d f l u o r e s c e n c e i m a g i n gf o r b l o o d v e s s e l a n d t u m o rw i t hF M 1210-N P s (b)[18]揭示B B T D 基荧光团的分子结构与光学行为之间的关系,也有助于开发具有长波长荧光发射的探针.为此,Y e 等[19]研究了B B T D 核心两侧的共轭桥和电子供体对光学行为的影响:当将苯基噻吩共轭桥(如P T ㊁P P T 和P T T )置于B B T D 核心两侧时,它们的吸收波长在640~860n m 区域,而其发射波长约1070n m ;当加入噻吩桥(T P A T )时,吸收和发射波长分别可达920和1150n m.在芴吡咯(F P)官能团存在的情况下,由于吡咯的N H 基团与B B T D 的氮原子之间形成了分子内氢键,吸收波长可达1020n m ,发射波长超过1200n m.这些结果表明,T P A T 和电子供体是延长荧光团吸收和发射波长的关键成分.基于此,选择T P A T 和苯乙烯来放大共轭桥,以N ,N -二甲基氨基作为电子供体,将它们整合到B B T D 支架中,从而得到在942n m 处有一个很强的吸收峰㊁在1302n m 处有一个发射峰的目标分子B B T D -1302.1302n m 处的最大发射峰不仅有助于解决更深层肿瘤的成像问题,还避免了使用长通滤波器时荧光成像的亮度下降[13].接着以聚乙二醇(P E G )化表面活性剂对其进行功能化形成水分散性纳米粒子B B T D -1302N P s,并通过体外研究验证了B B T D -1302N P s 的高生物相容性和耐光降解性;基于B B T D -1302N P s 的良好性能,在荷瘤裸鼠体内对B B T D -1302N P s 的光热治疗能力进行了研究,结果显示经尾静脉注射B B T D -1302N P s 和980n m 激光照射的小鼠肿瘤生长受到抑制.为了改善N I R -Ⅱ荧光量子产率,目前还开发出多种具有屏蔽单元-供体-受体-供体-屏蔽单元(S -D -A -D -S)结构的荧光团.引入屏蔽单元可以保护荧光团的共轭骨架免受分子间相互作用,从而提高量子产率;同时,供体单元也有助于改善S -D -A -D -S 荧光团在水溶液中的量子产率性能.例如:使用3,4-乙二氧基噻吩(E D O T )代替噻吩作为供体单元,可以使荧光探针水溶液中的量子产率从0.002%指数级增加到0.2%(将荧光团I R -26在二氯乙烷中的量子产率0.05%作为参比测定得出);具有增强疏水性的3-辛基噻吩进一步作为荧光团I R -F T A P 的第一供体,在水中的量子产率提高到0.53%[20].尽管这种供体修饰可有效改善水溶液中的量子产率,但也会引起共轭主链更大的畸变,从而导致吸收光谱移动,发射波长减小,吸收系数降低.因此,为有效改善荧光团的亮度,在提高量子产率的同时应不牺牲吸收系数.基于此,M a 等[21]设计并合成了以二辛基链取代的3,4-丙基二氧基噻吩(P D O T )为供体单元的新型S -D -A -D -SN I R -Ⅱ荧光团I R -F P 8P ,以增强量子产率和吸收系数;与I R -F T A P 的3-辛基噻吩相比,P D O T 供体的共轭主链扭曲较小,因此I R -F P 8P 实现了吸收光谱的红移和吸收㊃2㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n 系数的提高.此外,二辛基链取代的P D O T 能很好地保护主链不与水相互作用,量子产率明显提高.结果显示:I R -F P 8P 在水溶液中的荧光量子产率为0.60%,在水溶液中的峰值吸收系数为1.3ˑ104L /(m o l ㊃c m );与I R -F T A P 相比,亮度(808n m 激发)增加了5.7倍以上.I R -F P 8P 可在1300n m 长通滤波器下对小鼠后肢血管进行成像,并观察到清晰的血管网络,信背比约为7.此外,通过偶联卵泡刺激素(F S H )制备具有靶向能力的F S H@F P 8荧光探针,可用于小鼠卵巢成像.大多荧光分子探针在聚集态时,会由于平面结构分子间强π-π相互作用诱导荧光猝灭(A C Q )效应,在水溶液或生理条件下荧光亮度降低,从而限制了其生物成像质量.M e i 等[22]和L i u 等[23]发现了与A C Q 相反的聚集诱导发光(A I E )现象,即处于聚集状态的荧光探针强度远高于分散态.因此,当赋予N I R -Ⅱ荧光材料A I E 特性,它将具有更高的荧光效率和光稳定性,同时大幅提升成像清晰度和分辨率.近期,L i 等[24]以B B T D 为电子受体㊁三苯胺(T P A )为电子供体,利用A I E 活性分子转子,设计并合成了P E G 化S A -T T B -P E G 100;通过自组装技术获取了纳米颗粒(粒径为35n m ),在约1050n m 处表现出最大荧光发射峰,在水中的最高量子产率为10.30%.此外,该自组装的纳米颗粒相比于通过两亲性聚合物包裹的对应物,表现出更小的多分散指数(P D I )㊁更好的均一性以及更久的胶体稳定性,在生物成像方面具有更好的潜力.接着,利用此纳米探针在小鼠和兔模型中评估了这种A I E 纳米颗粒的近红外荧光成像性能,结果显示,N I R -Ⅱ荧光成像在体分辨率约38μm ,穿透深度约1c m.该研究表明,高效自组装策略设计的N I R -ⅡA I E 纳米颗粒对血管相关疾病的诊断和治疗具有重要意义,为N I R -Ⅱ荧光成像技术的转化应用提供了新机会.1.2 花菁类基于聚次甲基骨架的花菁染料含有扩展π共轭体系,具有独特的共轭骨架结构.通过加长聚次甲基链㊁增加杂环供体强度,或将杂原子从氧改变为其他硫族元素等方法,可以使染料的吸收波长红移.与D -A -D 型染料相比,花菁类染料合成过程相对简单,吸收强度较高(ε>105L /(m o l ㊃c m )),特别是对近红外光有很强的吸收,因此很适合于近红外成像[25-26].由于循环时间短,菁类染料为血管成像提供的成像时间窗口通常小于2m i n .将染料与蛋白质进行生物结合可以增强循环时间,但这可能会产生猝灭效应而牺牲亮度.因此,需要发展一种新策略,在改善药代动力学特征的同时,又能确保N I R -Ⅱ荧光团的高量子产率.T i a n 等[27]通过牛血清白蛋白(B S A )和花菁染料之间的工程化超分子组装,开发了一个自组装的㊁尺寸约为50n m 的I R -783@B S A .该复合物可以保持扭曲的构象,且I R -783与白蛋白之间的纳摩尔级结合亲和力增强了扭曲的分子内电荷转移(T I C T )过程和循环时间;循环时间增强使I R -783@B S A 能够在注射后3h 内观测到3μm 宽的血管,同时具有超高的对比度,从而获得高质量的N I R -Ⅱ成像.目前,N I R -Ⅱ花菁类染料在生物成像中存在稳定性差㊁斯托克斯位移小,或发生溶剂化猝灭等缺点.针对这些问题,R e n 等[28]通过理性设计和理论计算相结合,提出构建N I R -Ⅱ荧光染料的新思路,即增大空间位阻和电子不对称性,并以此开发了一系列稳定㊁高量子产率㊁抗溶剂化猝灭的新型菁荧光团(N I RⅡ-R T s ),其在水溶液中的吸收和发射峰分别高达977和1008n m.与传统的N I R -Ⅱ七甲川菁相比,N I RⅡ-R T s 具有较小的斯托克斯位移和对溶剂极性敏感的吸收带,在极性溶剂中表现出稳定且强烈的吸收.稳定性测试表明,N I R Ⅱ-R T s 在生理环境中的化学稳定性和光稳定性均优于商用七甲川菁类似物I R 1061和吲哚菁绿.这些特点使N I RⅡ-R T s 在生物成像应用中具有优异的高亮度和深层组织穿透性.此外,由于引入了羧酸官能团,新型染料N I RⅡ-R T 3/4可以通过螺旋环化作用产生一个强大的荧光开关机制,所以N I R Ⅱ-R T 染料可以设计作为可激活的N I R -Ⅱ荧光探针.作为概念的证明,该团队应用N I R Ⅱ-R T 4构建了一系列可靶向激活的N I R -Ⅱ荧光探针(N I R Ⅱ-R T -pH ㊁N I RⅡ-R T -三磷酸腺苷(A T P )和N I RⅡ-R T -H g),用于生物相关物质的检测.特别是利用N I RⅡ-R T -A T P 探针,首次实现了高对比度药物性肝损伤小鼠肝脏A T P 含量的实时监测.通常,有机荧光染料仅通过结构修饰很难将最大吸收波长和发射波长红移至1300n m 以上,而J -聚集体可以使单个分子的吸收和发射波长红移,吸收系数增强且斯托克斯位移减小.因此,为了获取更长吸收和发射波长的N I R -Ⅱ探针,最近S u n 等[29]通过自组装F D -1080花菁染料和1,2-二肉豆蔻酰基-s n -甘油-3-磷酸胆碱(D M P C ),成功开发了一种新型的N I R -Ⅱ探针F D -1080J -聚集体,其在生理条件下表现出较高的亲水性和稳定性,最大吸收和发射波长均超过1300n m ;进一步利用分子动力学模拟研究了磷脂D M P C 与F D -1080在J -聚集体形成过程中的相互作用;此外,还㊃3㊃Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n 对F D -1080J -聚集体进行了1500n m 以上的光学成像(图2),并成功用于监测高血压大鼠在给药后颈动脉的动态变化,以评价降压药的疗效.图2 浸没于不同深度甘油中的J -聚集体的荧光图像(a ),不同成像窗口中在穿透深度处J -聚集体的半峰宽(F W H M )(b)及注射J -聚集体后在不同区域获得的脑和后肢血管图像(c )[29]F i g .2F l u o r e s c e n c e i m a g e s o f J -a g g r e ga t e s i m m e r s e d a t v a r i e d d e p t h s i n g l yc e r o l (a ),f u l l w id t h a t h a l f -m a x i m u m (F WHM )o f J -a g g re g a t e s a t p e n e t r a t i o n d e p t h i n v a r i e d i m a g i n gw i n d o w s (b ),a n d i m a ge s of b r a i n a n d h i n d l i m b v e s s e l s a c h i e v e d b y J -ag g r e g a t e s i n v a r i e d r e gi o n s (c )[29]1.3 硼二吡咯烷(B O D I P Y )类B O D I P Y 染料具有高的量子产率㊁优异的化学和光物理稳定性,在分子成像和药物传递方面发挥着重要作用[30-31].经典的B O D I P Y 吸收范围为500~600n m ,并且具有相当小的斯托克斯位移(15~30n m ).基于B O D I P Y 的强吸电子性质,引入给电子基团可促使吸收和发射波长红移.例如,M c d o n n e l 等[32]在3,5-位将己二甲胺基引入苯环,可使其在三氯甲烷溶液中吸收和发射光谱的峰值分别从650和672n m 显著红移到799和823n m.近年来,基于B O D I P Y 的N I R -Ⅱ型有机荧光材料也得到了迅速的发展.氮杂B O D I P Y (a z a -B O D I P Y )的水溶性较差,限制了它们在活体研究中的应用.为了解决该问题,G o d a r d 等[33]采用了一种新策略,通过在硼原子上引入铵基,制备出水溶性a z a -B O D I P Y ,命名为S W I R -W A Z A B Y -01.无需亲水性包封或P E G 辅助,S W I R -W A Z A B Y -01可直接用于肿瘤的N I R -Ⅱ成像(图3).这种以a z a -B O D I P Y 为基础的染料可以在肿瘤中迅速到达和累积,并在体内保留长达1周.图3 S W I R -W A Z A B Y -01的结构及其用于肿瘤的荧光成像[33]F i g.3T h e s t r u c t u r e o f S W I R -W A Z A B Y -01a n d f l u o r e s c e n c e i m a g i n gf o r t u m o rw i t hS W I R -W A Z A B Y -01[33]最近,B a i 等[34]利用分子工程开发出一系列新的a z a -B O D I P Y 染料:N J 960㊁N J 1030和N J 1060.与经典的a z a -B O D I P Y 相比,该类分子在强D -A 分子内电荷转移(I C T )效应的帮助下可将近红外发射光谱红移到N I R -Ⅱ.此外,该类染料具有很好的光物理性能,如斯托克斯位移大㊁光稳定性好㊁水溶液中荧光亮度大等,其中N J -1060在N I R -Ⅱ荧光量子产率高达1.00%,并且体内N I R -Ⅱ荧光成像结果表明N J -1060具有高分辨率和深穿透成像能力.1.4 基于共轭聚合物的N I R -Ⅱ染料富电子供体和吸电子受体可使共聚物的带隙变小,因此通过D -A 交替共聚生成的共轭聚合物具有带隙小㊁易调整的优点,是N I R -Ⅱ探针设计的一种有效途径.半导体聚合物点(P d o t s )是近年来出现的一种新型有机荧光材料.与传统荧光染料相比,P d o t s具有宽吸收㊁对称窄发射㊁高光亮度㊁高光稳定性及大斯托克斯位移.因此,高荧光P d o t s 组成的纳米颗粒被视为一种有效的荧光探针[35-36],在生物成像㊁分子检测㊁指导药物治疗等领域展现出广阔的应用前景.尽管P d o t s 由于其可调的光学特性,在生物成像和生物传感方面具有很强的实用价值,但是与有机溶剂中的原始聚合物相比,纳米粒子形式的半导体聚合物通常表现出荧光猝灭,可归因于链间和链内π-π堆积的强相互作用,从而导致非发射性激子和激基复合物的形成[37-38].随着发射能量的降低,无辐射衰减率显著增加,很难获得高量子产率的N I R -Ⅱ荧光团.最近,Z h a n g 等[39]提出了一种双重荧光增强机制来增强㊃4㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n P d o t s 的N I R -Ⅱ荧光,通过分子工程策略开发了9种N I R -Ⅱ半导体聚合物.在该研究中,一方面利用吩噻嗪单元的聚集诱导发射特性来减少聚集态聚合物的非辐射衰变路径;另一方面引入了大量的侧链基团,通过空间位阻来减弱链间和链内π-π堆积产生的强相互作用,进一步增强荧光量子产率.基于这种双重增强策略制备的P 3c P d o t s 在水溶液中的荧光量子产率约为1.70%,比四氢呋喃溶液中的原始聚合物增强约21倍.活体小鼠头盖部荧光成像有显著改善,表明这种双重增强策略在设计活体荧光成像的N I R -Ⅱ荧光团方面具有潜在应用前景.另外,针对P d o t s 在水溶液中往往会出现严重的荧光猝灭问题,L i u 等[40]通过在聚合物受体的不同位置引入氟原子,利用分子调控N I R -Ⅱ荧光增强策略,减少聚合物与水分子的相互作用和非辐射越跃,从而提高N I R -Ⅱ荧光量子效率(图4).分别以苯并二噻吩(B D T )和三唑[4,5-g ]-喹喔啉(T Q )衍生物为供体和受体,设计了两种含氟半导体聚合物.光物理实验结果显示:在808n m 光激发下,聚合物发射光谱覆盖了N I R -Ⅱ,肩峰延伸超过1300n m ;随着氟化程度的加深,聚合物发射光谱红移.随后利用密度泛函理论表明氟化使激发态和基态之间的结构畸变减小,从而减少了非辐射弛豫,增强了P d o t s 的荧光量子产率.最后用P d o t s 进行小鼠颅骨肿瘤血管系统的活体荧光成像,获取了一系列高穿透深度和高信背比的荧光图像.各种有机N I R -Ⅱ荧光探针的关键参数和应用总结于表1.图4 纳米尺度氟化效应的示意图[4]F i g.4S c h e m a t i c i l l u s t r a t i o n o f n a n o s c a l e f l u o r o u s e f f e c t [40]表1 有机N I R -Ⅱ荧光探针的比较T a b .1 C o m p a r i s o n o f o r g a n i cN I R -Ⅱf l u o r e s c e n t pr o b e s 类型N I R -Ⅱ荧光材料激发波长/n m 发射波长/n m 量子产率/%应用B B T D 类F M 1210-N P s [18]980 12100.04肿瘤及血管系统的活体成像B B T D -1302N P s [19]94213022.40肿瘤光热治疗I R -F P 8P [21]74810400.60小鼠后肢血管成像S A -T T B -P E G 1000[24]808105010.30血管相关疾病的诊断和治疗花菁类I R -783@B S A [27]785143321.20肿瘤成像N I R Ⅱ-R T s [28]97710082.03肝脏A T P 含量的实时监测F D -1080J -聚集体[29]136013700.06监测颈动脉的动态变化,评价降压药的疗效B O D I P Y 类S W I R -W A Z A B Y -01[33]638720~12002.50肿瘤成像N J -1060[34]80810601.00脑血管成像共轭聚合物P 3c P d o t s [39]74610831.70小鼠脑部成像m -P B T Q 4F [4]808850~14003.20小鼠颅骨肿瘤血管系统成像㊃5㊃Copyright©博看网 . All Rights Reserved.厦门大学学报(自然科学版)2022年h t t p :ʊjx m u .x m u .e d u .c n 2 无机N I R -Ⅱ荧光探针与N I R -Ⅱ有机小分子染料相比,N I R -Ⅱ纳米探针具有相对较高的量子产率和较低的光漂白敏感性,在肝脏㊁肾脏㊁大脑和肺成像等领域具有独特优势.目前,已开发如稀土纳米粒子(R E N P s )㊁量子点(Q D s)㊁金纳米团簇(A u N C s )㊁单壁碳纳米管(S W N T s )等材料作为N I R -Ⅱ探针[41-43].在此,介绍基于无机材料的N I R -Ⅱ荧光探针的开发及其在生物成像领域的应用,并重点关注近期新型无机N I R -Ⅱ荧光探针的研究进展.2.1 稀土纳米材料R E N P s 具有较大的斯托克斯位移㊁较小的光漂白㊁狭窄和多峰值的发射特性以及可忽略的激发-发射带重叠,因此受到越来越多的关注.此外,由于可通过掺杂不同的稀土金属离子来调谐发射波长和延长发光寿命[43-45],R E N P s 成为N I R -Ⅱ荧光成像的研究热点,有着很广泛的应用前景.由于具有很长的荧光寿命(m s 级别)以及很大的斯托克斯位移(ȡ200n m ),镧系R E N P s 作为荧光探针被广泛使用.最近,L i 等[46]以77.5ʒ20.0ʒ2.5的摩尔比混合1,2-二棕榈酰磷脂酰胆碱(D P P C )㊁胆固醇(C h o l )和聚乙二醇化脂质(D S P E -P E G 2000)合成脂质体,然后使用该脂质体进一步包覆N I R -Ⅱ镧系荧光基团R E N P s ,得到在1064和1345n m 处双发射㊁大斯托克斯位移(分别为264和545n m )的R E N P s @L i p s .R E N P s @L i ps 在1064n m 处的量子产率为7.90%,在808n m 激发下1345n m 处的量子产率为4.10%.此外,R E N P s @L i ps 显著增强了静脉排泄性和胶体稳定性,缩短了在网状内皮系统中的停留时间,并且超过90%的R E N P s @L i p s 静脉给药后72h 内可以从肝脏排出.与之前报道的R E N P s @D S P E -m P E G 相比,R E N P s @L i p s 的体内清除速度快且半衰期短;同时,未发现明显的R E N P s @L i p s 骨积聚,这有助于减少骨系统滞留和加速静脉清除.这些结果表明R E N P s @L i p s 具有良好的生物相容性㊁静脉内排泄性和优异的光化学性质,适合于临床前评估和监测生理和病理过程,可促进其未来的临床转化.据报道,稀土元素Y b /E r 共掺杂纳米颗粒(E r R E N P s )具有N I R -Ⅱ波长的发光特性,并表现出斯托克斯位移大(高达450n m )㊁寿命长㊁光稳定性好等优点,被认为是新一代近红外探针的优异候选者.然而,E r3+容易发生能量转移到纳米晶体表面的现象,导致严重的荧光猝灭.最近,C a o 等[47]采用N d 3+敏化Y b3+的体系,在内部C e 3+的辅助下将能量转移到发光中心E r 3+上.该研究中,在内核中掺杂E r3+作为激活剂,并在核心层和中间层混合Y b3+作为敏化剂,之后在N a Y b F 4:E r 核纳米晶中进一步掺杂C e 3+以增强N I R -Ⅱ发射,并通过调节掺杂离子来优化纳米粒子的发光性能.引入P E G 配体提高了纳米颗粒的水溶性(图5),实现了较长的血液循环时间.通过采集其N I R -Ⅱ荧光信号,该纳米探针可用于肿瘤的高分辨率追踪和成像.U C L .上转换荧光.图5 N a Y b F 4:E r ,C e @N a Y F 4:Y b @N a Y F 4:N d 核壳纳米颗粒的合成过程(a )㊁结构示意图(b )及其能量传递的简化机制(c)[47]F i g .5S yn t h e s i s (a )a n d t h e s t r u c t u r e i l l u s t r a t i o n (b )o f N a Y b F 4:E r ,C e @N a Y F 4:Y b @N a Y F 4:N d c o r e -s h e l l -s h e l l n a n o p a r t i c l e s ,a n d t h e s i m pl i f i e dm e c h a n i s m (c )o f i t s e n e r g yt r a n s f e r [47]2.2 Q D sQ D s 具有宽激发光谱㊁窄发射光谱㊁高量子产率㊁抗光漂白等优点,在活体生物成像中具有很高的时空分辨率,因此引起了人们的广泛关注.已有研究通过对P b S ㊁C d S e ㊁A g 2S 等Q D s 的尺寸和形状进行微调,可以调节其药代动力学和组织分布[48-49].目前研究中用于N I R -Ⅱ荧光成像的Q D s 主要为Ⅱ-Ⅵ族和Ⅳ-Ⅵ族半导体材料,如C d S e ㊁C d T e 和P b S e 等,但其中含有的重金属元素(如C d 2+和P b2+等)极大地限制了其后续的生物医学应用[48].因此,开发具有良好生物相容性且高效发光的新型N I R -Ⅱ荧光Q D s 是目前生物标记领域的研究热点和难点.L i u 等[50]成功合成了在N I R -Ⅱ具有强吸光度的石墨烯量子点(G Q D s),并讨论了其在肿瘤光热治疗中的潜在生物医学应用.该研究以苯酚分子为单前驱体㊁过氧化氢为氧化剂,在9T 外加强磁场作用下,采用一步㊃6㊃Copyright©博看网 . All Rights Reserved.第1期黄艳芳等:近红外二区荧光探针的设计及应用研究进展h t t p :ʊjx m u .x m u .e d u .c n 溶剂热法合成了9T -G Q D s ;外加强磁场用于控制反应体系中氧的溶解浓度和苯酚分子分解过程中超氧自由基的生成,从而形成具有大量C O 键和较大共轭体系的G Q D s ,吸收峰位于约1070n m 处;合成的9T -G Q D s 具有丰富的亲水基团㊁良好的水溶性和较小的粒径分布(3.6n m ).此外,对9T -G Q D s 的细胞毒性和生物安全性进行体外和体内实验,证明其具有良好的生物相容性.体内实验证明9T -G Q D s 在N I R -Ⅱ荧光成像引导的光热癌症治疗中,对小鼠肿瘤的生长具有明显抑制作用.P b SQ D s 具有多种独特的特性,包括窄带隙㊁大玻尔半径㊁在近红外区可调谐和强发射,使其广泛应用于光电子器件㊁传感器和活体成像等领域[48].目前胶体法制备窄粒径P b SQ D s 的方法已得到很好的发展,但在较高的温度下,该方法制备的纳米晶很不稳定.此外,由于表面易被氧化,其光学性质对空气和水相当敏感,限制了它们在生物成像中的应用.S h i 等[51]通过阳离子掺杂工艺,制备了一系列高质量的锌掺杂P b SQ D s ,发现锌掺杂后可以形成掺杂态,降低了主体P b S 的能隙,有效增强了P b SQ D s 的量子产率和光致发光寿命,并改善了Q D s 在高温下的荧光稳定性.这种阳离子掺杂策略为制备波长更长的更小粒子提供了一种新方案,可批量制备一系列波长覆盖整个N I R -Ⅱ的高质量Q D s ,为近红外光学成像提供了新工具;同时,P E G 化的Q D s 可用于活体小鼠的脑血管无创高分辨荧光成像,实现了在毛细血管水平上高分辨率的脑血管无创近红外成像.2.3 惰性金属纳米材料惰性金属基(如A u 和P t)发射体不易引起荧光猝灭,因此很适用于N I R -Ⅱ成像.A u N C s 是其中一个典型的代表,其具有比肾脏排泄阈值更小的尺寸㊁良好的光稳定性㊁易于修饰㊁优异的光热活性和多样性等多种独特优势,因此成为极具发展前景的新型N I R -Ⅱ探针[52-53].考虑到胃肠道的酸性和酶生物环境可能会导致大多数纳米发射体的荧光猝灭,W a n g 等[54]提出合成惰性金属基发射体用于胃肠道近红外成像,以克服潜在的荧光猝灭问题.通过构建核糖核酸酶-A (R N a s e -A ,由巯基和芳香族氨基酸组成)封装A u N C s ,得到具有一个完美高斯型发射峰的R N a s e -A @A u N C s ,峰中心位于1050n m ,F WHM 约为205n m ,与大多数报道的新型金属基成像剂相比,该发射峰相对狭窄,且R N a s e -A@A u N C s 的量子产率为1.90%.将R N a s e -A @A u N C s 暴露于胃肠道模拟液和哺乳动物细胞中以评估其稳定性和生物安全性,结果表明R N a s e -A @A u N C s 具有高稳定性和良好的生物相容性.与两个已报告的近红外发射体(A g 2S 和N a Y F 4:E r /Y b )相比,R N a s e -A@A u N C s 胃肠道灵敏度提高了50倍以上.该研究首次将蛋白电晕技术应用在A u N C s 上,将激发波长红移到N I R -Ⅱ,并使用一个肠癌模型来证明A u N C s 作为肿瘤诊断显像剂的潜在效用.近期,L i 等[55]合成了粒径3.3n m 左右的具有25个A u 原子和18个肽配体的新型A u N C s ,即A u 25(S G )18,可在N I R -Ⅱ发射.由于天冬氨酸和亚氨基二乙酸等羧酸可以作为天然骨靶向配体,研究人员假设A u 25(S G )18中丰富的羧酸侧链能使其与骨结合,从而作为一种新型的骨显像N I R -Ⅱ探针.该研究首次发现A u 25(S G )18与羟基磷灰石具有良好的体外结合能力.通过结合A u 25(S G )18,N I R -Ⅱ荧光成像能高分辨率和高对比度地描绘出体内骨结构,并探讨了以A u 25(S G )18作为骨组织术中N I R -Ⅱ荧光导航的潜在价值.E D C .1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;N H S .N -羟基琥珀酰亚胺;H C C .肝细胞癌.图6 A u N C s -P t 的合成(a )㊁患者源性肝细胞癌(P D H C)异种移植瘤模型的建立示意图(b)及癌细胞吞噬A u N C s -P t 后的双重作用机制(c)[57]F i g .6S y n t h e s i s o fA u N C s -P t (a ),i l l u s t r a t i o n o f t h e e s t a b l i s h m e n t o f t h e p a t i e n t -d e r i v e d h e pa t o c e l l u l a r c a r c i n o m a (P D H C )t u m o r x e n o gr a f tm o d e l (b ),a n d d u a l -a c t i o nm e c h a n i s m s a f t e r e n d o c yt o s i s o f A u N C s -P t b y ca n c e r c e l l s (c )[57]除具有N I R -Ⅱ成像能力外,带裸A u 原子的A u N C s 还可通过形成A uS 共价键与某些含巯基的物种如谷胱甘肽(G S H )发生反应[56].Y a n g 等[57]开发出一种双功能的热释光纳米药物(A u N C s -P t),利用A u N C s 来递送P t (Ⅳ)(图6).一方面,A u N C s -P t 的N I R -Ⅱ成像能力保证了高分辨率的肿瘤深部模型中P t 转运的有效可视化;另一方面,A u N C s -P t 通过A u S 键来结合G S H ,以清除胞内G S H ,从而有效地使肿瘤细胞对P t 类药物敏感.结果表明,A u N C s -P t 能够消除高危害的深部肿瘤,并减轻人体来源的肝癌异种㊃7㊃Copyright©博看网 . All Rights Reserved.。
稳定性高的荧光探针的合成及应用研究
荧光探针在生物学、医学、环境监测等领域中扮演着重要的角色。
稳定性是荧
光探针的一个重要性质,可以影响探针在实验和应用中的稳定性和可靠性。
因此,对于稳定性高的荧光探针的研究具有重要意义。
一、稳定性高的荧光探针的合成
稳定性高的荧光探针的合成需要考虑多个因素,如化学结构、稳定性、荧光性
能等。
根据化学结构的不同,常见的稳定性高的荧光探针包括芳香族化合物、多环芳香族化合物、铱配合物等。
在这里,我们主要讨论芳香族化合物和多环芳香族化合物两种。
芳香族化合物一般包含芳环和取代基,通过调整芳环和取代基的结构、取代位
点以及取代基的性质,可以合成出具有优异荧光性能和稳定性的探针。
例如,王婷等在探究新型荧光探针时,合成了含氧杂环取代苯啉、吡唑、吡啶等芳香族化合物,并通过荧光光谱、稳定性等实验确定了它们的荧光性质和稳定性。
多环芳香族化合物由于结构复杂,通常需要用到较为复杂的合成方法。
黄庆等
在研究新型异硫脲类荧光探针时,采用环加成反应合成了一系列含噻唑、苯并噻唑、二苯并噻唑等多环芳香族化合物,并通过荧光光谱、稳定性等实验确定了它们的荧光性质和稳定性。
二、稳定性高的荧光探针的应用研究
稳定性高的荧光探针的应用涉及到荧光显微成像、分子探针、生物分析等多个
领域。
根据具体的应用需求,可以选择合适的稳定性高的荧光探针。
例如,在荧光显微成像方面,稳定性高的荧光探针可以用于监测活细胞内的生
物分子。
Yelena V. Alakhova等在研究细胞毒性药物的荧光显微成像时,使用得到
的荧光探针与药物一起进入细胞,成功地实现了细胞内药物荧光定位,进一步揭示了药物对细胞的毒性作用机制。
在分子探针方面,稳定性高的荧光探针可以用于检测环境中的污染物。
Zhen
Liu等在研究环境污染物可监测性时,合成了一种含有硝基苯环二氧化物的荧光探针,并通过实验验证了它的稳定性和可靠性。
此外,稳定性高的荧光探针还可以应用于生物医学领域。
Xiang Li等在研究肿
瘤标志物的检测时,通过合成具有稳定性的荧光探针,并在大量的肿瘤细胞和正常细胞中进行实验,成功地实现了尿蛋白酶拆分产物的定量检测,为肿瘤早期诊断提供了新的思路和方法。
综上所述,稳定性高的荧光探针的合成和应用研究带来了许多新的发现。
未来,我们相信稳定性高的荧光探针将在更多领域中发挥作用,并推动生物分析、环境监测、医学检测等科学领域的发展。