高考物理总复习 优编增分练:计算题考点排查练7 2016年(全国Ⅲ卷)计算题考点排查练
- 格式:doc
- 大小:85.37 KB
- 文档页数:3
2016年高考全国三卷物理试题副标题题号一二三四总分得分一、单选题(本大题共5小题,共30.0分)1.关于行星运动的规律,下列说法符合史实的是()A. 开普勒在牛顿定律的基础上,导出了行星运动的规律B. 开普勒在天文观测数据的基础上,总结出了行星运动的规律C. 开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D. 开普勒总结出了行星运动的规律,发现了万有引力定律2.关于静电场的等势面,下列说法正确的是()A. 两个电势不同的等势面可能相交B. 电场线与等势面处处相互垂直C. 同一等势面上各点电场强度一定相等D. 将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功3.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为()A. st2B. 3s2t2C. 4st2D. 8st24.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块。
平衡时,a、b间的距离恰好等于圆弧的半径。
不计所有摩擦,小物块的质量为()A. m2B. √32m C. m D. 2m5.平面OM和平面ON之间的夹角为30∘,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30∘角.已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为()A. mv2qB B. √3mvqBC. 2mvqBD. 4mvqB二、多选题(本大题共6小题,共31.0分)6.如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a和b.当输入电压U为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是()A. 原、副线圈匝数之比为9:1B. 原、副线圈匝数之比为1:9C. 此时a和b的电功率之比为9:1D. 此时a和b的电功率之比为1:97.如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()A. a=2(mgR−W)mR B. a=2mgR−WmRC. N=3mgR−2WR D. N=2(mgR−W)R8.如图,M为半圆形导线框,圆心为O M;N是圆心角为直角的扇形导线框,圆心为O N;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线O M O N的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M、N在t=0时从图示位置开始,分别绕垂直于纸面、且过O M和O N的轴,以相同的周期T逆时针匀速转动,则()A. 两导线框中均会产生正弦交流电B. 两导线框中感应电流的周期都等于TC. 在t=T8时,两导线框中产生的感应电动势相等D. 两导线框的电阻相等时,两导线框中感应电流的有效值也相等9.关于气体的内能,下列说法正确的是()A. 质量和温度都相同的气体,内能一定相同B. 气体温度不变,整体运动速度越大,其内能越大C. 气体被压缩时,内能可能不变D. 一定量的某种理想气体的内能只与温度有关E. 一定量的某种理想气体在等压膨胀过程中,内能一定增加10.由波源S形成的简谐横波在均匀介质中向左、右传播。
2016年普通高等学校招生全国统一考试(课标全国卷3)物理一、选择题1.(6分)关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2.(6分)关于静电场的等势面,下列说法正确的是()A.两个电势不同的等势面可能相交B.电场线与等势面处处相互垂直C.同一等势面上各点电场强度一定相等D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功3.(6分)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍,该质点的加速度为()A.B. C.D.4.(6分)如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦,小物块的质量为()A.B.m C.m D.2m5.(6分)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从PM的某点向左上方射入磁场,速度与OM 成30°角.已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为()A.B.C.D.6.(6分)如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a和b.当输入电压U为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是()A.原、副线圈砸数之比为9:1B.原、副线圈砸数之比为1:9C.此时a和b的电功率之比为9:1D.此时a和b的电功率之比为1:97.(6分)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()A.a=B.a=C.N=D.N=8.(6分)如图,M为半圆形导线框,圆心为OM;N是圆心角为直角的扇形导线框,圆心为ON;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线OMON的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M、N在t=0时从图示位置开始,分别绕垂直于纸面、且过OM和ON的轴,以相同的周日T逆时针匀速转动,则()A.两导线框中均会产生正弦交流电B.两导线框中感应电流的周期都等于TC.在t=时,两导线框中产生的感应电动势相等D.两导线框的电阻相等时,两导线框中感应电流的有效值也相等二、解答题(共3小题,满分27分)9.(5分)某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且两导轨垂直.(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:A.适当增加两导轨间的距离B.换一根更长的金属棒C.适当增大金属棒中的电流其中正确的是(填入正确选项前的标号)10.(10分)某物理课外小组利用图(a)中的装置探究物体加速度与其所受合外力之间的关系.图中置于试验台上的长木板水平放置,其右端固定一轻滑轮:轻绳跨过滑轮,一端与放在木板上的小滑车相连,另一端可悬挂钩码.本实验中可用的钩码共有N=5个,每个质量均为0.010kg.实验步骤如下:(1)将5个钩码全部放入小车中,在长木板左下方垫上适当厚度的小物快,使小车(和钩码)可以在木板上匀速下滑.(2)将n(依次取n=1,2,3,4,5)个钩码挂在轻绳右端,其余N﹣n各钩码仍留在小车内;用手按住小车并使轻绳与木板平行.释放小车,同时用传感器记录小车在时刻t相对于其起始位置的位移s,绘制s﹣t图象,经数据处理后可得到相应的加速度a.(3)对应于不同的n的a值见下表.n=2时的s﹣t图象如图(b)所示:由图(b)求出此时小车的加速度(保留2位有效数字),将结果填入下表.n 1 2 3 4 5a/m•s﹣20.20 0.58 0.78 1.00(4)利用表中的数据在图(c)中补齐数据点,并作出a﹣n图象.从图象可以看出:当物体质量一定时,物体的加速度与其所受的合外力成正比.(5)利用a﹣n图象求得小车(空载)的质量为kg(保留2位有效数字,重力加速度取g=9.8 m•s﹣2).(6)若以“保持木板水平”来代替步骤(1),下列说法正确的是(填入正确选项钱的标号)A.a﹣n图线不再是直线B.a﹣n图线仍是直线,但该直线不过原点C.a﹣n图线仍是直线,但该直线的斜率变大11.(12分)如图,在竖直平面内由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.12.(20分)如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B1随时间t的变化关系为B1=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.【物理-选修3-3】13.(5分)关于气体的内能,下列说法正确的是()A.质量和温度都相同的气体,内能一定相同B.气体温度不变,整体运动速度越大,其内能越大C.气体被压缩时,内能可能不变D.一定量的某种理想气体的内能只与温度有关E.一定量的某种理想气体在等压膨胀过程中,内能一定增加14.(10分)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg.环境温度不变.【物理-选修3-4】15.由波源S形成的简谐横波在均匀介质中向左、右传播.波源振动的频率为20Hz,波速为16m/s.已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位移之间的距离分别为15.8m、14.6m.P、Q开始震动后,下列判断正确的是()A.P、Q两质点运动的方向始终相同B.P、Q两质点运动的方向始终相反C.当S恰好通过平衡位置时,P、Q两点也正好通过平衡位置D.当S恰好通过平衡位置向上运动时,P在波峰E.当S恰好通过平衡位置向下运动时,Q在波峰16.如图,玻璃球冠的折射率为,其底面镀银,底面半径是球半径的倍,在过球心O且垂直底面的平面(纸面)内,有一与底面垂直的光线射到玻璃冠上的M点,该光线的延长线恰好过底面边缘上的A点,求该光线从球面射出的方向相对于其初始入射方向的偏角.【物理-选修3-5】17.一静止的铝原子原子核俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核,下列说法正确的是()A.核反应方程为p+→B.核反应方程过程中系统动量守恒C.核反应过程中系统能量不守恒D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E.硅原子核速度的数量级105m/s,方向与质子初速度方向一致18.如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直,a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m,两物块与地面间的动摩擦因数均相同,现使a以初速度v0向右滑动,此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g,求物块与地面间的动摩擦因数满足的条件.2016年普通高等学校招生全国统一考试(课标全国卷3)物理参考答案与试题解析一、1.B【分析】根据物理学史和常识解答,记住著名物理学家的主要贡献即可.【解答】解:开普勒在他的导师第谷天文观测数据的基础上,总结出了行星运动的规律,但并未找出了行星按照这些规律运动的原因;牛顿在开普勒行星运动定律的基础上推导出万有引力定律,故ACD错误,B正确.故选:B.2.B【分析】电场中电势相等的各个点构成的面叫做等势面;沿着等势面移动点电荷,电场力不做功.电场线与等势面垂直,且从电势高的等势面指向电势低的等势面.负电荷在等势面高的位置的电势能小.【解答】解:A、沿电场线的方向电势降低,所以电势不同的等势面不可能相交.故A错误;B、根据电场线与等势面的关系可知,电场线与等势面互相垂直,故B正确;C、电场强度的大小与电势的高低没有关系,所以同一等势面上各点电场强度不一定相等,故C错误;D、负电荷在等势面高的位置的电势能小,所以将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电势能增大,电场力做负功,故D错误.故选:B3.A【分析】由题意知,动能变为原来的9倍,可解得末速度和初速度的倍数关系,结合位移公式,可分别求出初速度和末速度,再由加速度的定义求得质点的加速度.【解答】解:设初速度为v0,末速度为v t,加速度为a,则位移为:s=(v0+v t)t,初动能为mv02,末动能为mv t2,因为动能变为原来的9倍,所以有=9联立解得:v0=; v t=.由加速度定义可得:a===,故A正确,BCD错误.故选:A.4.C【分析】同一根绳子上的张力大小相等,根据ab距离等于圆环半径可知绳所成角度,据此由平衡分析即可.【解答】解:设悬挂小物块的点为O',圆弧的圆心为O,由于ab=R,所以三角形Oab为等边三角形.根据几何知识可得∠aO'b=120°,而在一条绳子上的张力大小相等,故有T=mg,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的合力等于mg,因为小物块受到绳子的拉力和重力作用,且处于平衡状态,故拉力的合力等于小物块的重力为mg,所以小物块的质量为m故ABD错误,C正确.故选:C.5.D【分析】粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律求出粒子的半径,然后根据几何关系求出射点与O点间的距离.【解答】解:粒子进入磁场做顺时针方向的匀速圆周运动,轨迹如图所示,根据洛伦兹力提供向心力,有解得根据轨迹图知,∠OPQ=60°粒子离开磁场的出射点到两平面交线O的距离为,D正确,ABC错误故选:D6.AD【分析】根据灯泡电压与输入电压的关系可明确接在输入端和输出端的电压关系,则可求得匝数之比;根据变压器电流之间的关系和功率公式可明确功率之比.【解答】解:AB、灯泡正常发光,则其电压均为额定电压,则说明原线圈输入电压为9U,输出电压为U;则可知,原副线圈匝数之比为:9:1:故A正确;B错误;CD、根据公式可得,由于小灯泡两端的电压相等,所以根据公式P=UI可得两者的电功率之比为1:9;故C错误,D正确;故选:AD.7.AC【分析】质点P下滑的过程中,重力做正功,摩擦力做负功,根据动能定理求出质点P到达最低点时的速度,在最低点,质点受重力和支持力,根据合力提供向心力,列式求解.【解答】解:质点P下滑的过程,由动能定理得mgR﹣W=在最低点,质点P的向心加速度 a==根据牛顿第二定律得N﹣mg=m解得 N=,故AC正确,BD错误.故选:AC8.BC【分析】正确利用法拉第电磁感应定律,在本题中由于导线框匀速转动,因此产生的感应电动势是恒定的,计算有效值根据有效值的定义.【解答】解:A、半径切割磁感线产生的感应电动势:B、,因为线框匀速转动,感应电动势恒定,线框中电流大小恒定,故A错误;M、N两线框匀速转动,M线框第一个电流方向逆时针,第二个电流顺时针方向;N线框,相框转动一圈,只有的时间有感应电流,第一个电流逆时针,第二个电流为0.第三个电流顺时针方向,第四个没有电流,依次循环.画出M、N线框中电流随时间变化的关系图线如图所示,所以两线框中感应电流的周期相等,故B正确;C、,两线框均有一条半径在切割磁感线产生感应电动势,感应电动势的大小为,故C正确;D、根据电流的热效应,对M线框N线框转动一周只有时间内有感应电流联立①②得,故D错误故选:BC二、9.(1)如图所示(2)AC【分析】(1)要求滑动变阻器以限流方式接入电路,滑动变阻器按一上一下的原则串联在电路中,考虑金属棒向右运动,所爱安培力向右,根据左手定则知,通过金属棒的电流从上向下,把各个元件按顺序串联起来.(2)根据牛顿第二定律和运动学公式分析【解答】解:(1)电路如右图所示.(2)对金属棒:①根据牛顿第二定律:②加速度③根据运动学公式④得⑤A、适当增加两导轨间的距离,金属棒速度增大B、换一根更长的金属棒,金属棒质量增大.离开导轨时速度变小C、适当增大金属棒中的电流,离开导轨时速度增大故选:AC故答案为:(1)如图所示(2)AC10.【分析】(3)根据x﹣t图象的性质可明确各时刻对应的位移,根据位移公式可求得加速度;(4)将点(2,0.40)作出,并用直线将各点连接即可得出图象;(5)找出图象上的点,根据图象的性质以及牛顿第二定律列式,即可求出小车的质量;(6)对实验原理进行分析,明确摩擦力带来的影响;根据牛顿第二定律可明确图象的变化情况.【解答】解:(3)物体做匀加速直线运动,对应的x﹣t图象为曲线,由图象可知,当t=2.0s 时,位移为:x=0.80m;则由x=代入数据得:a=0.40m/s2;(4)在图C中作出点(2,0.40),并用直线将各点相连,如图所示;(5)由图c可知,当n=4时,加速度为0.78m/s2,由牛顿第二定律可知:4×0.01×9.8=(m+5×0.01)×0.78解得:m=0.45kg;(6)若木板水平,则物体将受到木板的摩擦力;则有:nm0g﹣μ[m+(5﹣n)m0g]=(m+5m0)a;a=﹣=故说明图象仍为直线,但不再过原点;并且斜率增大;故BC正确;故选:B;故答案为:(3)0.40;(4)如图所示;(5)0.46;BC.11.(1)小球在B、A两点的动能之比是5:1.(2)小球恰好到达C点.【分析】(1)根据机械能守恒定律分别求出小球经过B点和A点的动能,再得到它们的比值.(2)假设小球能到达C点,由机械能守恒定律求出小球到达C点的速度,与临界速度比较,即可判断小球能否到C点.【解答】解:(1)根据机械能守恒定律得E KA=mgE KB=mg(+R)=则得小球在B、A两点的动能之比 E KB:E KA=5:1.(2)假设小球能到达C点,由机械能守恒定律得mg=即得到达C点的速度 v C=设小球通过C点的临界速度为v0.则有mg=m即得 v0=因为 v C=v0,所以小球恰好到达C点.答:(1)小球在B、A两点的动能之比是5:1.(2)小球恰好到达C点.12.(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量ktS+B0v0(t﹣t0)l,金属棒所受外加水平恒力的大小.【分析】(1)根据法拉第电磁感应定律,结合闭合电路欧姆定律,及电量表达式,从而导出电量的综合表达式,即可求解;(2)根据磁通量的概念,∅=BS,结合磁场方向,即可求解穿过回路的总磁通量;根据动生电动势与感生电动势公式,求得线圈中的总感应电动势,再依据闭合电路欧姆定律,及安培力表达式,最后依据平衡条件,即可求解水平恒力大小.【解答】解:(1)根据法拉第电磁感应定律E==,结合闭合电路欧姆定律I=,及电量表达式q=It==,(2)根据题意可知,MN左边的磁场方向与右边的磁场方向相同,那么总磁通量即为两种情况之和,即为:在时刻t(t>t0)穿过回路的总磁通量∅=∅1+∅2=ktS+B0v0(t﹣t0)l;依据法拉第电磁感应定律,那么线圈中产生总感应电动势E=E1+E2=kS+B0lv0;根据闭合电路欧姆定律,则线圈中产生感应电流大小为I==那么安培力大小F A=B0Il=;最后根据平衡条件,则水平恒力大小等于安培力大小,即为F=;答:(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量ktS+B0v0(t﹣t0)l,金属棒所受外加水平恒力的大小.13.CDE【分析】理想气体是一种理想化的物理模型,实际上并不存在;理想气体的内能仅与温度有关,与气体的体积无关;实际气体在温度不太低、压强不太大的情况下可以看做理想气体.【解答】解:A、质量和温度都相同的气体,内能不一定相同,还和气体的种类有关,故A 错误;B、物体的内能与与温度、体积有关,与物体宏观整体运动的机械能无关,所以整体运动速度越大,其内能不一定越大,故B错;C、气体被压缩时,外界对气体做功W>0,如果向外界放热Q<0,根据热力学第一定律,△U=W+Q,可能△U=0内能不变,所以C正确;D、理想气体分子间无分子势能,理想气体的内能只与温度有关,故D正确;E、一定量的某种理想气体等压膨胀过程中,体积与热力学温度成正比,温度升高,内能增加.故E正确故选:CDE14.9.42cm【分析】由题意知两部分封闭气体的温度与环境温度保持相等,气体都作等温变化.先对左端气体研究,根据玻意耳定律求出活塞下移后的压强.水银面相平时,两部分气体的压强相等,再研究右端气体,求出活塞下移后的长度和气体压强,根据几何关系求解活塞向下移动的距离.【解答】解:设初始时,右管中空气柱的压强为,长度为;左管中空气柱的压强为,长度为.该活塞被下推h后,右管中空气柱的压强为,长度为.;左管中空气柱的压强为,长度为.以cmHg为压强单位.由题给条件得:…①…②由玻意耳定律得…③联立①②③式和题给条件得:…④依题意有:…⑤…⑥由玻意耳定律得:…⑦联立④⑤⑥⑦式和题给条件得:h=9.42cm答:此时右侧管内气体的压强和活塞向下移动的距离9.42cm.15. BDE【分析】先通过题干中所给出的波速和频率,利用公式λ=计算出波长.根据PQ两点的距离之差与半个波长相比较,利用半个波长的奇数倍或偶数倍来判断PQ振动的情况,可判知选项AB的正误.利用波长不是出P、Q与波源S之间的距离,通过不足一个波长的部分是波的四分之一还是四分之三,结合S点的运动情况,即可判断P、Q点的位置,继而可得知选项BDE的正误【解答】解:波源振动的频率为20Hz,波速为16m/s,由波长公式λ=有:λ==0.8mAB、P、Q两质点距离波源的距离之差为:△x=15.8﹣14.6=1.2m=3×,为半个波长的奇数倍,所以P、Q两质点振动步调相反,P、Q两质点运动的方向始终相反,选项A错误,B正确.C、SP=15.8m=(19+)λ,SQ=SP=14.6m=(18+)λ,所以当S恰好通过平衡位置时,P、Q两点一个在波峰,一个在波谷,选项C错误.D、由SP=15.8m=(19+)λ可知,当S恰好通过平衡位置向上运动时,P在波峰,选项D 正确.E、SQ=SP=14.6m=(18+)λ,当S恰好通过平衡位置向下运动时,Q在波峰,选项E正确.故选:BDE16.150°【分析】光线由M点射入后先发生折射,再在镀银底面发生反射,最后射出玻璃冠.已知球半径、底面半径以及折射率,则由几何关系和折射定律可求得入射角、折射角,再由几何关系可求得光线在镀银底面的入射角和反射角,从而可知反射光线与ON的关系,最后可求光线从球面射出的方向相对于其初始入射方向的偏角.【解答】解:设球半径为R,球冠地面中心为O′,连接OO′,则OO′⊥AB令∠OAO′=α则:cosα===…①即∠OAO′=α=30°…②已知MA⊥AB,所以∠OAM=60°…③设图中N点为光线在球冠内地面上的反射点,光路图如图所示.设光线在M点的入射角为i,折射角为r,在N点的入射角为i′,反射角为i″,玻璃的折射率为n.由于△OAM为等边三角形,所以入射角i=60°…④由折射定律得:sini=nsinr…⑤代入数据得:r=30°…⑥作N点的法线NE,由于NE∥MA,所以i′=30°…⑦由反射定律得:i″=30°…⑧连接ON,由几何关系可知△MAN≌△MON,则∠MNO=60°…⑨由⑦⑨式可得∠ENO=30°所以∠ENO为反射角,ON为反射光线.由于这一反射光线垂直球面,所以经球面再次折射后不改变方向.所以,该光线从球面射出的方向相对于其初始入射方向的偏角为β=180°﹣∠ENO=150°.答:光线从球面射出的方向相对于其初始入射方向的偏角为150°.17.ABE【分析】由质量数、电荷数守恒可知核反应方程,核反应方程过程中系统动量守恒,能量也守恒,核反应过程中质量发生亏损,根据动量守恒定律求解硅原子核的速度.【解答】解:A、由质量数、电荷数守恒可知,核反应方程为p+→,故A正确;B、核反应方程过程中系统动量守恒,能量也守恒,故B正确,C错误;D、核反应过程中,要释放热量,质量发生亏损,生成物的质量小于反应物的质量之和,故D错误;E、设质子的质量为m,则铝原子原子核的质量约为27m,以质子初速度方向为正,根据动量守恒定律得:mv0=(m+27m)v解得:v=3.57×105m/s,方向与质子初速度方向一致,故E正确.故选:ABE18.≤μ<【分析】由题意可得动摩擦因数必须满足两个条件:①a、b能相碰;②b不能与墙相碰.先根据能量求出a与b碰撞前的速度.再根据弹性碰撞过程遵守动量守恒和能量守恒列式,得到碰后b的速度,根据b没有与墙发生碰撞,碰后b向右滑行的距离s≤l,由功能列式,即可求解.【解答】解:设物块与地面间的动摩擦因数为μ要使物块a、b能够发生碰撞,应有:mv>μmgl…①即μ<…②设a与b碰撞前的速度为v1,由能量守恒得:=μmgl+…③设a与b碰撞前向的瞬间,速度大小分别为v a、v b,根据动量守恒定律和能量守恒定律得:mv1=mv a+mv b…④=mv+×mv;…⑤联立④⑤式解得:v b=v1…⑥碰后,b没有与墙发生碰撞,即b在达到墙前静止,由功能关系得:(m)v≤μmgl…⑦联立③⑥⑦式,得:μ≥…⑧联立②⑧式,a与b发生碰撞、但b没有与墙发生碰撞的条件为:≤μ<答:物块与地面间的动摩擦因数满足的条件是≤μ<.。
2016年普通高等学校招生全国统一考试(3卷)第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。
二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项是符合题目要求,第18~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分。
有选错的得0分。
14.关于行星运动的规律,下列说法符合史实的是A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律15.关于静电场的等势面,下列说法正确的是A .两个电势不同的等势面可能相交B .电场线与等势面处处相互垂直C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功16..一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍。
该质点的加速度为A .2s tB .232s tC .24s tD .28s t17.如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m 的小球。
在a 和b 之间的细线上悬挂一小物块。
平衡时,a 、b 间的距离恰好等于圆弧的半径。
不计所有摩擦。
小物块的质量为A .2mB 3C .mD .2m18.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
2016·全国卷Ⅲ(物理)14.D5[2016·全国卷Ⅲ]关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律14.B15.I2[2016·全国卷Ⅲ] 关于静电场的等势面,下列说法正确的是()A.两个电势不同的等势面可能相交B.电场线与等势面处处相互垂直C.同一等势面上各点电场强度一定相等D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功15.B16.A2E2[2016·全国卷Ⅲ]一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为( )A.st2B。
3s2t2C.4st2D。
错误!16.A17.B4[2016·全国卷Ⅲ]如图1所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为()图1。
A.错误! B。
错误!m C.m D.2m17.C18.K2[2016·全国卷Ⅲ] 平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图1。
所示,平面OM 上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q〉0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为()A。
错误! B。
错误!C。
2017年(全国Ⅲ卷)计算题考点排查练24.(2018·广东省湛江市第二次模拟)如图1所示的直角坐标系xOy 中,在第一象限和第四象限分别存在垂直纸面向外和向里的匀强磁场,PQ 是磁场的右边界,磁场的上下区域足够大,在第二象限存在沿x 轴正方向的匀强电场,一个质量为m 、电荷量为+q 的带电粒子从x 轴上的M 点以速度v 0垂直于x 轴沿y 轴正方向射入电场中,粒子经过电场偏转后从y 轴上的N 点进入第一象限,带电粒子刚好不从y 轴负半轴离开第四象限,最后垂直磁场右边界PQ 离开磁场区域,已知M 点与原点O 的距离为32l ,N 点与原点O 的距离为3l ,第一象限的磁感应强度满足B 1=2mv 0ql,不计带电粒子的重力,求:图1(1)匀强电场的电场强度为多大?(2)第四象限内的磁感应强度多大?(3)若带电粒子从进入磁场到垂直磁场右边界离开磁场,在磁场中运动的总时间是多少?答案 (1)mv 02ql (2)mv 0ql (3)4πl 3v 0+5n πl 2v 0(n =0,1,2,3,…) 解析 (1)设带电粒子在电场中运动的加速度为a根据牛顿第二定律得:qE =ma沿y 轴方向:3l =v 0t沿x 轴方向:32l =12at 2 解得:E =mv 02ql(2)粒子在电场中沿x 轴方向做匀加速运动,速度v 1=at进入磁场时与y 轴正方向夹角tan θ=v 1v 0= 3解得θ=60°进入磁场时速度大小为v =2v 0其运动轨迹,如图所示在第一象限由洛伦兹力提供向心力得:qvB 1=m v 2R 1解得:R 1=l由几何知识可得粒子第一次到达x 轴时过A 点,因ON 满足:ON =2R cos 30°,所以NA 为直径.带电粒子刚好不从y 轴负半轴离开第四象限,满足:(2R 1+R 2)sin 30°=R 2,解得R 2=2l根据:qvB 2=m v 2R 2,解得:B 2=B 12=mv 0ql(3)带电粒子到达D 点时,因为DC =R 1sin 30°=l 2 D ′H =R 2-R 2sin 30°=lF 点在H 点的左侧,带电粒子不可能从第一象限垂直磁场边界离开磁场,则应从第四象限G 点(或多个周期后相应点)离开磁场.带电粒子在第一象限运动周期T 1=2πR 12v 0=πl v 0带电粒子在第四象限运动周期T 2=2πR 22v 0=2πl v 0带电粒子在磁场中运动时间满足t =T 12+5T 212+n ×56(T 1+T 2) 解得:t =4πl 3v 0+5n πl 2v 0(n =0,1,2,3…) 25.(2018·安徽省A10联盟最后一卷)如图2,光滑水平面上静止一质量m 1=1.0 kg 、长L =0.3 m 的木板,木板右端有质量m 2=1.0 kg 的小滑块,在滑块正上方的O 点用长r =0.4 m 的轻质细绳悬挂质量m =0.5 kg 的小球.将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8 N ,最终小滑块恰好不会从木板上滑下.不计空气阻力、滑块、小球均可视为质点,重力加速度g 取10 m/s 2.求:图2(1)小球碰前、碰后瞬间的速度大小;(2)小滑块与木板之间的动摩擦因数.答案 (1)2 m/s 0.4 m/s (2) 0.12解析 (1)小球下摆过程,机械能守恒mgr (1-cos θ)=12mv 2 小球碰前瞬间的速度大小v =gr =2 m/s小球与小滑块碰撞前、后瞬间,由向心力公式可得:F T -mg =m v 2r ,F T ′-mg =m v ′2r由题意得:F T -F T ′=4.8 N联立求得碰后瞬间小球的速度大小为v ′=0.4 m/s(2)小球与小滑块碰撞过程动量守恒,取向左为正方向,由动量守恒定律得:mv =-mv ′+m 2v 1 解得:v 1=1.2 m/s小滑块在木板上滑动过程中动量守恒,可得:m 2v 1=(m 1+m 2)v 2解得:v 2=0.6 m/s由能量守恒可得:μm 2gL =12m 2v 12-12(m 1+m 2)v 22 小滑块与木板之间的动摩擦因数μ=0.12。
2017年(全国Ⅲ卷)计算题考点排查练24.(2018·广东省湛江市第二次模拟)如图1所示的直角坐标系xOy 中,在第一象限和第四象限分别存在垂直纸面向外和向里的匀强磁场,PQ 是磁场的右边界,磁场的上下区域足够大,在第二象限存在沿x 轴正方向的匀强电场,一个质量为m 、电荷量为+q 的带电粒子从x 轴上的M 点以速度v 0垂直于x 轴沿y 轴正方向射入电场中,粒子经过电场偏转后从y 轴上的N 点进入第一象限,带电粒子刚好不从y 轴负半轴离开第四象限,最后垂直磁场右边界PQ 离开磁场区域,已知M 点与原点O 的距离为32l ,N 点与原点O 的距离为3l ,第一象限的磁感应强度满足B 1=2mv 0ql,不计带电粒子的重力,求:图1(1)匀强电场的电场强度为多大?(2)第四象限内的磁感应强度多大?(3)若带电粒子从进入磁场到垂直磁场右边界离开磁场,在磁场中运动的总时间是多少?答案 (1)mv 02ql (2)mv 0ql (3)4πl 3v 0+5n πl 2v 0(n =0,1,2,3,…) 解析 (1)设带电粒子在电场中运动的加速度为a根据牛顿第二定律得:qE =ma沿y 轴方向:3l =v 0t沿x 轴方向:32l =12at 2 解得:E =mv 02ql(2)粒子在电场中沿x 轴方向做匀加速运动,速度v 1=at进入磁场时与y 轴正方向夹角tan θ=v 1v 0= 3解得θ=60°进入磁场时速度大小为v =2v 0其运动轨迹,如图所示在第一象限由洛伦兹力提供向心力得:qvB 1=m v 2R 1解得:R 1=l由几何知识可得粒子第一次到达x 轴时过A 点,因ON 满足:ON =2R cos 30°,所以NA 为直径.带电粒子刚好不从y 轴负半轴离开第四象限,满足:(2R 1+R 2)sin 30°=R 2,解得R 2=2l根据:qvB 2=m v 2R 2,解得:B 2=B 12=mv 0ql(3)带电粒子到达D 点时,因为DC =R 1sin 30°=l 2 D ′H =R 2-R 2sin 30°=lF 点在H 点的左侧,带电粒子不可能从第一象限垂直磁场边界离开磁场,则应从第四象限G 点(或多个周期后相应点)离开磁场.带电粒子在第一象限运动周期T 1=2πR 12v 0=πl v 0带电粒子在第四象限运动周期T 2=2πR 22v 0=2πl v 0带电粒子在磁场中运动时间满足t =T 12+5T 212+n ×56(T 1+T 2) 解得:t =4πl 3v 0+5n πl 2v 0(n =0,1,2,3…) 25.(2018·安徽省A10联盟最后一卷)如图2,光滑水平面上静止一质量m 1=1.0 kg 、长L =0.3 m 的木板,木板右端有质量m 2=1.0 kg 的小滑块,在滑块正上方的O 点用长r =0.4 m 的轻质细绳悬挂质量m =0.5 kg 的小球.将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8 N ,最终小滑块恰好不会从木板上滑下.不计空气阻力、滑块、小球均可视为质点,重力加速度g 取10 m/s 2.求:图2(1)小球碰前、碰后瞬间的速度大小;(2)小滑块与木板之间的动摩擦因数.答案 (1)2 m/s 0.4 m/s (2) 0.12解析 (1)小球下摆过程,机械能守恒mgr (1-cos θ)=12mv 2 小球碰前瞬间的速度大小v =gr =2 m/s小球与小滑块碰撞前、后瞬间,由向心力公式可得:F T -mg =m v 2r ,F T ′-mg =m v ′2r由题意得:F T -F T ′=4.8 N联立求得碰后瞬间小球的速度大小为v ′=0.4 m/s(2)小球与小滑块碰撞过程动量守恒,取向左为正方向,由动量守恒定律得:mv =-mv ′+m 2v 1 解得:v 1=1.2 m/s小滑块在木板上滑动过程中动量守恒,可得:m 2v 1=(m 1+m 2)v 2解得:v 2=0.6 m/s由能量守恒可得:μm 2gL =12m 2v 12-12(m 1+m 2)v 22 小滑块与木板之间的动摩擦因数μ=0.12。
2016年(全国Ⅲ卷)选择题考点排查练二、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.14.(2018·安徽省A10联盟最后一卷)已知月球绕地球做圆周运动的轨道半径为r ,周期为T .如图1,某小行星掠过地球时其轨道刚好与月球轨道相切于A 点,若只考虑地球对它的引力作用,当这颗小行星运动到A 点时,可以求出其( )图1A .加速度的大小B .线速度的大小C .角速度的大小D .受到地球的引力的大小 答案 A15.(2018·广东省湛江市第二次模拟)如图2所示,ACBD 是一个过球心O 的水平截面圆,其中AB 与CD 垂直,在C 、D 、A 三点分别固定点电荷+Q 、-Q 与+q .光滑绝缘竖直杆过球心与水平截面圆垂直,杆上套有一个带少量负电荷的小球,不计小球对电场的影响.现将小球自E 点无初速度释放,到达F 点的过程中(重力加速度为g ),下列说法正确的是( )图2A .小球在O 点的加速度大于gB .小球在E 点的电势能大于在O 点的电势能C .小球在F 点的速度一定最大D .小球在运动过程中机械能一直减小 答案 B16.(2018·河南省新乡市第三次模拟)汽车以某一初速度开始做匀加速直线运动,第1 s 内行驶了1 m ,第2 s 内行驶了2 m ,则汽车第3 s 内的平均速度为( ) A .2 m/s B .3 m/s C .4 m/s D .5 m/s答案 B解析 根据匀变速直线运动的推论可知:x 2-x 1=x 3-x 2,则x 3=3 m ,则第3 s 内的平均速度为v 3=x 3t=3 m/s ,故选B.17.(2018·河南省新乡市第三次模拟)如图3所示,竖直平面内固定的半圆弧轨道两端点M 、N 连线水平,将一轻质小环套在轨道上,一细线穿过轻环,一端系在M 点,另一端系一质量为m 的小球,不计所有摩擦,重力加速度为g ,小球恰好静止在图示位置,下列说法正确的是( )图3A .轨道对轻环的支持力大小为mgB .细线对M 点的拉力大小为3mg 2C .细线对轻环的作用力大小为3mg2D .N 点和轻环的连线与竖直方向的夹角为30° 答案 D解析 对轻环受力分析,因轻环两边细线的拉力相等,可知两边细线拉力与圆弧对轻环的支持力方向的夹角相等,设为θ,由几何关系可知,∠OMA =∠MAO =θ,则3θ=90°,θ=30°;则轨道对轻环的支持力大小为F N =2mg cos 30°=3mg ,选项A 错误;细线对M 点的拉力大小为F T =mg ,选项B 错误;细线对轻环的作用力大小为F N ′=F N =3mg ,选项C 错误;由几何关系可知,N 点和轻环的连线与竖直方向的夹角为30°,选项D 正确.18.(2018·江西省南昌市第二次模拟)如图4所示,正三角形的三条边都与圆相切,在圆形区域内有垂直纸面向外的匀强磁场,质子11H 和氦核42He 都从顶点A 沿∠BAC 的角平分线方向射入磁场,质子11H 从C 点离开磁场,氦核42He 从相切点D 离开磁场,不计粒子重力,则质子和氦核的入射速度大小之比为( )图4A .6∶1B .3∶1C .2∶1D .3∶2答案 A解析 设三角形的边长为L ,根据几何关系可以得到磁场圆的半径为R =36L ,质子进入磁场时的运动轨迹如图甲所示由几何关系可得r 1=R tan 60°=12L氦核进入磁场时的运动轨迹如图乙所示,由几何关系可得:r 2=R tan 30°=16L粒子在磁场中运动时洛伦兹力提供向心力,即qvB =m v 2r,结合两个粒子的轨迹半径可求得质子和氦核的入射速度大小之比为6∶1,故A 正确.19.(2018·福建省南平市5月综合质检)用同样的交流电源分别给图5甲、乙两个电路中相同的四个灯泡供电,四个灯泡均正常发光,乙图中理想变压器原、副线圈的匝数比为3∶1,则( )图5A .滑动变阻器接入电路的阻值与灯泡正常发光时的阻值相等B .滑动变阻器接入电路的阻值与灯泡正常发光时的阻值之比为2∶1C .甲、乙两个电路中的电功率之比为3∶2D .甲、乙两个电路中的电功率之比为2∶1 答案 AC解析 设灯泡的额定电流为I ,电阻为R ;在题图乙中,副线圈的电压U 2=IR ,根据理想变压器原、副线圈的匝数比为3∶1,得原线圈两端电压为U =U 1=3U 2=3IR ;在题图甲中,滑动变阻器两端电压为U R 1=U -2IR =IR ,流过的电流为I ,则滑动变阻器接入电路的阻值为R 1=U R 1I =IR I=R ,故A 正确,B 错误;在题图甲电路中,电功率为P 1=UI =3I 2R ,在题图乙中,电功率为P 2=2I 2R ,则P 1∶P 2=3∶2,故C 正确,D 错误.20.(2018·湖北省仙桃、天门、潜江三市期末联考)如图6所示,长为L 的轻质细杆一端拴在天花板上的O 点,另一端拴一质量为m 的小球.刚开始细杆处于水平位置,现将小球由静止释放,细杆从水平位置运动到竖直位置,在此过程中小球沿圆弧从A 点运动到B 点,不计空气阻力和O 点阻力,则( )图6A .小球下摆过程中,重力对小球做功的平均功率为0B .小球下落高度为0.5L 时,细杆对小球拉力为1.5mgC .小球经过B 点时,细杆对小球的拉力为2mgD .小球下摆过程中,重力对小球做功的瞬时功率先增大后减小 答案 BD解析 小球下摆过程中,重力做的功W =mgL ,则重力的平均功率P =mgLt,不为零,故A 错误;小球下落高度为0.5L 时到达C 点,设细杆与水平方向夹角为θ角,其受力情况如图所示由几何关系得:sin θ=0.5 L L =12,解得θ=30°;下降0.5L ,只有重力做功,细杆的拉力不做功,由机械能守恒定律得:mg ×0.5L =12mv C 2,在C 点有:F T -mg sin θ=m v C2L,联立解得:F T =1.5mg ,故B 正确;从A 点到B 点,由机械能守恒定律得:mgL =12mv B 2,在B 点有:F T ′-mg =m v B 2L,联立解得:F T ′=3mg ,故C 错误;小球下摆过程中,竖直方向的分速度先变到最大再减小到0,由P G =mgv y 知,重力对小球做功的瞬时功率先增大后减小,故D 正确. 21.(2018·河北省衡水金卷模拟一)如图7所示,线圈ABCD 匝数n =10,面积S =0.4 m 2,边界MN (与线圈的AB 边重合)右侧存在磁感应强度B =2π T 的匀强磁场,若线圈从图示位置开始绕AB 边以ω=10π rad/s 的角速度匀速转动.则以下说法正确的是( )图7A .线圈产生的是正弦交流电B .线圈在转动过程中产生的最大感应电动势为80 VC .线圈转动160 s 时瞬时感应电动势为40 3 VD .线圈产生的电动势的有效值为40 V 答案 BD解析 线圈在有界磁场中将产生正弦半波脉动电流,故A 错误;电动势最大值E m =nBS ω=80 V ,故B 正确;线圈转动160 s 、转过角度π6,瞬时感应电动势为e =E m sin π6=40 V ,故C 错误;在一个周期时间内,只有半个周期产生感应电动势,根据有效值的定义有(E m 2R)2R ·T2=(E R )2RT ,可得电动势有效值E =E m2=40 V ,故D 正确.。
2016年普通高等学校招生全国统一考试(全国Ⅲ)理科综合能力测试(物理)第I 卷(选择题 共48分)二、选择题:本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.【2016年全国Ⅲ,14,6分】关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律【答案】B【解析】开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,故选B 。
【点评】平时学习应该注意积累对物理学史的了解,知道前辈科学家们为探索物理规律而付出的艰辛努力,对于物理学上重大发现、发明、著名理论要加强记忆,这也是考试内容之一。
15.【2016年全国Ⅲ,15,6分】关于静电场的等势面,下列说法正确的是( )A .两个电势不同的等势面可能相交B .电场线与等势面处处相互垂直C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功【答案】B【解析】静电场中的电场线不可能相交,等势面也不可能相交,否则的话会出现一个点有两个电场强度和两个电势值的矛盾,A 错误;由AB AB W qU =可知,当电荷在等势面上移动时,电荷的电势能不变,如果电场线不与等势面垂直,那么电荷将受到电场力,在电荷运动时必然会做功并引起电势能变化,这就矛盾了,B 正确;同一等势面上各点电势相等,但电场强度不一定相等,C 错误;对于负电荷,0q <,从电势高的A 点移到电势低的B 点,0AB U >,由电场力做功的公式AB AB W qU =可知0AB W <,电场力做负功,D 错误,故选B 。
2016年普通高等学校招生全国统一考试(课标全国卷3)物理一、选择题1.(6分)关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2.(6分)关于静电场的等势面,下列说确的是()A.两个电势不同的等势面可能相交B.电场线与等势面处处相互垂直C.同一等势面上各点电场强度一定相等D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功3.(6分)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t位移为s,动能变为原来的9倍,该质点的加速度为()A. B. C. D.4.(6分)如图,两个轻环a和b套在位于竖直面的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦,小物块的质量为()A. B.m C.m D.2m5.(6分)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从PM的某点向左上方射入磁场,速度与OM成30°角.已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为()A. B. C. D.6.(6分)如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a和b.当输入电压U为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说确的是()A.原、副线圈砸数之比为9:1B.原、副线圈砸数之比为1:9C.此时a和b的电功率之比为9:1D.此时a和b的电功率之比为1:97.(6分)如图,一固定容器的壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()A.a= B.a= C.N= D.N=8.(6分)如图,M为半圆形导线框,圆心为OM;N是圆心角为直角的扇形导线框,圆心为ON;两导线框在同一竖直面(纸面);两圆弧半径相等;过直线OMON的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M、N在t=0时从图示位置开始,分别绕垂直于纸面、且过OM和ON的轴,以相同的周日T逆时针匀速转动,则()A.两导线框中均会产生正弦交流电B.两导线框中感应电流的周期都等于TC.在t=时,两导线框中产生的感应电动势相等D.两导线框的电阻相等时,两导线框中感应电流的有效值也相等二、解答题(共3小题,满分27分)9.(5分)某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且两导轨垂直.(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:A.适当增加两导轨间的距离B.换一根更长的金属棒C.适当增大金属棒中的电流其中正确的是(填入正确选项前的标号)10.(10分)某物理课外小组利用图(a)中的装置探究物体加速度与其所受合外力之间的关系.图中置于试验台上的长木板水平放置,其右端固定一轻滑轮:轻绳跨过滑轮,一端与放在木板上的小滑车相连,另一端可悬挂钩码.本实验中可用的钩码共有N=5个,每个质量均为0.010kg.实验步骤如下:(1)将5个钩码全部放入小车中,在长木板左下方垫上适当厚度的小物快,使小车(和钩码)可以在木板上匀速下滑.(2)将n(依次取n=1,2,3,4,5)个钩码挂在轻绳右端,其余N﹣n各钩码仍留在小车;用手按住小车并使轻绳与木板平行.释放小车,同时用传感器记录小车在时刻t相对于其起始位置的位移s,绘制s﹣t图象,经数据处理后可得到相应的加速度a.(3)对应于不同的n的a值见下表.n=2时的s﹣t图象如图(b)所示:由图(b)求出此时小车的加速度(保留2位有效数字),将结果填入下表.n 1 2 3 4 5a/m•s﹣20.20 0.58 0.78 1.00(4)利用表中的数据在图(c)中补齐数据点,并作出a﹣n图象.从图象可以看出:当物体质量一定时,物体的加速度与其所受的合外力成正比.(5)利用a﹣n图象求得小车(空载)的质量为kg(保留2位有效数字,重力加速度取g=9.8 m•s﹣2).(6)若以“保持木板水平”来代替步骤(1),下列说确的是(填入正确选项钱的标号)A.a﹣n图线不再是直线B.a﹣n图线仍是直线,但该直线不过原点C.a﹣n图线仍是直线,但该直线的斜率变大11.(12分)如图,在竖直平面由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.12.(20分)如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面),其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B1随时间t的变化关系为B1=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t=0到t=t0时间间隔,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.【物理-选修3-3】13.(5分)关于气体的能,下列说确的是()A.质量和温度都相同的气体,能一定相同B.气体温度不变,整体运动速度越大,其能越大C.气体被压缩时,能可能不变D.一定量的某种理想气体的能只与温度有关E.一定量的某种理想气体在等压膨胀过程中,能一定增加14.(10分)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管两边汞柱高度相等时为止.求此时右侧管气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg.环境温度不变.【物理-选修3-4】15.由波源S形成的简谐横波在均匀介质中向左、右传播.波源振动的频率为20Hz,波速为16m/s.已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位移之间的距离分别为15.8m、14.6m.P、Q开始震动后,下列判断正确的是()A.P、Q两质点运动的方向始终相同B.P、Q两质点运动的方向始终相反C.当S恰好通过平衡位置时,P、Q两点也正好通过平衡位置D.当S恰好通过平衡位置向上运动时,P在波峰E.当S恰好通过平衡位置向下运动时,Q在波峰16.如图,玻璃球冠的折射率为,其底面镀银,底面半径是球半径的倍,在过球心O且垂直底面的平面(纸面),有一与底面垂直的光线射到玻璃冠上的M点,该光线的延长线恰好过底面边缘上的A点,求该光线从球面射出的方向相对于其初始入射方向的偏角.【物理-选修3-5】17.一静止的铝原子原子核俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核,下列说确的是()A.核反应方程为p+→B.核反应方程过程中系统动量守恒C.核反应过程中系统能量不守恒D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E.硅原子核速度的数量级105m/s,方向与质子初速度方向一致18.如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直,a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m,两物块与地面间的动摩擦因数均相同,现使a 以初速度v0向右滑动,此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度大小为g,求物块与地面间的动摩擦因数满足的条件.2016年普通高等学校招生全国统一考试(课标全国卷3)物理参考答案与试题解析一、1.B【分析】根据物理学史和常识解答,记住著名物理学家的主要贡献即可.【解答】解:开普勒在他的导师第谷天文观测数据的基础上,总结出了行星运动的规律,但并未找出了行星按照这些规律运动的原因;牛顿在开普勒行星运动定律的基础上推导出万有引力定律,故ACD错误,B正确.故选:B.2.B【分析】电场中电势相等的各个点构成的面叫做等势面;沿着等势面移动点电荷,电场力不做功.电场线与等势面垂直,且从电势高的等势面指向电势低的等势面.负电荷在等势面高的位置的电势能小.【解答】解:A、沿电场线的方向电势降低,所以电势不同的等势面不可能相交.故A错误;B、根据电场线与等势面的关系可知,电场线与等势面互相垂直,故B正确;C、电场强度的大小与电势的高低没有关系,所以同一等势面上各点电场强度不一定相等,故C错误;D、负电荷在等势面高的位置的电势能小,所以将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电势能增大,电场力做负功,故D错误.故选:B3.A【分析】由题意知,动能变为原来的9倍,可解得末速度和初速度的倍数关系,结合位移公式,可分别求出初速度和末速度,再由加速度的定义求得质点的加速度.【解答】解:设初速度为v0,末速度为v t,加速度为a,则位移为:s=(v0+v t)t,初动能为mv02,末动能为mv t2,因为动能变为原来的9倍,所以有=9联立解得:v0=;v t=.由加速度定义可得:a===,故A正确,BCD错误.故选:A.4.C【分析】同一根绳子上的力大小相等,根据ab距离等于圆环半径可知绳所成角度,据此由平衡分析即可.【解答】解:设悬挂小物块的点为O',圆弧的圆心为O,由于ab=R,所以三角形Oab为等边三角形.根据几何知识可得∠aO'b=120°,而在一条绳子上的力大小相等,故有T=mg,小物块受到两条绳子的拉力作用大小相等,夹角为120°,故受到的合力等于mg,因为小物块受到绳子的拉力和重力作用,且处于平衡状态,故拉力的合力等于小物块的重力为mg,所以小物块的质量为m故ABD错误,C正确.故选:C.5.D【分析】粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律求出粒子的半径,然后根据几何关系求出射点与O点间的距离.【解答】解:粒子进入磁场做顺时针方向的匀速圆周运动,轨迹如图所示,根据洛伦兹力提供向心力,有解得根据轨迹图知,∠OPQ=60°粒子离开磁场的出射点到两平面交线O的距离为,D正确,ABC错误故选:D6.AD【分析】根据灯泡电压与输入电压的关系可明确接在输入端和输出端的电压关系,则可求得匝数之比;根据变压器电流之间的关系和功率公式可明确功率之比.【解答】解:AB、灯泡正常发光,则其电压均为额定电压,则说明原线圈输入电压为9U,输出电压为U;则可知,原副线圈匝数之比为:9:1:故A正确;B错误;CD、根据公式可得,由于小灯泡两端的电压相等,所以根据公式P=UI可得两者的电功率之比为1:9;故C错误,D正确;故选:AD.7.AC【分析】质点P下滑的过程中,重力做正功,摩擦力做负功,根据动能定理求出质点P到达最低点时的速度,在最低点,质点受重力和支持力,根据合力提供向心力,列式求解.【解答】解:质点P下滑的过程,由动能定理得mgR﹣W=在最低点,质点P的向心加速度a==根据牛顿第二定律得N﹣mg=m解得N=,故AC正确,BD错误.故选:AC8.BC【分析】正确利用法拉第电磁感应定律,在本题中由于导线框匀速转动,因此产生的感应电动势是恒定的,计算有效值根据有效值的定义.【解答】解:A、半径切割磁感线产生的感应电动势:B、,因为线框匀速转动,感应电动势恒定,线框中电流大小恒定,故A错误;M、N两线框匀速转动,M线框第一个电流方向逆时针,第二个电流顺时针方向;N线框,相框转动一圈,只有的时间有感应电流,第一个电流逆时针,第二个电流为0.第三个电流顺时针方向,第四个没有电流,依次循环.画出M、N线框中电流随时间变化的关系图线如图所示,所以两线框中感应电流的周期相等,故B正确;C、,两线框均有一条半径在切割磁感线产生感应电动势,感应电动势的大小为,故C正确;D、根据电流的热效应,对M线框N线框转动一周只有时间有感应电流联立①②得,故D错误故选:BC二、9.(1)如图所示(2)AC【分析】(1)要求滑动变阻器以限流方式接入电路,滑动变阻器按一上一下的原则串联在电路中,考虑金属棒向右运动,所爱安培力向右,根据左手定则知,通过金属棒的电流从上向下,把各个元件按顺序串联起来.(2)根据牛顿第二定律和运动学公式分析【解答】解:(1)电路如右图所示.(2)对金属棒:①根据牛顿第二定律:②加速度③根据运动学公式④得⑤A、适当增加两导轨间的距离,金属棒速度增大B、换一根更长的金属棒,金属棒质量增大.离开导轨时速度变小C、适当增大金属棒中的电流,离开导轨时速度增大故选:AC故答案为:(1)如图所示(2)AC10.【分析】(3)根据x﹣t图象的性质可明确各时刻对应的位移,根据位移公式可求得加速度;(4)将点(2,0.40)作出,并用直线将各点连接即可得出图象;(5)找出图象上的点,根据图象的性质以及牛顿第二定律列式,即可求出小车的质量;(6)对实验原理进行分析,明确摩擦力带来的影响;根据牛顿第二定律可明确图象的变化情况.【解答】解:(3)物体做匀加速直线运动,对应的x﹣t图象为曲线,由图象可知,当t=2.0s 时,位移为:x=0.80m;则由x=代入数据得:a=0.40m/s2;(4)在图C中作出点(2,0.40),并用直线将各点相连,如图所示;(5)由图c可知,当n=4时,加速度为0.78m/s2,由牛顿第二定律可知:4×0.01×9.8=(m+5×0.01)×0.78解得:m=0.45kg;(6)若木板水平,则物体将受到木板的摩擦力;则有:nm0g﹣μ[m+(5﹣n)m0g]=(m+5m0)a;a=﹣=故说明图象仍为直线,但不再过原点;并且斜率增大;故BC正确;故选:B;故答案为:(3)0.40;(4)如图所示;(5)0.46;BC.11.(1)小球在B、A两点的动能之比是5:1.(2)小球恰好到达C点.【分析】(1)根据机械能守恒定律分别求出小球经过B点和A点的动能,再得到它们的比值.(2)假设小球能到达C点,由机械能守恒定律求出小球到达C点的速度,与临界速度比较,即可判断小球能否到C点.【解答】解:(1)根据机械能守恒定律得E KA=mgE KB=mg(+R)=则得小球在B、A两点的动能之比E KB:E KA=5:1.(2)假设小球能到达C点,由机械能守恒定律得mg=即得到达C点的速度v C=设小球通过C点的临界速度为v0.则有mg=m即得v0=因为v C=v0,所以小球恰好到达C点.答:(1)小球在B、A两点的动能之比是5:1.(2)小球恰好到达C点.12.(1)在t=0到t=t0时间间隔,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量ktS+B0v0(t﹣t0)l,金属棒所受外加水平恒力的大小.【分析】(1)根据法拉第电磁感应定律,结合闭合电路欧姆定律,及电量表达式,从而导出电量的综合表达式,即可求解;(2)根据磁通量的概念,∅=BS,结合磁场方向,即可求解穿过回路的总磁通量;根据动生电动势与感生电动势公式,求得线圈中的总感应电动势,再依据闭合电路欧姆定律,及安培力表达式,最后依据平衡条件,即可求解水平恒力大小.【解答】解:(1)根据法拉第电磁感应定律E==,结合闭合电路欧姆定律I=,及电量表达式q=It==,(2)根据题意可知,MN左边的磁场方向与右边的磁场方向相同,那么总磁通量即为两种情况之和,即为:在时刻t(t>t0)穿过回路的总磁通量∅=∅1+∅2=ktS+B0v0(t﹣t0)l;依据法拉第电磁感应定律,那么线圈中产生总感应电动势E=E1+E2=kS+B0lv0;根据闭合电路欧姆定律,则线圈中产生感应电流大小为I==那么安培力大小F A=B0Il=;最后根据平衡条件,则水平恒力大小等于安培力大小,即为F=;答:(1)在t=0到t=t0时间间隔,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量ktS+B0v0(t﹣t0)l,金属棒所受外加水平恒力的大小.13.CDE【分析】理想气体是一种理想化的物理模型,实际上并不存在;理想气体的能仅与温度有关,与气体的体积无关;实际气体在温度不太低、压强不太大的情况下可以看做理想气体.【解答】解:A、质量和温度都相同的气体,能不一定相同,还和气体的种类有关,故A错误;B、物体的能与与温度、体积有关,与物体宏观整体运动的机械能无关,所以整体运动速度越大,其能不一定越大,故B错;C、气体被压缩时,外界对气体做功W>0,如果向外界放热Q<0,根据热力学第一定律,△U=W+Q,可能△U=0能不变,所以C正确;D、理想气体分子间无分子势能,理想气体的能只与温度有关,故D正确;E、一定量的某种理想气体等压膨胀过程中,体积与热力学温度成正比,温度升高,能增加.故E正确故选:CDE14.9.42cm【分析】由题意知两部分封闭气体的温度与环境温度保持相等,气体都作等温变化.先对左端气体研究,根据玻意耳定律求出活塞下移后的压强.水银面相平时,两部分气体的压强相等,再研究右端气体,求出活塞下移后的长度和气体压强,根据几何关系求解活塞向下移动的距离.【解答】解:设初始时,右管中空气柱的压强为,长度为;左管中空气柱的压强为,长度为.该活塞被下推h后,右管中空气柱的压强为,长度为.;左管中空气柱的压强为,长度为.以cmHg为压强单位.由题给条件得:…①…②由玻意耳定律得…③联立①②③式和题给条件得:…④依题意有:…⑤…⑥由玻意耳定律得:…⑦联立④⑤⑥⑦式和题给条件得:h=9.42cm答:此时右侧管气体的压强和活塞向下移动的距离9.42cm.15.BDE【分析】先通过题干中所给出的波速和频率,利用公式λ=计算出波长.根据PQ两点的距离之差与半个波长相比较,利用半个波长的奇数倍或偶数倍来判断PQ振动的情况,可判知选项AB的正误.利用波长不是出P、Q与波源S之间的距离,通过不足一个波长的部分是波的四分之一还是四分之三,结合S点的运动情况,即可判断P、Q点的位置,继而可得知选项BDE的正误【解答】解:波源振动的频率为20Hz,波速为16m/s,由波长公式λ=有:λ==0.8mAB、P、Q两质点距离波源的距离之差为:△x=15.8﹣14.6=1.2m=3×,为半个波长的奇数倍,所以P、Q两质点振动步调相反,P、Q两质点运动的方向始终相反,选项A错误,B正确.C、SP=15.8m=(19+)λ,SQ=SP=14.6m=(18+)λ,所以当S恰好通过平衡位置时,P、Q 两点一个在波峰,一个在波谷,选项C错误.D、由SP=15.8m=(19+)λ可知,当S恰好通过平衡位置向上运动时,P在波峰,选项D正确.E、SQ=SP=14.6m=(18+)λ,当S恰好通过平衡位置向下运动时,Q在波峰,选项E正确.故选:BDE16.150°【分析】光线由M点射入后先发生折射,再在镀银底面发生反射,最后射出玻璃冠.已知球半径、底面半径以及折射率,则由几何关系和折射定律可求得入射角、折射角,再由几何关系可求得光线在镀银底面的入射角和反射角,从而可知反射光线与ON的关系,最后可求光线从球面射出的方向相对于其初始入射方向的偏角.【解答】解:设球半径为R,球冠地面中心为O′,连接OO′,则OO′⊥AB令∠OAO′=α则:cosα===…①即∠OAO′=α=30°…②已知MA⊥AB,所以∠OAM=60°…③设图中N点为光线在球冠地面上的反射点,光路图如图所示.设光线在M点的入射角为i,折射角为r,在N点的入射角为i′,反射角为i″,玻璃的折射率为n.由于△OAM为等边三角形,所以入射角i=60°…④由折射定律得:sini=nsinr…⑤代入数据得:r=30°…⑥作N点的法线NE,由于NE∥MA,所以i′=30°…⑦由反射定律得:i″=30°…⑧连接ON,由几何关系可知△MAN≌△MON,则∠MNO=60°…⑨由⑦⑨式可得∠ENO=30°所以∠ENO为反射角,ON为反射光线.由于这一反射光线垂直球面,所以经球面再次折射后不改变方向.所以,该光线从球面射出的方向相对于其初始入射方向的偏角为β=180°﹣∠ENO=150°.答:光线从球面射出的方向相对于其初始入射方向的偏角为150°.17.ABE【分析】由质量数、电荷数守恒可知核反应方程,核反应方程过程中系统动量守恒,能量也守恒,核反应过程中质量发生亏损,根据动量守恒定律求解硅原子核的速度.【解答】解:A、由质量数、电荷数守恒可知,核反应方程为p+→,故A正确;B、核反应方程过程中系统动量守恒,能量也守恒,故B正确,C错误;D、核反应过程中,要释放热量,质量发生亏损,生成物的质量小于反应物的质量之和,故D错误;E、设质子的质量为m,则铝原子原子核的质量约为27m,以质子初速度方向为正,根据动量守恒定律得:mv0=(m+27m)v解得:v=3.57×105m/s,方向与质子初速度方向一致,故E正确.故选:ABE18.≤μ<【分析】由题意可得动摩擦因数必须满足两个条件:①a、b能相碰;②b不能与墙相碰.先根据能量求出a与b碰撞前的速度.再根据弹性碰撞过程遵守动量守恒和能量守恒列式,得到碰后b的速度,根据b没有与墙发生碰撞,碰后b向右滑行的距离s≤l,由功能列式,即可求解.【解答】解:设物块与地面间的动摩擦因数为μ要使物块a、b能够发生碰撞,应有:mv>μmgl…①即μ<…②设a与b碰撞前的速度为v1,由能量守恒得:=μmgl+…③设a与b碰撞前向的瞬间,速度大小分别为v a、v b,根据动量守恒定律和能量守恒定律得:mv1=mv a+mv b…④=mv+×mv;…⑤联立④⑤式解得:v b=v1…⑥碰后,b没有与墙发生碰撞,即b在达到墙前静止,由功能关系得:(m)v≤μmgl…⑦联立③⑥⑦式,得:μ≥…⑧联立②⑧式,a与b发生碰撞、但b没有与墙发生碰撞的条件为:≤μ<答:物块与地面间的动摩擦因数满足的条件是≤μ<.。
绝密★启用前2016年全国普通高等学校招生统一考试物理(全国3卷精编版)试卷副标题考试范围:xxx ;考试时间:71分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,M 为半圆形导线框,圆心为O M ;N 是圆心角为直角的扇形导线框,圆心为O N ;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线O M O N 的水平面上方有一匀强磁场,磁场方向垂直于纸面。
现使线框M 、N 在t=0时从图示位置开始,分别绕垂直于纸面、且过O M 和O N 的轴,以相同的周期T 逆时针匀速转动,则A .两导线框中均会产生正弦交流电B .两导线框中感应电流的周期都等于TC .在时,两导线框中产生的感应电动势相等D .两导线框的电阻相等时,两导线框中感应电流的有效值也相等2、如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P 。
它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W 。
重力加速度大小为g 。
设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )A .B .C .D .3、平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q>0)。
粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O 的距离为A .B .C .D .4、如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球。
2016年(全国Ⅲ卷)计算题考点排查练
24.如图1所示,ABC 为固定在竖直面内的光滑四分之一圆轨道,其半径为r =10 m ,N 为固
定在水平面内的半圆平面,其半径为R =10π
m ,轨道ABC 与平面N 相切于C 点,DEF 是包围在半圆平面N 周围且垂直于N 的光滑半圆形挡板,质量为M =1 kg 的长方体滑块的上表面与平面N 在同一水平面内,且滑块与N 接触紧密但不连接,现让物体自A 点由静止开始下滑,进入平面N 后立即受到挡板DEF 的约束并最终冲上滑块,已知物体质量m =1 kg ,物体与平面N 之间的动摩擦因数μ1=0.5、与滑块之间的动摩擦因数μ2=0.4,滑块与地面之间是光滑的,滑块的竖直高度为h =0.05 m ,长L =4 m ,(取g =10 m/s 2
)求:
图1
(1)物体滑到C 时对圆轨道的压力是多大?
(2)物体运动到F 处时的速度是多大?
(3)当物体从滑块上滑落后到达地面时,物体与滑块之间的距离是多少?
答案 (1)30 N (2)10 m/s (3)0.6 m
解析 (1)对物体从A 处到C 处的过程,由机械能守恒定律得:
mgr =12
mv C 2
在C 处,由牛顿第二定律得:F N -mg =m v C 2
r
联立解得:F N =3mg =30 N
由牛顿第三定律可知,物体滑到C 处时,对圆轨道的压力是30 N.
(2)对物体从C 处到F 处的过程,由动能定理有
-μ1mg ×πR =12mv F 2-12
mv C 2 解得:v F =10 m/s
(3)物体在滑块上运动,对物体由牛顿第二定律有:
-μ2mg =ma 1
解得:a 1=-4 m/s 2
对滑块由牛顿第二定律有:μ2mg =Ma 2,
解得:a 2=4 m/s 2
设经时间t 物体刚要从滑块上滑落,此时物体的速度为v 1,滑块的速度为v 2.
则有v F t +12a 1t 2-12
a 2t 2=L 解得t =12
s 或2 s(不合题意舍去) 则有v 1=v F +a 1t ,v 2=a 2t
设物体从抛出到落地时间为t 1,
则有h =12
gt 12 Δs =v 1t 1-v 2t 1
联立解得Δs =0.6 m.
25.(2018·广西钦州市第三次质检)如图2甲所示,两根间距L =1.0 m 、电阻不计的足够长平行金属导轨ab 、cd 水平放置,一端与阻值R =2.0 Ω的电阻相连,质量m =0.2 kg 的导体棒ef 在恒定外力F 作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为F f =1.0 N ,导体棒电阻为r =1.0 Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度为B ,导体棒运动过程中加速度a 与速度v 的关系如图乙所示(取g =10 m/s 2),求:
图2
(1)拉力F 的大小;
(2)磁场的磁感应强度B 的大小;
(3)若ef 棒由开始运动6.9 m 时,速度达到3 m/s ,求此过程中电路产生的焦耳热. 答案 (1)2 N (2)1 T (3)6 J
解析 (1)由题图可知,导体棒开始运动时加速度a 1=5 m/s 2,初速度v 0=0,导体棒中无电流.
由牛顿第二定律知:F -F f =ma 1
解得:F =2 N ;
(2)当导体棒速度为v 时,导体棒上的电动势为E ,电路中的电流为I .
由法拉第电磁感应定律:E =BLv ,
由闭合电路欧姆定律:I =E
R +r ,
导体棒所受安培力F 安=BIL ,
由题图可知,当导体棒的加速度a =0时,导体棒开始以v =3 m/s 的速度做匀速运动, 此时有:F -F f -F 安=0,
解得:B =1 T ;
(3)设ef 棒此过程中产生的热量为Q ,由功能关系知:(F -F f )s =Q +12
mv 2, 代入数据解得Q =6 J.。