高中数学必修4人教A教案2.3.1平面向量基本定理
- 格式:doc
- 大小:158.00 KB
- 文档页数:4
2.3.1 平面向量基本定理
1.知识与技能
(1)了解平面向量基本定理.
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实
际问题的重要思想方法.
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
2.过程与方法
通过对定理的探究,培养学生发现数学规律的思维方法和能力;通过对定理的证明和应用,培养学生分析问题、解决问题的能力,体会化归与转化和数形结合的思想方法.
3.情感、态度与价值观
通过对定理的学习和运用,体会数学的科学价值、应用价值.
重点:平面向量基本定理.
难点:平面向量基本定理的理解与应用.
1.在△ABC中,=a,=b,AD为BC边的中线,G为△ABC的重心,以a,b为一组基
底来表示向量=.
解析:∵D是BC的中点,G是重心,
∴)
=a+b,
即a+b.
答案:a+b
2.如图,在平行四边形ABCD中,=a,=b,H,M分别是AD,DC的中点,点F在BC上,且BF=BC,以a,b为基底分解向量.
解:由题意得
==b+a,
=
=
=a-b.。
《平面向量基本定理》教学设计一、教学内容分析本节内容是《普通高中课程标准实验教科书·数学4·必修(人教A版)》第二章2.3.1平面向量基本定理。
学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。
本节内容是第一课时。
二、教学方法与学情本节课为新授课。
根据班级的实际情况,学生思维较活跃,在教学中积极践行新课程理念,倡导合作学习;注重学生自主探究能力;在教学活动中始终以教师为主线、学生为主体,让学生经历合作交流、观察发现、归纳总结等一系列的学习活动。
教学方法是综合法,教学手段采用学案式(结合使用多媒体)。
三、三维目标1、知识与技能(1)了解平面向量基本定理及其意义,会用基底表示某一向量。
(2)培养学生作图、判断、求解的基本能力。
2、过程与方法(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;(2)通过本节学习,让学生体会用基底表示平面内一个向量的方法。
3、情感态度与价值观通过对平面向量基本定理的运用,培养学生乐于动手操作能力、观察判断能力,体会数形结合思想,增强向量的应用意识。
四、教学重点、难点1.重点:对平面向量基本定理的探究;2.难点:对平面向量基本定理的理解及其应用。
五、教学过程1.知识回顾(1)向量的加法运算法则:(2)向量共线定理:问题情境: 【中国航天,国人的骄傲】在物理中,速度是一个向量,速度的合成就是向量的加法运算.速度也可以分解,任何一个大小不为零的速度,都可以分解成两个不同方向的分速度之和.将这种速度的分解拓展到向量中来,就会形成一个新的数学理论.2.数形结合、探究规律给定平面内两个不共线的向量1e,2e,可表示该平面内任意向量a 吗?(师生共同讨论,分析任意向量a的各种情况)3.揭示内涵、理解定理平面向量基本定理:如果1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ11e+λ22e.我们把不共线向量1e、2e叫做表示这一平面内所有向量的一组基底;(分析定理中的关键字词)4.例题练习、变式演练例1 已知向量1e ,2e ,求作向量2135.2e e +-变式思考:你还有其他作法吗? (利用三角形法则也可以)例 2 设1e ,2e 是两个不共线向量,21e e a -=,2132e e b +=,212e e c += ,请根据平面向量基本定理,以a ,b 为基底表示c .(示范操作,共同完成) 变式练习: 设1e ,2e 是两个不共线向量,,, ,请根据平面向量基本定理,(1) 以,为基底表示 (2)以,为基底表示(学生独立完成) 例3 如图,已知梯形ABCD ,AB //CD ,且AB = 2DC ,M ,N 分别是DC ,AB 的中点.在图中选择一组基底,将向量 用这组基底表示出来。
《平面向量基本定理》一、内容分析(一)课标要求:了解平面向量的基本定理及其意义。
这部分教学侧重于帮助学生在现有的向量线性运算的基础上逐步导入平面向量基本定理,引导学生在直观感知的基础上,认识平面向量基本定理的形成和意义;通过直观感知、操作确认、思辨论证,初步了解平面向量基本定理及其意义。
本节课要求:在学生已经初步学会平面向量的线性运算(加法、减法和数乘)的基础上帮助学生自主导入平面向量的基本定理及其几何意义,并学会应用所学知识去解决问题(二)教材分析本节内容是《普通高中课程标准实验教科书·数学4·必修(人教A版)》第二章2.3.1平面向量基本定理。
学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。
(三)学情分析知识结构:通过前面几节课的学习,学生已经学会了如何应用三角形法则和平行四边形法则去处理向量之间的线性关系,对于加法、减法和数乘运算的学习使学生已经具备了一定的推理能力,并通过观察图形和归纳,总结的常用的方法的两种方法:三角形法则和平行四边形法则。
心理特征:通过前面几节课的学习,学生已经学会了向量的线性运算,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。
但在处理问题时学生考虑问题不深入,往往会造成错误的结果。
(四)设计理念本节课结合课标的要求有效利用几何画板辅助教学,针对学生的实际学习背景,平面向量基本定理的导入教学首先要贴近学生实际让学生学会由现有的知识引发思考,合理质疑,进一步激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
二、教学目标知识技能:了解平面向量基本定理及其意义,会用基底表示某一向量;掌握两个向量夹角的定义及会初步求解简单的向量夹角问题。
《平面向量基本定理》的教学设计一 教学目的:1 了解平面向量基本定理及其意义;2 理解平面上任意一个向量都可以由这个平面内两个不共线的向量21,e e 线性表示,初步掌握应用向量解决实际问题的重要思想方法;3 通过作图体会基底的不唯一性;二 教学重点与难点1 重点:平面内的任意向量可以由两个不共线的向量表示2 难点:平面向量基本定理的理解3 教学方法:教师主要引导、学生主体思维为主线,学生动手操作。
4 教学手段:使用多媒体辅助教学,使书本的图形“动”起来,加强了教学的直观性。
使用方格纸让学生画图,使学生能更加直观的理解平面向量的基本定理。
三 教学过程1 复习以提问的方式复习旧知:求向量和的方法,向量的数乘运算;设计意图:让学生思考并回答这两个问题,为这节课的内容做准备。
2 新课引入在学生复述了上述知识之后,让学生在方格纸上画出212,3e e ,并画出2123e e +; 设计意图:让学生通过自己动手做图,再对向量的求和和数乘进行复习,加强学生对旧知的巩固;教师活动:动画演示刚刚所做的图,设计意图:从动画演示上可以让学生从直观上对利用平行四边形法则来求向量的和有了更加直观的印象和理解,同时,利用平行四边形法则来求两个向量的和向量也是这节课在解决问题的主要方法之一。
教师活动:提出问题:“既然我们给定了212,3e e,那么很容易就可以画出1232e e a +=,如果我们给出a ,能否用21,e e 表示a 呢?”3 新课讲解教师活动:让学生在所给的方格上画出,a b ,,c d ,,f g ,并分别用21,e e 来表示,为了方便起见21,e e 是两个互相垂直的向量。
学生活动:分小组来讨论并画出所给向量。
设计意图:让学生初步体会到平面内的任意向量都可以分解成两个向量的和向量。
教师活动:在幻灯片上打出两个不共线的向量21,e e ,和第三个向量a,让学生讨论怎样由21,e e 来表示向量a 。
2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。
第3页 第4页探究三、有关向量夹角的计算例3 已知两个非零向量a 与b 的夹角为ο60,试求下列向量的夹角 (1)a 与b -;(2)b a 32与【课堂检测】1.下列向量 1e 和2e 可作为基底的是 ( ) A. 1e =-2e , 2e =2e B. 1e =,b a - 2e =,b a + C. 1e =e ,2e = e 2 D. 1e =,b a +- 2e =,a b -2.若O E F ,,是不共线的任意三点,则以下各式中成立的是 ( )A .EF OF OE =+u u u r u u u r u u u rB .EF OF OE=-u u u r u u u r u u u rC .EF OF OE =-+u u u r u u u r u u u rD .EF OF OE =--u u u r u u u r u u u r3.已知D 是△ABC 的边AB 上的中点,则向量CD =u u u r( ).A 12BC BA -+u u u r u u u r .B 12BC BA --u u u r u u u r.C 12BC BA -u u u r u u u r .D 12BC BA +u u u r u u u r4.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+u u u r u u u r u u u r u u u r u u u r,,则λ=( )A .23B .13C .13-D .23-5.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2AO OB OC =+u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r二、填空题7.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD交于点F .若AC =u u u r a ,BD =u u u r b ,则AF =u u u r8.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=u u u r u u u r ,则OC =u u u r9.已知向量12,e e u r u u r 不共线,实数x 、y 满足1212(34)(23)63x y e x y e e e -+-=+u r u u r u r u u r,则则x -y 的值等于。
2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理 2.3.2 平面向量的正交分解及坐标表示一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.二、教学目标1、知识与技能:了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示,掌握平面向量正交分解及其坐标表示。
2、过程与方法:初步掌握应用向量解决实际问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达。
3、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。
三、重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.四、教学设想(一)导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?(二)推进新课、新知探究、提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作OA =e 1,OB =e 2,OC =a .过点C 作平行于直线OB的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a 和b (如图2),作OA =a ,OB =b ,则∠AOB=θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .由平面向量的基本定理,对平面上的任意向量a ,均可以分解为不共线的两个向量λ1a 1和λ2a 2,使a =λ1a 1+λ2a 2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G 沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a ,由平面向量基本定理可知,有且只有一对实数x 、y,使得a =x i+y j ①这样,平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y) ②其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j =(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a 与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.(三)应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a . AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF .变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2.作法:(1)如图,任取一点O,作 OA =-2.5e 1,OB =3e 2. (2)作OACB.故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A、B 、D 三点共线,∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+= ∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0. ∴CM BN NM AN 323+++=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ==∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM =0.由于BN 和NM 不共线, ∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练 设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD ,∴AD =21(AB +AC ). 又∵AG =λGD =λ(AD -AG ),∴AG =λλ+1AD =)1(2λλ+AB +)1(2λλ+AC .① 又∵BG =μGE ,即AG -AB =μ(AE -AG ), ∴(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111 又AE =32AC ,∴AG =AB μ+11+)1(32μμ+AC . ② 比较①②,∵AB 、AC 不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∴OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b , OQ OP QP -==h a -k b .∵P、G 、Q 三点共线,∴QP QG λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3.(四)知能训练1.已知G 为△A BC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9 解答: 1.如图9,AG =32AD , 而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∴3232==AD AG (21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义.2.∵A(1,2),B(3,2),∴AB =(2,0).∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.(五)课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.(六)作业。
《平面向量的基本定理及坐标表示》教案(人教A必修4第2章第3节)教材简析:本节前面由实际问题引入平面向量概念,研究向量的线性运算,包括运算的几何意义,特别是加法的平行四边形法则,较集中地反映了向量的几何特征,本节后面主要是研究向量的代数运算。
向量的优势更多地体现在于沟通几何与代数的联系,进而通过代数运算来研究几何和其它的问题,而连接两者的关健就是基本定理;所以在向量知识体系中这个定理具有核心地位,起到承前启后的的作用。
另外,它充分地展现了数学结构体系的严谨性和逻辑性,有助于学生体会数学的思维方式方法,帮助学生进行数学的思考和说理,对学生的数学能力发展是十分重要的。
教学目的简析:1.理解平面向量的基本定理,体验在解决问题过程中选择适当的基底带来的便捷,帮助理解基底的作用,运用已有知识研究平面向量基本定理,经历给定的向量在一组基底上唯一分解的过程,奠定了建立向量坐标的基础,体会数学中的问题转化,及定理的深刻涵义.2.会将给定的向量正交分解;通过向量正交化、坐标化的探索,激发学生探索、合作交流的意识,体会从一般到特殊的研究规律,逐步培养求简思维与模型化思想.3.通过体验平面向量的基本定理的探究过程,激发学生的探索精神,通过具体问题的分析解决,渗透数形结合数学思想,提高学生从一般到特殊的归纳能力,体会数学的思维方式方法,感受数与形的和谐统一。
重点、难点简析:研读多遍教材后,我认为应该将本课的理论学习置于教学重点,不能对定理进行平铺直叙后,即将重心快速转向坐标的表示与运算,决不能让学生的主体参与被削弱,对定理的理解与领悟被剥夺,而难以产生真正意义上的思想共鸣,也为向量的本质理解与数形结合的运用埋下了隐患。
难点是熟悉平面向量的基本定理,选择适当的基底,在一组基底上唯一分解,特别是正交分解及坐标表示,通过定理的探究过程,激发学生的探索精神,增强学生知识的应用意识,提高学生从一般到特殊的归纳能力,感受数与形的和谐统一。
2. 3.1 平面向量基本定理
学习目标
1.通过探究活动,能推导并理解平面向量基本定理.
2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
3.了解向量的夹角与垂直的概念。
重点难点
教学重点:平面向量基本定理、向量的夹角与垂直的定义。
教学难点:平面向量基本定理的运用.
教学过程
引子:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?
问题:如图,设1e 、2e 是同一平面内两个不共线的向量,是这一平面内的任一向量,我们通过作图研究与1e 、2e 之间的关系.
请完成:
① 给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e . 1e
2e
② 由①可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么 平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢?
【由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量1e 、2e 表示出来.当1e 、2e 确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.】
由此可得:
【平面向量基本定理】: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数λ1、λ2,使=λ11e +λ22e .
【定理说明】:
(1)我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底;
(2)基底不唯一,关键是不共线;
(3)由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解;
(4)基底给定时,分解形式唯一.
提出问题
① 平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?
已知两个非零向量和 (如图),作=,=,则∠AOB=θ(0°≤θ≤180°)叫做向量与的夹角.
显然,当θ=0°时, a 与b 同向;当θ=180°时, a 与b 反向.因此,两非零向量的夹角在区间
[0°,180°]内.
如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .
②对平面中的任意一个向量能否用两个互相垂直的向量来表示?
例1、已知向量1e 、2e (如图),求作向量-2.51e +32e
练习:
1.设1e 、2e 是同一平面内的两个向量,则有( ) A. 1e 、2e 一定平行 B . 1e 、2e 的模相等 C.同一平面内的任一向量a 都有a =λ1e +μ2e (λ、μ∈R )
D.若1e 、2e 不共线,则同一平面内的任一向量都有=λ1e +u 2e (λ、u ∈R )
2.已知向量 =1e -22e , =21e +2e ,其中1e 、2e 不共线,则+与 =61e -22e 的关系( )
A.不共线 B .共线 C.相等 D.无法确定
3.已知λ1>0,λ2>0,1e 、2e 是一组基底,且=λ11e +λ22e ,则与1e ,与2e .(填“共线”或“不共线”).
4.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )
A.①②
B.②③
C.①③
D.①②③
5.设1e 与2e 是两个不共线向量, =31e +42e ,=-21e +52e ,若实数λ、μ满足
λa +μb =51e -2e ,求λ、μ的值.
6.【能力提升题】已知G 为△ABC 的重心,设=,=,试用、表示向量.
课堂小结
1.回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,
2.总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.
作业布置 已知向量1e 、2e (如图),求作向量(1)1e +22e (2)-1e +32e。