AD转换器介绍
- 格式:doc
- 大小:25.50 KB
- 文档页数:4
D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出.D/A 转换器实质上是一个译码器(解码器)。
一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。
UREF 为参考电压。
uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
D/A 转换器一般由数码缓冲寄存器、模拟电子开关、参考电压、解码网络和求和电路等组成. 数字量以串行或并行方式输入,并存储在数码缓冲寄存器中;寄存器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。
开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地.权电阻网络D/A 转换器的特点①优点:结构简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。
2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。
当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地.但由于虚短,求和点和地相连,所以不论开关如何转向,电阻2R 总是与地相连。
这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。
倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。
②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。
三、D/A 转换器的主要技术指标1。
分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。
AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。
主要技术指标是指影响AD转换器性能的关键参数。
下面将介绍AD转换器的主要技术指标。
1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。
位数越高,转换结果的精度越高。
常见的位数有8位、10位、12位、16位等。
常见的高精度应用需要12位以上的位数。
2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。
采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。
高速应用需要高采样率的ADC。
3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。
信噪比越高,ADC的抗干扰能力越强,输出结果越准确。
4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。
一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。
5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。
常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。
误差越小,ADC的准确度越高。
6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。
一般来说,工作电压越低,功耗越小,对系统电源需求越低。
7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。
噪声可由转换器内部电路、供电电压和输入信号引起。
噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。
8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。
AD转换器及其接口设计AD转换器(Analog-to-Digital Converter,简称ADC)是一种将模拟信号转换为数字信号的电子设备。
在现代电子系统中,ADC被广泛应用于各种领域,包括通信、娱乐、医疗、工业控制等。
本文将详细介绍AD 转换器及其接口设计。
一、AD转换器的基本原理1.采样:AD转换器将模拟信号按照一定的时间间隔进行采样,即在一段时间内获取信号的样本值。
采样定理要求采样频率必须大于信号最高频率的两倍,以保证采样后的数字信号能完整地表示模拟信号。
2.量化:采样后的信号是连续的模拟信号,需要将其离散化为一定数量的离散值。
量化过程将每个样本值映射为最接近的一个离散值,并用有限位数的二进制表示。
3.编码:量化后的离散信号是一个个数字,需要进一步进行编码以表示其大小。
常用的编码方式有二进制码、格雷码等。
二、AD转换器的接口设计1.模拟输入端口:AD转换器通常具备一个或多个模拟输入端口,用于接收模拟信号。
模拟输入端口一般要满足一定的电压范围要求,通常为0V至参考电压(通常为3.3V或5V)之间。
2.数字输出端口:AD转换器通过数字输出端口将转换后的数字信号输出给外部设备。
数字输出端口一般为并行接口或串行接口,常见的有SPI、I2C和UART等。
3.时钟信号:AD转换器需要一个时钟信号来同步采样和转换过程。
时钟信号通常由外部提供,可以是外部晶体振荡器或其他时钟源。
4.控制信号:AD转换器还可能需要一些控制信号来设置工作模式、增益、采样率等参数。
控制信号一般由微处理器或其他逻辑电路生成和控制。
三、AD转换器的接口设计要点1.采样率:为了准确地表示模拟信号,AD转换器的采样率需要满足采样定理的要求。
采样率的选择需要根据应用场景和信号频率来确定。
2.分辨率:分辨率是指AD转换器能够表示的最小量化步长。
一般分辨率越高,表示精度越大。
分辨率一般由位数来表示,如8位、10位、12位等。
3.电压范围:AD转换器的模拟输入端口需要满足一定的电压范围要求。
ad转换器的组成AD转换器是一种将模拟信号转换为数字信号的电子设备,它是数字信号处理系统中的重要组成部分。
AD转换器的主要功能是将模拟信号转换为数字信号,以便数字信号处理器能够对其进行数字信号处理。
AD 转换器的组成包括模拟前端、采样保持电路、量化电路、编码器和数字接口等几个部分。
1. 模拟前端模拟前端是AD转换器的第一部分,它主要负责将模拟信号转换为电压或电流信号。
模拟前端通常包括放大器、滤波器、衰减器等电路。
其中,放大器的作用是将输入信号放大到适当的范围,以便后续的处理;滤波器的作用是滤除不需要的频率成分,以保证输入信号的质量;衰减器的作用是将输入信号的幅度降低到适当的范围,以避免过载。
2. 采样保持电路采样保持电路是AD转换器的第二部分,它主要负责将模拟信号转换为数字信号。
采样保持电路的作用是将输入信号按照一定的时间间隔进行采样,并将采样值保持在一定的时间内,以便后续的处理。
采样保持电路通常包括采样开关、保持电容、放大器等电路。
3. 量化电路量化电路是AD转换器的第三部分,它主要负责将模拟信号转换为数字信号。
量化电路的作用是将采样保持电路输出的模拟信号转换为数字信号,以便后续的数字信号处理。
量化电路通常包括比较器、参考电压源、编码器等电路。
其中,比较器的作用是将采样保持电路输出的模拟信号与参考电压进行比较,以确定其大小关系;参考电压源的作用是提供一个稳定的参考电压,以保证量化精度;编码器的作用是将比较器输出的数字信号转换为二进制码。
4. 编码器编码器是AD转换器的第四部分,它主要负责将数字信号转换为二进制码。
编码器通常采用二进制编码方式,将数字信号转换为二进制码,以便数字信号处理器能够对其进行数字信号处理。
5. 数字接口数字接口是AD转换器的最后一部分,它主要负责将数字信号输出到数字信号处理器中。
数字接口通常采用串行接口或并行接口,将数字信号输出到数字信号处理器中,以便数字信号处理器能够对其进行数字信号处理。
A/D转换:就是把模拟信号,转换为数字信号ad:模数转换,将模拟信号变成数字信号,便于数字设备处理。
da:数模转换,将数字信号转换为模拟信号与外部世界接口。
具体可以看看下面的资料,了解一下工作原理:ad转换器的分类1.下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如tlc7135)积分型ad工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片ad转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如tlc0831)逐次比较型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb 开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。
其电路规模属于中等。
其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如tlc5510)并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash(快速)型。
由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。
串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为half flash(半快速)型。
还有分成三步或多步实现ad转换的叫做分级(multistep/subrangling)型ad,而从转换时序角度又可称为流水线(pipelined)型ad,现代的分级型ad中还加入了对多次转换结果作数字运算而修正特性等功能。
这类ad速度比逐次比较型高,电路规模比并行型小。
ad转换器的工作原理
AD转换器(Analog-to-Digital Converter)是一种用于将模拟信号转换为数字信号的设备。
它广泛应用于各种领域,包括通信、音频、视频、仪器仪表等。
AD转换器的工作原理如下:
1. 采样(Sampling):AD转换器首先需要对模拟信号进行采样。
采样是指在一定时间间隔内对模拟信号进行测量,并记录下每个时间点上的采样值。
采样过程可以通过模拟开关或运放等电路实现。
2. 量化(Quantization):采样后的模拟信号采样值是连续的模拟数值。
为了将其转换为数字信号,需要对其进行量化。
量化是指将连续的模拟数值划分成有限个离散的取值,即将每个采样值表示为最接近的离散数字值。
3. 编码(Encoding):量化后的离散数值需要进行编码,以便用于数字信号传输和存储。
编码的目的是将离散数值转换为对应的二进制码。
常用的编码方式包括二进制编码、格雷码等。
4. 数字输出(Digital Output):经过编码后,AD转换器将输出一组数字信号,其中每个数字表示一个采样值。
这些数字信号可以由计算机、微处理器等设备进行进一步的处理、分析和存储。
总结起来,AD转换器的工作原理包括采样、量化、编码和数
字输出等步骤。
通过这些步骤,AD转换器能够将连续的模拟
信号转换为离散的数字信号,从而实现数字数据的处理和传输。
什么是ad转换器将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br> 为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。
转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。
随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。
A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D 转换一般要经过取样、保持、量化及编码4个过程。
在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。
取样和保持取样是将随时间连续变化的模拟量转换为时间离散的模拟量。
取样过程示意图如图11.8.1所示。
图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号v O(t)为输入信号v1,而在(T s-τ)期间,传输门关闭,输出信号v O(t)=0。
电路中各信号波形如图(b)所示。
图11.8.1 取样电路结构(a)图11.8.1 取样电路中的信号波形(b)通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。
但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。
取样定理:设取样信号S(t)的频率为f s,输入模拟信号v1(t)的最高频率分量的频率为f imax,则f s与f imax必须满足下面的关系f s≥2f imax,工程上一般取f s>(3~5)f imax。
AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。
AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。
本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。
一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。
它采用逐渐逼近的方法逐位进行转换。
其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。
逐次逼近型AD转换器的转换速度相对较快,精度较高。
2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。
它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。
模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。
3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。
它的转换速度较快,但其实现成本相对较高。
并行型AD转换器适用于高速数据采集和信号处理。
4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。
它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。
逐渐逼近型AD转换器转换速度较慢,但精度较高。
5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。
AD转换器及其接口设计详解AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的电子设备。
它是现代电子系统中常见的组件之一,广泛应用于通信、测量、仪器仪表、音频处理等领域。
在AD转换器的设计中,接口设计是至关重要的,它直接影响着AD转换器的性能和可靠性。
物理接口是指AD转换器与其他外部设备(如微处理器、FPGA等)之间的连接方式和信号传输方式。
常见的物理接口包括并行接口、串行接口、I2C接口、SPI接口等。
在选择物理接口时,需要考虑系统的数据传输速度、数据带宽、线路长度、抗干扰能力等因素。
不同的物理接口有不同的特点和适用场景,因此需要根据具体应用需求选择适合的物理接口。
逻辑接口是指AD转换器与外部设备之间的控制和数据传输逻辑。
常见的逻辑接口包括并行接口、串行接口、I2C接口、SPI接口、USB接口等。
逻辑接口的设计需要考虑控制信号的数量、数据传输的稳定性、响应速度等因素。
同时,还需要考虑系统的复杂度、功耗、成本等方面的要求。
AD转换器的接口设计还需要考虑信号的采样率、分辨率和精度。
采样率是指AD转换器从模拟信号中采集样本的速率,常用单位为样本/秒(SPS),采样率越高,可以保留更多的信号细节。
分辨率是指AD转换器的输出数值的位数,通常以比特(bit)为单位,分辨率越高,可以提供更准确的数字化信号。
精度是指AD转换器输出的数字值与实际模拟信号之间的误差,一般以最大有效位数或最小非零位数表示,精度越高,误差越小。
在AD转换器的接口设计中,还需要考虑芯片的功耗、尺寸和成本等因素。
功耗是指AD转换器在工作过程中所消耗的电能,功耗越低,可以延长系统的电池寿命或减少系统的散热需求。
尺寸是指AD转换器的物理尺寸,尺寸越小,可以降低系统的体积和重量。
成本是指AD转换器的制造成本,成本越低,可以降低系统的总体成本。
总之,AD转换器的接口设计是一个综合考虑多个因素的过程,需要根据具体应用需求选择适当的物理接口、逻辑接口和信号参数。
D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出。
D/A 转换器实质上是一个译码器(解码器)。
一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。
UREF
为参考电压。
uO =DnUREF
将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
D/A 转换器一般由数码缓冲寄存器、模拟电子开关、参考电压、解码网络和求和电路等组成。
数字量以串行或并行方式输入,并存储在数码缓冲寄存器中;寄存器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。
开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地。
权电阻网络D/A 转换器的特点
①优点:结构简单,电阻元件数较少;
②缺点:阻值相差较大,制造工艺复杂。
2. 倒T 型电阻网络D/A 转换器
3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。
当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地。
但由于虚短,求和点和地相连,所以不论开关如何转向,电阻2R 总是与地相连。
这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。
倒T 型电阻网络D/A 转换器的特点:
①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。
②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。
三、D/A 转换器的主要技术指标
1. 分辨率
分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。
①D/A 转换器模拟输出电压可能被分离的等级数--可用输入数字量的位数n 表示D/A 转换器的分辨率;
②可用D/A 转换器的最小输出电压与最大输出电压之比来表示分辨率。
分辨率越高,转换时对输入量的微小变化的反应越灵敏。
而分辨率与输入数字量的位数有关,n 越大,分辨率越高。
2. 转换精度
D/A 转换器的转换精度是指输出模拟电压的实际值与理想值之差,即最大静态转换误差。
3. 转换速度 1
21U U n m
-==∆分辨率
从输入的数字量发生突变开始,到输出电压进入与稳定值相差±0.5LSB范围内所需要的时间,称为建立时间tset。
目前单片集成D/A转换器(不包括运算放大器)的建立时间最短达到0.1微秒以内。
4. 温度系数
在输入不变的情况下,输出模拟电压随温度变化产生的变化量。
一般用满刻度输出条件下温度每升高1℃,输出电压变化的百分数作为温度系数。
它由一个8位输入寄存器、一个8位DAC寄存器和一个8位D/A转换器三大部分组成,D/A转换器采用了倒T型R-2R电阻网络。
(a)双缓冲方式:采用二次缓冲方式,可在输出的同时,采集下一个数据,提高了转换速度;也可在多个转换器同时工作时,实现多通道D/A的同步转换输出。
(b)单缓冲方式:适合在不要求多片D/A同时输出时。
此时只需一次写操作,就开始转换,提高了D/A的数据吞吐量。
(c)直通方式:输出随输入的变化随时转换。
一、A/D转换器的基本工作原理
A/D转换是将模拟信号转换为数字信号,转换过程通过取样、保持、量化和编码四个步骤完成。
1.取样和保持
取样(也称采样)是将时间上连续变化的信号,转换为时间上离散的信号,即将时间上连续变化的模拟量转换为一系列等间隔的脉冲,脉冲的幅度取决于输入模拟量。
2.模拟信号经采样后,得到一系列样值脉冲。
采样脉冲宽度τ一般是很短暂的,在下一个采样脉冲到来之前,应暂时保持所取得的样值脉冲幅度,以便进行转换。
因此,在取样电路之后须加保持电路。
①在采样脉冲S(t)到来的时间τ内,VT导通,UI(t)向电容C充电,假定充电时间常数远小于τ,则有:UO(t)=US(t)=UI(t)。
--采样
②采样结束,VT截止,而电容C上电压保持充电电压UI(t)不变,直到下一个采样脉冲到来为止。
--保持
输入的模拟电压经过取样保持后,得到的是阶梯波。
而该阶梯波仍是一个可以连续取值的模拟量,但n位数字量只能表示2n个数值。
因此,用数字量来表示连续变化的模拟量时就有一个类似于四舍五入的近似问题。
将采样后的样值电平归化到与之接近的离散电平上,这个过程称为量化。
指定的离散电平称为量化电平Uq 。
用二进制数码来表示各个量化电平的过程称为编码。
两个量化电平之间的差值称为量化单位Δ,位数越多,量化等级越细,Δ就越小。
取样保持后未量化的Uo值与量化电平Uq值通常是不相等的,其差值称为量化误差ε,即ε=Uo-Uq。
量化的方法一般有两种:只舍不入法和有舍有入法。
1)
当Uo的尾数<Δ时,舍尾取整。
这种方法ε总为正值,εmax=Δ。
2)
当Uo的尾数<Δ/2时,舍尾取整;当Uo的尾数≥Δ/2时,舍尾入整。
这种方法ε可正可负,但是|εmax|= Δ/2。
可见,它的误差要小。
二、A/D转换器的主要电路形式
A/D转换器有直接转换法和间接转换法两大类。
直接法是通过一套基准电压与取样保持电压进行比较,从而直接将模拟量转换成数字量。
其特点是工作速度高,转换精度容易保证,调准也比较方便。
直接A/D转换器有计数型、逐次比较型、并行比较型等。
间接法是将取样后的模拟信号先转换成中间变量时间t或频率f, 然后再将t或f转换成数字量。
其特点是工作速度较低,但转换精度可以做得较高,且抗干扰性强。
间接A/D转换器有单次积分型、双积分型等。
1. 并行比较型A/D转换器
并行比较型A/D转换器的特点:
①优点:转换速度很快,故又称高速A/D转换器。
含有寄存器的A/D转换器兼有取样保持功能,所以它可以不用附加取样保持电路。
②缺点:电路复杂,对于一个n位二进制输出的并行比较型A/D转换器,需2n -1个电压比较器和2n -1个触发器,编码电路也随n的增大变得相当复杂。
且转换精度还受分压网络和电压比较器灵敏度的限制。
因此,这种转换器适用于高速,精度较低的场合。
逐次逼近型A/D转换器的工作原理:
①转换开始前先将逐次逼近寄存器SAR清“0”;
②开始转换以后,第一个时钟脉冲首先将寄存器最高位置成1,使输出数字为100…0。
这个数码被D/A转换器转换成相应的模拟电压uo,经偏移Δ/2后得到uO′=uO-Δ/2,并送到比较器中与uI′进行比较。
若uI′<uo′,说明数字过大,故将最高位的1清除置零;若uI′≥uo′,说明数字还不够大,应将这一位保留。
③然后,按同样的方法将次高位置成1,并且经过比较以后确定这个1是保留还是清除。
这样逐位比较下去,一直到最低位为止。
比较完毕后,SAR中的状态就是所要求的数字量输出。
3.双积分型A/D转换器
双积分型ADC的转换原理是先将模拟电压UI转换成与其大小成正比的时间间隔T,再利用基准时钟脉冲通过计数器将T变换成数字量。
这种A/D转换器具有很多优点。
首先,其转换结果与时间常数RC无关,从而消除了由于斜波电压非线性带来的误差,允许积分电容在一个较宽范围内变化,而不影响转换结果。
其次,由于输入信号积分的时间较长,且是一个固定值T1,而T2正比于输入信号在T1内的平均值,这对于叠加在输入信号上的干扰信号有很强的抑制能力。
最后,这种A/D转换器不必采用高稳定度的时钟源,它只要求时钟源在一个转换周期(T1+T2)内保持稳定即可。
这种转换器被广泛应用于要求精度较高而转换速度要求不高的仪器中。
三、A/D转换器的主要技术指标
1.
分辨率指A/D转换器对输入模拟信号的分辨能力。
从理论上讲,一个n位二进制数输出的A/D转换器应能区分输入模拟电压的2n个不同量级,能区分输入模拟电压的最小差异
为
(满量程输入的1/2n)。
2.
转换时间是指A/D转换器从接到转换启动信号开始,到输出端获得稳定的数字信号所经过的时间。
A/D转换器的转换速度主要取决于转换电路的类型,不同类型A/D转换器的转换速度相差很大。
①双积分型A/D转换器的转换速度最慢,需几百毫秒左右;
②逐次逼近式A/D转换器的转换速度较快,需几十微秒;
③并行比较型A/D转换器的转换速度最快,仅需几十纳秒时间。
3. 转换误差
它表示A/D转换器实际输出的数字量和理论上输出的数字量之间的差别。
常用最低有效位的倍数表示。