51单片机(AD及DA转换器)..
- 格式:ppt
- 大小:517.50 KB
- 文档页数:26
51单片机ad转换程序解析1.引言1.1 概述概述部分旨在介绍本篇文章的主题——51单片机AD转换程序,并对文章的结构和目的进行简要说明。
51单片机是指Intel公司推出的一种单片机芯片,它广泛应用于嵌入式系统中。
而AD转换则是模拟信号转换为数字信号的过程,是嵌入式系统中的重要功能之一。
本文将详细解析51单片机中的AD转换程序。
文章结构分为引言、正文和结论三个部分。
引言部分将给读者介绍本篇文章的内容和结构安排,正文部分将详细讲解51单片机AD转换程序的相关要点,而结论部分将总结正文中各个要点的内容,以便读者能够更好地理解和掌握51单片机AD转换程序的实现原理。
本文的目的在于向读者提供一份对51单片机AD转换程序的详细解析,使读者能够了解51单片机的AD转换功能以及如何在程序中进行相应的设置和操作。
通过本文的学习,读者将掌握如何使用51单片机进行模拟信号的采集和处理,为后续的嵌入式系统设计和开发提供基础。
在下一节中,我们将开始介绍文章的第一个要点,详细讲解51单片机AD转换程序中的相关知识和技巧。
敬请期待!1.2 文章结构文章结构部分主要是对整篇文章的框架和内容进行介绍和归纳,以帮助读者更好地理解文章的组织和内容安排。
本文以"51单片机AD转换程序解析"为主题,结构分为引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的三个方面。
首先,通过对单片机AD转换程序的解析,来讲解其实现原理和功能。
其次,介绍文章的结构,帮助读者明确整篇文章的主要内容和组织方式。
再次,阐明文章的目的,即为读者提供关于51单片机AD转换程序的详尽解析和指导,帮助读者深入了解该技术并进行实际应用。
正文部分则分为两个要点,即第一个要点和第二个要点。
第一个要点可以从AD转换的基本概念入手,介绍51单片机AD转换的原理和流程。
包括输入电压的采样、AD转换器的工作原理、ADC的配置和控制等方面的内容。
在此基础上,深入解析51单片机AD转换程序的编写和调用方法,包括编程语言、寄存器的配置、数据的获取和处理等。
常用芯片引脚图一、 单片机类1、MCS-51芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。
MCS-51系列单片机共有40条引脚,包括32条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。
引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。
P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。
P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。
P3.0~P3.7:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。
ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号)PSEN :片外程序存储器开发信号引脚(输出信号)EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚RST/VPD :复位/备用电源引脚2、MCS-96芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单片机系列。
它含有比较丰富的软、硬件资源,适用于要求较高的实时控制场合。
它分为48引脚和68引脚两种,以48引脚居多。
引脚说明:RXD/P2.1 TXD/P2.0:串行数据传出分发送和接受引脚,同时也作为P2口的两条口线HS1.0~HS1.3:高速输入器的输入端HS0.0~HS0.5:高速输出器的输出端(有两个和HS1共用)Vcc :主电源引脚(+5V )Vss :数字电路地引脚(0V )Vpd :内部RAM 备用电源引脚(+5V )V REF :A/D 转换器基准电源引脚(+5V )AGND :A/D 转换器参考地引脚12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7EA/V PP ALE/PROG PSENP2.7/A 15P2.6/A 14P2.5/A 13P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751XTAL1、XTAL2:内部振荡器反相器输入、输出端,常外接晶振。
51单片机的AD转换姓名:史旭超学号:0845531133 专业:电子信息工程摘要:AD转换器是一种能把输入模拟电电压或电电流变成与它成正比的数数字量,即能把被控对对象的各种模拟信息变成计计算机可以识别的数字信息。
在单片机测控系统中,被采集的实时信号多为连续变化的模拟量,由于单片机只能处理数字量,所以就需要将连续变化的模拟量转换成数字量,即A/D转换。
本次设计中AD转换器选用ADC0809,将其与单片机,8255共同构成转换电路。
关键词:ADC0809 单片机8255 汇编语言一、芯片介绍1.A/D转换芯片0809引脚与功能简介ADC0809是由美国国家半导体公司推出的8位逐次逼近式A/D转换器,包括8位模/数转换器、8通道多路转换器和与微处理器兼容的控制逻辑。
8通道多路转换器能直接连通8个单端模拟信号中的一个。
ADC0809与C51单片机有3种接口方式:查询方式、中断方式和等待延时方式。
每采集一次一般需100us。
中断方式下,A/D转换结束后会自动产生EOC信号。
(1)ADC0809内部逻辑结构如下图所示:图1 ADC0809的内部逻辑结构ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。
多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。
三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809引脚结构功能D7-D0:8位数字量输出引脚。
IN0-IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
OE:输出允许控制端,用以打开三态数据输出锁存器。
第11章 MCS-51与D/A转换器、A/D转换器的接口非电物理量(温度、压力、流量、速度等),须经传感器转换成模拟电信号(电压或电流),必须转换成数字量,才能在单片机中处理。
数字量,也常常需要转换为模拟信号。
A/D转换器(ADC):模拟量→数字量的器件,D/A转换器(DAC):数字量→模拟量的器件。
只需合理选用商品化的大规模ADC、DAC芯片,了解引脚及功能以及与单片机的接口设计。
11.1 MCS-51与DAC的接口11.1.1 D/A转换器概述1. 概述输入:数字量,输出:模拟量。
转换过程:送到DAC的各位二进制数按其权的大小转换为相应的模拟分量,再把各模拟分量叠加,其和就是D/A转换的结果。
使用D/A转换器时,要注意区分:* D/A转换器的输出形式;* 内部是否带有锁存器。
(1) 输出形式两种输出形式:电压输出形式与电流输出形式。
电流输出的D/A转换器,如需模拟电压输出,可在其输出端加一个I-V转换电路。
(2)D/A转换器内部是否带有锁存器D/A转换需要一定时间,这段时间内输入端的数字量应稳定,为此应在数字量输入端之前设置锁存器,以提供数据锁存功能。
根据芯片内是否带有锁存器,可分为内部无锁存器的和内部有锁存器的两类。
* 内部无锁存器的D/A转换器可与P1、P2口直接相接(因P1口和P2口的输出有锁存功能)。
但与P0口相接,需增加锁存器。
* 内部带有锁存器的D/A转换器内部不但有锁存器,还包括地址译码电路,有的还有双重或多重的数据缓冲电路,可与MCS-51的P0口直接相接。
2.主要技术指标(1)分辨率输入给DAC的单位数字量变化引起的模拟量输出的变化,通常定义为输出满刻度值与2 n之比。
显然,二进制位数越多,分辨率越高。
例如,若满量程为10V,根据定义则分辨率为10V/2 。
设8位D/A转换,即n=8,分辨率为10V/2 n n=39.1mV,该值占满量程的0.391%,用1LSB表示。
同理:10位D/A:1 LSB=9.77mV=0.1% 满量程12位 D/A:1 LSB=2.44mV=0.024% 满量程根据对DAC分辨率的需要,来选定DAC的位数。
基于51单片机用PCF8591进行AD,DA转换用1602LCD显示的电流采样福州大学至诚学院本科生课程设计题目: 可编程序控制器实训姓名: 学号:系别:专业:年级: 指导教师:目录1、PCF8591概述 .....................................................3 2、芯片介绍.........................................................3 3、PCF8591的A/D 转换...............................................4 4、A/D转换程序设计流程 .............................................5 5、1602LCD主要技术参数 .............................................7 6、Proteus仿真原理图 . (10)7、程序代码........................................................108、结语............................................................17 9、参考文献.. (17)21、PCF8591 概述PCF8591 是一种具有 I2C 总线接口的 8 位 A/D D/A 转换芯片,在与 CPU的信息传输过程中仅靠时钟线 SCL 和数据线 SDA 就可以实现。
I2C 总线是Philips (飞利浦)公司推出的串行总线,它与传统的通信方式相比具有读写方便,结构简单,可维护性好,易实现系统扩展,易实现模块化标准化设计,可靠性高等优点。
2、芯片介绍2.1内部结构及引脚功能描述PCF8591 为单一电源供电(2.5 6 V)典型值为 5 V,CMOS 工艺 PCF8591 有 4 路 8 位 A/D 输入,属逐次比较型,内含采样保持电路; 1 路 8 位 D/A 输出,内含有 DAC的数据寄存器 A/D D/A 的最大转换速率约为 11 kHz,但是转换的基准电源需由外部提供 PCF8591 的引脚功能如图1所示图1 PCF8591引脚功能2.2片内可编程功能设置在 PCF8591 内部的可编程功能控制字有两个,一个为地址选择字,另一个为转换控制字 PCF8591 采用典型的I2C总线接口的器件寻址方法,即总线地址由器件地址引脚地址和方向位组成 Philips (飞利浦)公司规定 A/D器件高四位地址为1001,低三位地址为引脚地址A0A1A2,由硬件电路决定,地址选择字格式具体描述如表2 所示因此 I2C 系统中最多可接 23=8 个具有总线接口的 A/D 器件地址的最后一位为方向位 R/W,当主控器对 A/D 器件进行读操作时为 1,进行写操作时为 0 总线。
51单片机的数字电压表设计随着科技的快速发展,单片机在许多领域得到了广泛应用。
51单片机作为一种常见的单片机,具有功能强大、易于编程等优点,因此在数字电压表设计中具有独特优势。
本文将介绍如何利用51单片机设计数字电压表。
数字电压表的电源电路通常采用直流电源,可以通过变压器将交流电转换为直流电,再经过滤波和稳压电路,将电压稳定在单片机所需的电压范围内。
数字电压表的信号采集电路可以采用电阻分压的方式,将待测电压分压后送入单片机进行测量。
为了提高测量精度,可以采用差分放大器对信号进行放大和差分输出。
51单片机内置ADC模块,可以将模拟信号转换为数字信号。
在数字电压表中,可以使用ADC模块对放大后的模拟信号进行转换,得到数字信号后进行处理和显示。
数字电压表的显示电路可以采用液晶显示屏或LED数码管,将测量结果以数字形式显示出来。
液晶显示屏具有显示清晰、亮度高、视角广等优点,但价格较高;LED数码管价格便宜、亮度高、寿命长,但显示内容有限。
数字电压表的主程序主要完成电压的采集、A/D转换和显示等功能。
主程序首先进行系统初始化,包括设置ADC模块参数、初始化显示等;然后不断循环采集电压信号,将采集到的模拟信号转换为数字信号后进行处理和显示。
51单片机的ADC模块可以通过特殊功能寄存器进行配置和控制。
在数字电压表的软件设计中,需要编写ADC模块驱动程序,以控制ADC 模块完成模拟信号到数字信号的转换。
具体实现可以参考51单片机的ADC模块寄存器定义和操作指南。
数字电压表的显示程序需要根据显示硬件选择合适的显示库或驱动程序。
在编写显示程序时,需要将采集到的数字信号转换为合适的数值,并将其显示在显示屏上。
具体实现可以参考所选显示库或驱动程序的文档说明。
精度问题:数字电压表的精度直接影响到测量结果的质量。
为了提高测量精度,可以采用高精度的ADC模块和合适的信号处理技术。
同时,需要注意信号采集电路中电阻的精度和稳定性。