PLC和变频器应用设计
- 格式:pdf
- 大小:429.22 KB
- 文档页数:30
PLC自动控制技术在变频器中的应用摘要:在我国工业行业飞速发展的背景下,变频器的使用在现代工业企业的生产经营过程中占据了极其关键的地位,并且极大地影响了企业内部数据分析和处理能力水平。
但是由于变频器的实际使用中很容易产生漏洞问题而造成数据分析功能的下降;为规避上述问题,有关工作人员需加强对PLC自动控制及其他技术的运用,利用其增强变频器的人机交互功能,以保证最大限度地满足工业企业发展的要求。
文章主要针对变频器PLC自动控制技术的运用展开了深入的分析。
关键词:PLC 技术;自动控制;变频器一、PLC自动控制技术概念PLC自动控制技术是一种能够编辑并能实现较简单逻辑控制的控制器。
随着PLC自动控制技术研究的不断增加,推动了PLC自动控制技术向更加完善的方向迈进,并逐步取代了原有自动控制技术,逐渐为人们所认识并广泛使用,从某种角度来看,既能推动工业产品的革新,又能推动生产效率的提高。
现在现有的PLC自动控制技术,在具体应用的过程中,只能使用输入输出,控制器等等来进行自动控制。
因其工作操作流程方便而称为微型计算机。
但是在当前的阶段PLC自动控制运用发展当中,PLC的自动控制器运用起来很方便快捷,只是需要对使用人进行训练而已。
另外,PLC自动控制还具备抗干扰能力好,安全性高的特性,所以,将它应用于生产当中,可以提高制造品质和工作效率。
二、现代变频器中的常见问题2.1电动机过载在现代工业生产运营过程当中,为促进生产过程便捷进行,电动机扮演着极其重要的角色。
但由于变频器工作时很容易给电动机带来过载等故障,这些故障的发生将使V/F曲线失配,使电动机的运转发生异常,甚至给工作人员它和本身的安全带来危害,主要有如下几种类型:(1)电动机本身散热功能受影响,使变频器的要求不能满足;(2)电动机长期低速运行,致使其自身性能和参数均受影响,从而影响变频器运行。
2.2变频器参数设置问题变频器运行时,为了使其处于最佳状态,通常需要确保各参数设置合理,当出现参数设置不当时,势必影响到它的正常工作,例如变频器相关功能不正常等。
基于PLC与变频器的恒张力电动绞车设计摘要:文章从变频器实现对变频电机转矩控制原理及运行特点出发,采用PLC、编码器及变频器实现绞车的恒张力的控制方案,并根据该方案阐述了系统控制的实现方案。
该恒张力绞车具有较高的使用价值及广阔的市场前景。
关键词:变频器;恒张力;扭矩控制;引言随着近年来海洋科学考察、水下资源的探测和开发,以及水下追踪与探测等技术的快速发展,促进了水下探测设备技术的进步,平稳的吊放及回收水下探测设备成了对吊放绞车不可或缺的功能,而恒张力绞车可以满足此要求,本文采用PLC算法与变频器的转矩控制功能和编码器卷绕半径检测计算实现对绞车缆绳的恒张力控制。
1变频器转矩控制原理转矩控制是指变频器以控制电机的输出转矩为目的,速度大小与转向与转矩无关,只与外负载有关。
此时变频器采用电流环控制,外部给定信号直接给电流环作为电动机的输出转矩设定。
如图1所示。
当给定信号为10V时,电动机的输出力矩为额定值(100%T),当给定信号为5V时,电机输出力矩为额定转矩的50%。
图1、电机转矩控制曲线图转矩控制的运行特点在变频器转矩控制时,拖动系统的状态取决于系统的动态转矩式中:为动态转矩,为电动机输出转矩,为绞车负载转矩式1中电动机的输出转矩取决于转矩给定信号,当=0时,绞车拖动负载等速运行,当>0时,绞车拖动负载加速,此时为防止超速,许多变频器都带有速度外环限制超速,通过设置上限频率,当电动机的转速上升到上限转速时,电动机的转矩并不取决于转矩给定信号,但转矩给定信号保证了拖动系统将在上限转速下运行。
当<0时,负载拖动绞车减速运行,直至绞车收绳速度为零,负载再拖动绞车反向加速运行,该过程绞车变频电机处于再生发电状态,将缆绳的机械能转变为电能。
但这部分电能一般通过制动电阻以热能的形式消耗掉或通过电封闭共直流母线技术供给系统中其它电机使用,避免因再生高压而损坏变频器。
2卷绕半径的检测与计算在绞车卷筒收绳过程中,卷绕半径是一个动态的变化过程,随着钢丝绳层数的增加而不断的增加,因此若要保证钢丝绳张力恒定,随着卷绕半径的增加,变频电机输出的转矩也要增加;在此采用分辨率为1024的增量编码器(A/B两相脉冲输出),通过PLC高速计数器记录编码器信号,进而计算出卷筒的卷绕层数。
利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。
但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。
下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。
1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。
在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。
电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。
在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。
印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。
但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。
为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。
牵引电机和印刷电机采用变频调速,其控制框图如图1所示。
在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。
变频器与PLC的联动控制随着现代工业自动化的发展,变频器和PLC成为了工业控制领域中常用的设备。
它们分别担负着驱动电机和控制各种自动化设备的重要任务。
而将变频器和PLC进行联动控制,可以实现更加灵活和高效的工业生产过程。
本文将详细介绍变频器与PLC的联动控制原理、应用和优势。
一、变频器和PLC的基本介绍1. 变频器变频器,即交流变频调速器,是一种通过调整电源频率和电压来控制电机转速的装置。
它可以使电机实现无级调速,适用于各种需要调整转速的场合。
2. PLCPLC,即可编程逻辑控制器,是一种专门用于控制自动化设备的计算机控制系统。
它可以编程实现各种逻辑运算,对输入输出信号进行处理,并控制各种执行器的动作。
二、变频器与PLC的联动控制原理变频器与PLC的联动控制主要基于以下几个原理。
1. 通信协议变频器和PLC之间需要通过某种通信协议进行数据传输和控制命令的交互。
常用的通信协议包括Modbus、Profibus等。
2. 输入输出信号交互PLC可以通过输入模块接收传感器或者其他设备的信号,然后根据预设的逻辑进行处理,并通过输出模块控制变频器的启停、转速等参数。
3. 控制策略根据实际需求,可以通过PLC编程实现不同的控制策略。
例如,根据流量传感器检测到的流量信号,PLC可以调整变频器的输出频率,以达到预期的流量控制效果。
三、变频器与PLC的联动控制应用变频器与PLC的联动控制在工业自动化领域有广泛的应用。
以下是几个常见的例子。
1. 水泵控制系统通过变频器和PLC联动控制,可以实现水泵的自动控制。
根据PLC程序中的逻辑,通过检测水位、压力等信号,PLC可以控制变频器的启停和转速,以确保水泵的正常运行。
2. 输送带控制系统在自动化生产线上,通过变频器和PLC的联动控制,可以实现对输送带的运行速度和方向的精确控制。
根据PLC的程序逻辑,可以根据工件的数量和位置,实时调整变频器的输出频率和方向,使输送带与生产线的工作同步。
PLC控制的变频器在自动化生产线中的应用
PLC(可编程逻辑控制器)是一种专门用于控制和监测自动化生产线的计算机控制系统。
而变频器是一种能够调整电动机转速和运行频率的装置。
通过将PLC控制与变频器结合使用,可以实现对自动化生产线中电动机的精确控制和调节,从而提高生产线的效率和准确性。
1. 电动机速度控制:自动化生产线中的不同工艺需要不同的电机转速,通过PLC控制变频器,可以根据生产线的实际需要,实时调整电动机的转速,以适应不同工艺的要求。
在纺织业中,不同织物的纺织速度不同,通过PLC控制变频器可以实时调整电动机的转速,确保织物的质量和工艺标准。
2. 运行模式切换:自动化生产线中通常需要根据不同的产品要求进行不同的运行模
式切换,通过PLC控制变频器,可以实现快速而准确地切换不同的运行模式。
在汽车制造
业中,同一生产线上可能需要生产不同型号的汽车,通过PLC控制变频器,可以根据不同
的汽车型号,自动调整生产线的运行模式,以适应不同型号汽车的生产需求。
4. 故障诊断与维护:自动化生产线中的设备故障常常会导致生产线的停工和生产效
率的降低,通过PLC控制变频器,可以实时监测设备的运行状态和工作参数,及时发现并
报警设备的故障情况。
通过PLC控制变频器的故障诊断功能,可以对故障设备进行准确的
诊断,提供准确的故障报告,为维修人员提供指导和参考,以提高设备的维护效率和准确性。
PLC控制的变频器在自动化生产线中的应用,可以实现对电动机的精确控制和调节,
从而提高生产线的效率和准确性。
还可以实现能耗的节约、故障的诊断与维护等功效,进
一步提高自动化生产线的可靠性和可控性。
远程与继续教育学院本科生毕业论文(设计)题目:基于PLC和变频器在供水系统中的应用学习中心:重庆市长寿区奥鹏学习中心层次:专科起点本科专业:电气工程机自动化年级: 2013 年春季学号: 201303547431学生:杨月红指导教师:高国娟完成日期: 2014 年 12 月 26日内容摘要本论文先从供水系统的控制理念、方案设计出发,从PLC和变频器的选择、应用和对变频器的选择、安装,以及与PLC可编程控制器共同实现供水系统的控制的操作要点、安装要点、调试要点进行详细的介绍;并对改造后的结论通过计算得出合理的结论。
关键词:控制系统;变频器和PLC的选择、安装;变频器与PLC的调试;目录内容摘要 (I)引言 (1)1 绪言 (2)2 PLC和变频器在供水系统的运用 (3)2.1 PLC和变频器在供水系统的基本控制原理 (3)2.1.1 供水系统原理 (3)2.1.2 PLC和变频器的选择 (4)2.1.3 PLC和变频器等构成的控制系统接线图 (7)2.1.4 手/自动变频方式 (9)2.2 PLC和变频器的安装 (9)2.2.1 PLC的安装 (10)2.2.2 变频器的安装 (11)3 变频器调试 (14)3.1 变频器的空载通电试验 (14)3.2 变频器带电机空载运行 (14)3.3 变频器带载荷试运行 (15)3.4 变频器与PLC的RS485通讯 (15)4 变频器故障处理与分析 (18)5 变频器改造的作用及效果 (19)6 结论 (21)参考文献 (22)变频器是运动控制系统中的功率变换器。
当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。
因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。
20 世纪80 年代后期,变频器被引进中国市场,人们对变频器的了解也仅处于初期阶段,而且市场上变频器的数量还十分有限,且价格高昂,所以变频器在80年代运用具有很多局限性,变频器的发展也很缓慢。
变频器与PLC恒压供水系统的设计与应用本系统是由三台水泵供水,它分别由电动机M1、M2、M3进行拖动。
而三台电动机又分别由三个变频接触器KM1、KM3、KM5和三个工频接触器KM2、KM4、KM6控制如图1。
每一台电动机都是先变频低速启动,然后根据供水的需要,由低速向高速逐渐增高。
当达到最高速时,若供水量还是不足,则转变成工频全速运行。
变频器工作时速度的转换及变频与工频的切换,由供水网远传压力表W2中心触头CCI与设定电位器W1—— VCI比较,变频器输出Y1或Y2到PLC的X12或X13经100秒识别进行相应切换。
2 恒压供水的控制方法本恒压供水系统采用变频器与PLC共同控制,具体实现如下。
首先系统通过供水网远传压力表W2中心点电压变化传到变频器CCI端和预设压力的电压VCI比较从变频器Y1或Y2输出到PLC 的X12或X13,进行加减乘除逻辑运于闲置状态。
系统工作时二台运行,一台备用。
在此情况下,运行与备用的水泵每星期算后,将得到的输出信号去控制KM1—KM6的通断,通过PLC与变频器的调节,达到恒压供水的目的。
控制要求如下。
(1)共有三台水泵,按设计要求,水泵的配置必须充分考虑供水余量,因此,在多台水泵供水的情况下,必然存在有的水泵长期处轮换一次,如图2所示。
(2)用水高峰时,一台工频全速运行,一台变频运行;用水低谷时,只有一台变频运行。
(3)三台水泵分别由电动机M1、M2、M3拖动。
而三台电动机又分别由变频接触器KM1、KM3、KM5和工频接触器KM2、KM4、KM6控制。
(4)变频器的启动,在自动状态下,PLC的X0接通、变频接触器KM闭合。
PLC的Y0输出到变频器FWD正传启动。
(5)变频器输出频率与反馈电压信号CCI成反比,既反馈信号低,变频速度高。
信号高则反之。
(6)变频器的速度及变频的切换由供水网远传压力表W2来控制,最终控制M1、M2、M3。
(7)水泵投入工频运行时,电动机的过载由热继电器FR1、FR2、FR3保护,手动复位,并有报警信号。
设计论文题目:利用PLC、变频器设计中央空调节能改造系统设计时间:~系别:电子电气工程系设计班级小组:电气083班(第一组)指导教师:设计学生:摘要作为现代使人生活舒适的家用电器,空调可以说与人们的生活紧密相关。
在现代社会中,它已像冰箱、电视一样,成为人类不可缺少的生活电器。
①经济节能:每个区间末端风机盘管可自行调节温度,区间无人时可关闭,系统根据实际负荷做自动化运行,开机计费,不开机不计费,有效节约能源和运行费用。
②环保:主机采用水源热泵型机组,电制冷,没有燃烧过程,避免了排污;整个系统为密闭式管路系统,可避免霉菌灰尘等杂质对系统的污染,使环境清新优美,特别适于高档别墅、高级公寓与写字楼的使用。
③节约空间:主机体积小巧,不设机房,无需占用设备层,减少公用设施和土建投资,室内末端暗藏在吊顶内,极易配合屋内装修。
④个性化:中央空调系统以区间为单元,满足用户不同区间需求,室内末端安装采用暗藏方式,不影响室内的审美观,不占据室内空间,适应用户的个性化需求。
⑤简化管理:于采用不同区间单独控制系统为用户所有,产权关系明确,可简化空调设施管理。
⑥提升档次:中央空调主机可以避免破坏楼体的整体外观,使用户充分享受高档综合环境的同时,提升产品质量及量贩档次。
⑦投资方便:可根据量贩发展情况,分期分批投资添置空调系统,同时量贩档次提升,因此资金周转快,有效地利用资金更进一步开发。
而可编程控制器PLC是根据顺序逻辑控制的需要发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。
它具有可靠性高,操作灵活,拓展型号等优点,不仅能满足设计系统的精度,还可以降低能耗,节约能源,减小运行费用。
再加上变频器的使用,把380V的交流变成直流再变成频率可调的交流电,实现电机的无级调速,比较省电,比直流调速维护方便。
本论文就是在己有的通用变频器的基础上,采用PLC对电机进行控制,通过合理的选择和设计,对中央空调系统进行变频调速,通过调速来改变耗能大小,提高了资源的利用率,达到理想的控制效果。
《基于PLC的变频调速电梯系统设计》篇一一、引言随着科技的不断发展,电梯的控制系统日益向着数字化、智能化的方向发展。
基于PLC(可编程逻辑控制器)的变频调速电梯系统,是当前电梯行业广泛采用的一种高效、可靠的电梯控制系统。
本文将详细阐述基于PLC的变频调速电梯系统的设计原理、系统构成、工作原理及其应用。
二、系统设计原理基于PLC的变频调速电梯系统设计主要遵循可靠性、可维护性、经济性及适用性等原则。
该系统通过PLC控制变频器,实现对电梯的精确调速,提高了电梯的舒适度和安全性。
1. 精确调速:通过变频器对电机进行精确控制,使电梯运行更加平稳,减少震动和噪音。
2. 节能降耗:根据电梯的实际运行需求,自动调整电机运行速度,实现节能降耗。
3. 保护功能:具备过载、过流、过压等保护功能,确保电梯运行安全。
三、系统构成基于PLC的变频调速电梯系统主要由以下部分构成:1. PLC控制器:作为系统的核心,负责接收电梯的指令信号,控制变频器的输出,实现对电机的精确控制。
2. 变频器:将电源的交流电转换为直流电,再通过逆变器将直流电转换为电机所需的交流电,实现对电机的调速。
3. 电机:作为电梯的驱动装置,负责将电能转换为机械能,驱动电梯的运行。
4. 传感器:包括速度传感器、位置传感器等,负责实时监测电梯的运行状态,为PLC控制器提供反馈信号。
5. 人机界面:用于显示电梯的运行状态、故障信息等,方便用户操作和维修。
四、工作原理基于PLC的变频调速电梯系统的工作原理如下:1. 用户通过按钮或呼叫系统发出指令,请求电梯运行。
2. PLC控制器接收指令信号,根据电梯的实际运行状态和需求,控制变频器的输出,调节电机的运行速度。
3. 电机根据变频器的指令,驱动电梯运行。
4. 传感器实时监测电梯的运行状态和位置,将信息反馈给PLC控制器。
5. PLC控制器根据反馈信号,调整变频器的输出,确保电梯运行的稳定性和舒适性。
6. 如遇故障或异常情况,系统将自动启动保护功能,确保电梯的安全运行。
PLC和变频器应用设计摘要随着社会经济的发展和科学技术水平的提高,工业全自动化成为必然的发展趋势。
工业全自动化洗衣机的产生极大的方便了企业的生产。
国产工业洗衣机经过几年的平稳发展,无论在质量上还是功能上都和世界领先水平同步。
纵观洗衣机市场,高效节能、省水、省电、环保型洗衣机一直在市场上占主导地位。
根据工业全自动洗衣机的工作原理,利用可编程控制器和变频器实现控制。
PLC的优点是:可靠性高,耗电少,适应性强,运行速度快,寿命长等。
变频器的优点是高效、节能等,为了进一步提高工业洗衣机的功能和性能,避免传统控制的一些弊端,就提出了用PLC和变频器来控制工业洗衣机这个课题。
该论文就怎样利用PLC和变频器来控制工业洗衣机进行了调查,对其中软件设计、硬件设计等问题进行了分析和研究,实现了工业洗衣机的正常运行和强制性停止功能。
关键词工业洗衣机,可编程控制器,变频器控制1 绪论1.1 课题背景洗衣机是人们日常生活中常见的一种家电,已经成为人们生活中不可缺少的家用电器,在工业生产中的应用也十分广泛,本课题在于对工业用洗衣机的研究。
工业用洗衣机适用于宾馆、饭店、医院、学校、工厂等领域,满足大容量的洗衣要求。
但是传统的基于继电器的控制,已经不能满足人们对洗衣机的自动化程度的要求了,必须借助于自动化技术的发展。
工业洗衣机洗涤与脱水时的转速相差很大,通常使用变极电动机或数台一般电动机用离合器切换运转,由于负载惯性很大,为了获得很大启动转矩特性要采用较大的电阻的电动机,减速时需制动装置。
由于工业洗衣机电机为直接启动或Y/Δ启动,启动电流等于3~7倍额定电流,这样会对机电设备和供电电网造成严重的损坏,而且会对电网容量要求过高,启动时产生大的电流和震动对设备的使用寿命极为不利。
鉴于以上问题,采用PLC和变频器对工业洗衣机进行改造,PLC与人机界面的实时数据交换功能,从根本上解决设备控制线路繁锁、故障点多、操作复杂等一系列问题,有效的提高设备生产效率与设备性能。
用变频器控制电动机即可实现一台电动机从低速到高速大范围调速而且装置可做很小,控制性和操作性都得到很大提高,平衡了过程中洗衣桶的转速,缩短了工作周期时间。
1.2 本课题所做的工作本课题以企业对工业洗衣机的实际需求为例,综合应用了相关的专业知识研究了PLC和变频器对工业洗衣机控制系统的设计与实现,本文所做的工作主要有:①综合分析了控制系统的设计要求;②分析了工业洗衣机控制系统中被广泛应用的变频调速原理及PLC的控制;③介绍了PLC和变频器等主要设备;④重点设计了工业洗衣机控制系统的硬件电路,其中重点设计并论述了PLC 控制电路的设计思路并给出了设计图及PLC和变频器的外部端子连接;⑤重点设计了工业洗衣机控制系统各部分的软件,其中利用RSLogix5000设计出了系统人机界面程序,并给出了系统关键梯形图程序。
2 工业洗衣机概述工业用洗衣机是指额定洗涤容量大于6kg,应用于专业洗涤部门及服务行业使用的洗衣机。
目前工业用洗衣机的主要结构是滚筒式。
近年来在家用全自动洗衣机大力推广的影响下,大型工业用洗衣机也从原来的继电器控制方式逐步进入全自动控制时代。
大型工业用洗衣机在全国各医院、酒店宾馆及大型企业应用广泛。
2.1 工业洗衣机发展史1874年,“手洗时代”受到了前所未有的挑战,有人发明了木制手摇洗衣机,发明者是美国人比尔·布莱克斯。
布莱克斯的洗衣机构造极为简单,是在木筒里装上6块叶片,用手柄和齿轮传动,使衣服在筒内翻转,从而达到“净衣”的目的。
这套装置的问世,让那些为提高生活效率而冥思苦想的人士大受启发,洗衣机的改进过程开始大大加快。
1880年,美国又出现了蒸气洗衣机,蒸气动力开始取代人力。
之后,水力洗衣机、内燃机洗衣机也相继出现。
到1911年,美国试制成功世界上第一台电动洗衣机。
电动洗衣机的问世,标志着人类家务劳动自动化的开端。
电动洗衣机几经完善,在1922年迎来一种崭新的洗衣方式“搅拌式”。
搅拌式洗衣机由美国玛依塔格公司研制成功。
这种洗衣机是在筒中心装上一个立轴,在立轴下端装有搅拌翼,电动机带动立轴,进行周期性的正反摆动,使衣物和水流不断翻滚,相互摩擦,以此涤荡污垢。
搅拌式洗衣机结构科学合理,受到人们的普遍欢迎。
不过10年之后,美国本德克斯航空公司宣布,他们研制成功第一台前装式滚筒洗衣机,洗涤、漂洗、脱水在同一个滚筒内完成。
这意味着电动洗衣机的型式跃上一个新台阶,朝自动化又前进了一大步!直至今日,滚筒式洗衣机在欧美国家仍得到广泛应用[2]。
2.2工业洗衣机的工作原理及结构工业洗衣机一般采用滚筒式的洗衣方式。
由电机通过皮带变速带动内胆转动,衣物在滚筒中不断地被提升摔下,再提升再摔下,做重复运动,加上洗衣粉和水的共同作用使衣物洗涤干净。
因为衣物在洗涤过程中不缠绕、洗涤均匀、磨损小,所以就连羊绒、羊毛、真丝衣物也能在机内洗涤。
工业洗衣机主要由外筒、转筒、传动部分、电器控制柜、左右密封罩、管路仪表及放水阀等部件组成。
转筒采用优质不锈钢板制成,有双舱室结构和单舱室结构两种,运转平稳,取衣方便。
外筒的轴承座上设计有密封装置,其密封可用压紧圈调节。
洗衣机外壳上装有安全栓,用以支撑打开后的转筒门。
转筒的正反转由电器部分自动控制。
放水阀采用手提式,放水速度快。
2.3 工业洗衣机工艺流程及动力要求整个洗涤过程分为进水、洗涤、排水、脱水四个部分。
起动时开始进水,水位到达高水位时停止进水,并开始洗涤正转。
洗涤正转15s,暂停3s,洗涤反转15s,暂停3s为一次小循环,若小循环不足3次,则返回洗涤正转,若循环达3次,则开始排水。
水位下降到低水位时开始脱水并继续排水。
脱水20s即完成一次大循环。
大循环不足3次,则返回进水,进行下一次大循环。
若完成3次大循环,则进行洗完报警。
报警后10s结束全部过程,自动停机。
对于工业洗衣机滚筒来说:洗涤和漂洗过程是频繁的正、反转运行过程,均布排水过程是排除滚筒内洗涤用水并将衣物均匀分布在滚筒周围的平衡过程,脱水是高速运转甩出衣物内含水的过程,干燥则是长时间的低速运转过程。
为了确定各过程的运行时间和转速,需要通过安装在洗衣机内部的各种传感器检测衣物布质、布量、洗涤方式、混浊度等,再经过模糊决策的方法布质布量洗涤方式浑浊程度电机速度洗涤时间进水量洗涤剂量模糊决策得出最佳的洗涤策略。
如图2.1所示。
图2.1洗涤策略图3 变频器简介实现变频调速的装置称为变频器。
变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器等部分组成。
变频器主要用于交流电动机(异步电机或同步电机)转速的调节,是公认的交流电动机最理想、最有前途的调速方案,除了具有卓越的调速性能之外,变频器还有显著的节能作用,是企业技术改造和产品更新换代的理想调速装置。
自上世纪80后代被引进中国以来,变频器作为节能应用与速度工艺控制中越来越重要的自动化设备,得到了快速发展和广泛的应用。
3.1 变频器的基本原理及特点3.1.1 变频调速原理变频调速器将电网中的三相交流电整流成直流电后,通过逆变器再将直流电逆变成电压可调、频率可调的三相交流电驱动异步电动机,实现调速和节电。
三相异步电机转速为:211(1)60(1)/n n s f s p =−=− 式(3.1) 上式中:n 2—转子转速,r /min ;n 1—同步转速;p —极对数;f 1—电源频率,Hz ;s —转差率。
由式(3.1)可知:转速可以通过改变电源频率、绕组的极对数或转差率等进行改变,一般p 、s 不变,即21n f ∝。
3.1.2 变频器分类及特点从结构上看变频器可分为交-直-交、交-交变频器,电压源型和电流源型逆变器。
①交-直-交变压变频器交-直-交变压变频器先将交流电源通过整流器变换成直流,在通过逆变器变换成可控频率和电压的交流,如图3.1所示。
恒压恒频变压变频图3.1 交-直-交(间接)变压变频基本结构由于这类变压变频器在恒频交流电源和变频交流输出之间有一个中间直流环节,所以又称为间接式的变压变频器。
具体的整流和逆变电路种类很多,当前应用最广泛的是由二极管组成的不可控整流桥和由功率开关器件(P-MOSFET,IGBT等)组成的脉宽调制(PWM)逆变器,简称PWM变压变频器如图3.2所示。
变压变频PWM变压变频器之所以如此广泛,由于它具有如下的一系列优点:1)在主电路和逆变两个单元中,只有逆变时可控,通过它同时调节电压和频率,结构简单。
采用全控型的功率开关器件,只通过驱动电压脉冲进行控制,电路也简单效率高。
2)输出电压波形是一系列的PWM波但由于采用了恰当的PWM控制r 技术,正弦基波的比重较大,影响电动机运行的低次谐波受到很大抑制,因而转矩脉动小,提高了系统的调速范围和稳态性能。
3)逆变器同时实现调压调频,动态响应不受中间直流环节滤波器参数的影响,系统的动态性能也得到提高。
4)采用不可控的二极管整流,电源侧功率因素较高,且不受逆变输出电压大小的影响。
PWM 变压变频器常用的功率开关器件有P-MOSFET 、IGBT 、GTO 和替代GTO 的电压控制器件如IGCT 、IEGT 等。
受到开关器件额定电压和电流的限制,对于特大容量电动机的变压变频调速仍只好采用半控型的晶闸管(SCR )并用可控整流器调压和六拍逆变器调频的交-直-交变压变频器如图3.3所示。
恒压恒频变压变频 SCR 六拍逆变器 ②交-交变压变频器交-交变频器在结构上没有明显的中间直流环节(或者叫“中间直流储能环节”或“中间滤波环节”),来自电网的交流电被直接变换为电压、频率均可调的交流电,所以称为直接式变频器。
③电压源型和电流源型逆变器在交-直-交变压变频器中,按照中间直流环节直流电源性质的不同,逆变器可以分成电压源型和电流源型两类,两种类型的区分在于直流环节采用怎样的滤波器。
如图3.4绘出了电压源型和电流源型逆变器的示意图。
-(a)(b)1)电压源型逆变器(V oltage Source Inverter ,VSI ),直流环节采用大电流滤波,因而直流电压波形比较平直,在理想情况下时一个内阻为零的恒压图3.3 可控整流器调压、六拍逆变器调频的交-直-交变压变频(a )电压源逆变器 (b )电流源型逆变器图3.4 电压源型和电流源型逆变器示意图源,输出交流电压时为矩形波或阶梯波[14]。
2)电流源型逆变器(Current Source Inverter,CSI),简称电流源型逆变器直流环节采用大电感滤波,直流电流波形比较平直,相当一个恒流源,输出交流电流时为矩形波或阶梯波[7] [9]。
3.2 变频器应用前景变频器调速大大的节省了能耗,中国是能耗大国,能源利用率很低而能源储备不足。
在电力消耗中,60%~70%为动力电,而在电动机带变频控制的比重占有非常少,是电力能耗的重点,因此国家大力提倡节能措施,并着重推荐变频调速技术。