高一下学期数学(理)期中试卷(含答案)
- 格式:doc
- 大小:193.33 KB
- 文档页数:13
2016-2017学年某某省某某高一(下)期中数学试卷一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B.C. D.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 29.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是.(把你认为正确命题的序号都填上)17.如图是一个空间几何体的三视图,则该几何体为.18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为.22.一个空间几何体的三视图如图所示,该几何体的表面积为.2016-2017学年某某省某某实验中学高一(下)期中数学试卷参考答案与试题解析一、选择题(共11小题,每小题3分,满分33分)1.一图形的投影是一条线段,这个图形不可能是()A.线段 B.直线 C.圆D.梯形【考点】LA:平行投影及平行投影作图法.【分析】本题考查投影的概念,由于图形的投影是一个线段,根据平行投影与中心投影的规则对选项中几何体的投影情况进行分析找出正确选项.【解答】解:线段、圆、梯形都是平面图形,且在有限X围内,投影都可能为线段.长方体是三维空间图形,其投影不可能是线段;直线的投影,只能是直线或点.故选:B.【点评】本题考查平行投影及平行投影作图法,解题的关键是熟练掌握并理解投影的规则,由投影的规则对选项作出判断,得出正确选项.2.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A. B. C. D.【考点】L7:简单空间图形的三视图.【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【解答】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.3.如果两直线a∥b,且a∥平面α,则b与α的位置关系是()A.相交 B.b∥α或b⊂αC.b⊂αD.b∥α【考点】LP:空间中直线与平面之间的位置关系.【分析】若两直线a∥b,且a∥平面α,根据线面平行的性质定理及线面平行的判定定理,分b⊂α和b⊄α两种情况讨论,可得b与α的位置关系【解答】解:若a∥平面α,a⊂β,α∩β=b则直线a∥b,故两直线a∥b,且a∥平面α,则可能b⊂α若b⊄α,则由a∥平面α,令a⊂β,α∩β=c则直线a∥c,结合a∥b,可得b∥c,由线面平行的判定定理可得b∥α故两直线a∥b,且a∥平面α,则可能b∥α故选:B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,熟练掌握空间直线与平面平行的判定定理和性质定理是解答的关键.4.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交 D.任意一条直线不相交【考点】LT:直线与平面平行的性质.【分析】根据直线与平面平行的定义可知直线与平面无交点,从而直线与平面内任意直线都无交点,从而得到结论.【解答】解:根据线面平行的定义可知直线与平面无交点∵直线a∥平面α,∴直线a与平面α没有公共点从而直线a与平面α内任意一直线都没有公共点,则不相交故选:D【点评】本题主要考查了直线与平面平行的性质,以及直线与平面平行的定义,同时考查了推理能力,属于基础题.5.将正三棱柱截去三个角(如图1所示A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为()A.B.C.D.【考点】L7:简单空间图形的三视图.【分析】图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,易得选项.【解答】解:解题时在图2的右边放扇墙(心中有墙),图2所示方向的侧视图,由于平面AED仍在平面HEDG上,故侧视图中仍然看到左侧的一条垂直下边线段的线段,可得答案A.故选A.【点评】本题考查空间几何体的三视图,考查空间想象能力,是基础题.6.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定是等腰三角形【考点】LD:斜二测法画直观图.【分析】根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,进而得到答案.【解答】解:根据斜二侧画法画水平放置的平面图形时的画法原则,可得:等腰三角形的直观图不再是等腰三角形,梯形的直观图还是梯形,正方形的直观图是平行四边形,正三角形的直观图是一个钝角三角形,故选:C【点评】本题考查的知识点是斜二侧画法,熟练掌握斜二侧画法的作图步骤及实质是解答的关键.7.如图所示,三视图的几何体是()A.六棱台B.六棱柱C.六棱锥D.六边形【考点】L7:简单空间图形的三视图.【分析】根据三视图的形状判断.【解答】解:由俯视图可知,底面为六边形,又正视图和侧视图j均为三角形,∴该几何体为六棱锥.故选:C【点评】本题考查了常见几何体的三视图,属于基础题.8.已知△ABC的平面直观图△A′B′C′,是边长为a的正三角形,那么原△ABC的面积为()A. a 2B. a 2C. a 2D. a 2【考点】LB:平面图形的直观图.【分析】根据斜二测画法原理作出△ABC的平面图,求出三角形的高即可得出三角形的面积.【解答】解:如图(1)所示的三角形A′B′C′为直观图,取B′C′所在的直线为x′轴,B′C′的中点为O′,且过O′与x′轴成45°的直线为y′轴,过A′点作M′A′∥O′y′,交x′轴于点M′,则在直角三角形A′M′O′中,O′A′=a,∠A′M′O′=45°,∴M′O′=O′A′=a,∴A′M′=a.在xOy坐标平面内,在x轴上取点B和C,使OB=OC=,又取OM=a,过点M作x轴的垂线,且在该直线上截取MA=a,连结AB,AC,则△ABC为直观图所对应的平面图形.显然,S △ABC=BC•MA=a•a= a 2.故选:C.【点评】本题考查了平面图形的直观图,斜二测画法原理,属于中档题.9.等腰三角形ABC的直观图是()A.①② B.②③ C.②④ D.③④【考点】LB:平面图形的直观图.【分析】根据斜二测画法,讨论∠x′O′y′=45°和∠x′O′y′=135°时,得出等腰三角形的直观图即可.【解答】解:由直观图画法可知,当∠x′O′y′=45°时,等腰三角形的直观图是④;当∠x′O′y′=135°时,等腰三角形的直观图是③,综上,等腰三角形ABC的直观图可能是③④.故选:D.【点评】本题考查了斜二测法画直观图的应用问题,也考查作图与识图能力,是基础题目.10.两条相交直线的平行投影是()A.两条相交直线 B.一条直线C.一条折线 D.两条相交直线或一条直线【考点】NE:平行投影.【分析】利用平行投影知识,判断选项即可.【解答】解:当两条直线所在平面与投影面垂直时,投影是一条直线,所在平面与投影面不垂直时,是两条相交直线.故选:D.【点评】本题考查空间平面与平面的位置关系,直线的投影,是基础题.11.下列命题中正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点【考点】LA:平行投影及平行投影作图法.【分析】利用平行投影的定义,确定图形平行投影的结论,即可得出结论.【解答】解:矩形的平行投影可以是线段、矩形或平行四边形,∴A错.梯形的平行投影是梯形或线段,∴B不对;平行投影把平行直线投射成平行直线或一条直线,把相交直线投射成相交直线或一条直线,把线段中点投射成投影的中点,∴C错,D对,故选:D.【点评】本题考查平行投影的定义,考查学生分析解决问题的能力,正确理解平行投影的定义是关键.二、(填空题)12.不重合的三个平面把空间分成n部分,则n的可能值为4,6,7或8 .【考点】LJ:平面的基本性质及推论.【分析】分别讨论三个平面的位置关系,根据它们位置关系的不同,确定平面把空间分成的部分数目.【解答】解:若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分;若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分;故n等于4,6,7或8.故答案为4,6,7或8.【点评】本题考查平面的基本性质及推论,要讨论三个平面不同的位置关系.考查学生的空间想象能力.13.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,求原△ABC的面积.【考点】LB:平面图形的直观图.【分析】由原图和直观图面积之间的关系=,求出直观图三角形的面积,再求原图的面积即可.【解答】解:直观图△A′B′C′是边长为a的正三角形,故面积为,而原图和直观图面积之间的关系=,那么原△ABC的面积为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.14.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为.【考点】LH:多面体和旋转体表面上的最短距离问题.【分析】分类讨论,若把面ABA1B1和面B1C1BC展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度.若把把面ABA1B1和面A1B1C1展开在同一个平面内,构造直角三角形,由勾股定理得 EF 的长度若把把面ACC1A1和面A1B1C1展开在同一个面内,构造直角三角形,由勾股定理得 EF 的长度.以上求出的EF 的长度的最小值即为所求.【解答】解:直三棱柱底面为等腰直角三角形,①若把面ABA1B1和面B1C1CB展开在同一个平面内,线段EF就在直角三角形A1EF中,由勾股定理得EF===.②若把把面ABA1B1和面A1B1C1展开在同一个平面内,设BB1的中点为G,在直角三角形EFG中,由勾股定理得EF===.③若把把面ACC1A1和面A1B1C1展开在同一个面内,过F作与CC1行的直线,过E作与AC平行的直线,所作的两线交与点H,则EF就在直角三角形EFH中,由勾股定理得EF===,综上,从E到F两点的最短路径的长度为,故答案为:.【点评】本题考查把两个平面展开在同一个平面内的方法,利用勾股定理求线段的长度,体现了分类讨论的数学思想,属于中档题.15.如果一个几何体的俯视图中有圆,则这个几何体中可能有圆柱、圆台、圆锥、球.【考点】L!:由三视图求面积、体积.【分析】运用空间想象力并联系所学过的几何体列举得答案.【解答】解:一个几何体的俯视图中有圆,则这个几何体中可能有:圆柱、圆台、圆锥、球.故答案为:圆柱、圆台、圆锥、球.【点评】本题考查由三视图确定几何体的形状,考查学生的空间想象能力和思维能力,是基础题.16.已知两条不同直线m、l,两个不同平面α、β,给出下列命题:①若l垂直于α内的两条相交直线,则l⊥α;②若l∥α,则l平行于α内的所有直线;③若m⊂α,l⊂β且l⊥m,则α⊥β;④若l⊂β,l⊥α,则α⊥β;⑤若m⊂α,l⊂β且α∥β,则m∥l.其中正确命题的序号是①④.(把你认为正确命题的序号都填上)【考点】LP:空间中直线与平面之间的位置关系;2K:命题的真假判断与应用.【分析】对于①,由直线与平面垂直的判定定理能够判断真假;对于②,由直线平行于平面的性质知l与α内的直线平行或异面;对于③,由平面与平面垂直的判定定理知α与β不一定垂直;对于④,由平面与平面垂直的判定定理能够判断真假;对于⑤,由平面与平面平行的性质知m∥l或m与l异面.【解答】解:①l垂直于α内的两条相交直线,由直线与平面垂直的判定定理知l⊥α,故①正确;②若l∥α,则l与α内的直线平行或异面,故②不正确;③若m⊂α,l⊂β且l⊥m,则α与β不一定垂直.故③不正确;④若l⊂β,l⊥α,则由平面与平面垂直的判定定理知α⊥β,故④正确;⑤若m⊂α,l⊂β且α∥β,则m∥l或m与l异面,故⑤不正确.故答案为:①④.【点评】本题考查直线与直线、直线与平面、平面与平面间的位置关系的判断,是基础题.解题时要认真审题,注意空间思维能力的培养.17.如图是一个空间几何体的三视图,则该几何体为六棱台.【考点】L!:由三视图求面积、体积.【分析】根据正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台.【解答】解:正视图、侧视图得到几何体为台体,由俯视图得到的图形六棱台,故答案为:六棱台【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查18.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x轴和正三角形的一边平行,则这个正三角形的直观图的面积是.【考点】LB:平面图形的直观图.【分析】根据斜二测画法与平面直观图的关系进行求解即可.【解答】解:如图△A'B'C'是边长为2的正三角形ABC的直观图,则A'B'=2,C'D'为正三角形ABC的高CD的一半,即C'D'==,则高C'E=C'D'sin45°=,∴三角形△A'B'C'的面积为.故答案为:.【点评】本题主要考查斜二测画法的应用,要求熟练掌握斜二测对应边长的对应关系,比较基础.19.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是①②③④.【考点】L3:棱锥的结构特征.【分析】根据题意画出图形,然后对应选项一一判定即可.【解答】解:①若PA⊥BC,PB⊥AC,因为PH⊥底面ABC,所以AH⊥BC,同理BH⊥AC,可得H 是△ABC的垂心,正确.②若PA,PB,PC两两互相垂直,容易推出AH⊥BC,同理BH⊥AC,可得H是△ABC的垂心,正确.③若∠ABC=90°,H是AC的中点,容易推出△PHA≌△PHB≌△PHC,则PA=PB=PC;正确.设三棱锥P﹣ABC的顶点P在平面ABC上的射影是H,给出以下命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,易得AH=BH=CH,则H是△ABC的外心,正确.故答案为:①②③④【点评】本题考查棱锥的结构特征,考查学生发现问题解决问题的能力,三垂线定理的应用,是中档题.20.等腰梯形ABCD中,上底CD=1,腰,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.【考点】LD:斜二测法画直观图.【分析】根据斜二测画法的规则分别求出等腰梯形的直观图的上底和下底,以及高即可求出面积.【解答】解:在等腰梯形ABCD中,上底CD=1,腰,下底AB=3,∴高DE=1,根据斜二测画法的规则可知,A'B'=AB=3,D'C'=DC=1,O'D'=,直观图中的高D'F=O'D'sin45°═,∴直观图A′B′C′D′的面积为,故答案为:;【点评】本题主要考查斜二测画法的规则,注意平行于坐标轴的直线平行性不变,平行x轴的线段长度不变,平行于y轴的长度减半.21.如图已知梯形ABCD的直观图A′B′C′D′的面积为10,则梯形ABCD的面积为20.【考点】LB:平面图形的直观图.【分析】根据平面图形与它的直观图的面积比为定值,列出方程即可求出结果.【解答】解:设梯形ABCD的面积为S,直观图A′B′C′D′的面积为S′=10,则=sin45°=,解得S=2S′=20.答案:20.【点评】本题考查了平面图形的面积与它对应直观图的面积的应用问题,是基础题目.22.一个空间几何体的三视图如图所示,该几何体的表面积为152 .【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,求出棱柱的底面面积,底面周长及棱柱的高,代入可得答案.【解答】解:由已知中的三视图可知:该几何体是以侧视图为底面的三棱柱,底面面积S=×6×4=12,底面周长c=6+2=16,高h=8,故这个零件的表面积为2S+ch=152,故答案为:152【点评】本题考查的知识点是由三视图求表面积,其中根据已知分析出几何体的形状是解答的关键.。
-安徽省安庆市望江中学高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(•陕西)设0<a<b,则下列不等式中正确的是()A.B.C.D.考点:基本不等式.专题:计算题.分析:令a=1,b=4代入选项中,分别求得 a ,,,b的值,进而可比较他们的大小解答:解:令a=1,b=4则=2,=,∵1<2<<4∴.故选B.点评:本题主要考查了不等式的基本性质.对于选择题可以用特殊值法,可以简便解题过程.2.(5分)(•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0} B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}考点:交集及其运算.专题:计算题.分析:根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.解答:解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B点评:本题考查的知识点是交集及其运算,其中根据已知条件求出集合A,B是解答本题的关键.3.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.考点:余弦定理;等比数列.专题:计算题.分析:根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解答:解:△ABC中,a、b、c成等比数列,且c=2a,则b=a ,=,故选B.点评:本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.4.(5分)等差数列{a n}的公差d<0,且a2•a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n﹣2(n∈N*)B.a n=2n+4(n∈N*)C.a n=﹣2n+12(n∈N*)D.a n=﹣2n+10(n∈N*)考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由题意列式求出公差,然后代入等差数列的通项公式求解.解答:解:由a2•a4=12,a2+a4=8,且d<0,解得a2=6,a4=2.所以d=.则a n=a2+(n﹣2)d=6﹣2(n﹣2)=﹣2n+10.故选D.点评:本题考查了等差数列的通项公式,如果给出了等差数列公差和第m项a m,则a n=a m+(n﹣m)d,是基础题.5.(5分)当x>1时,不等式x+恒成立,则实数a的取值范围是()A.(﹣∞,2] B.[2,+∞)C.[3,+∞)D.(﹣∞,3]考点:基本不等式.专题:计算题.分析:由题意当x>1时,不等式x+恒成立,由于x+的最小值等于3,可得a≤3,从而求得答案.解答:解:∵当x>1时,不等式x+恒成立,∴a≤x+对一切非零实数x>1均成立.由于x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,故x+的最小值等于3,∴a≤3,则实数a的取值范围是(﹣∞,3].故选D.点评:本题考查查基本不等式的应用以及函数的恒成立问题,求出x+的最小值是解题的关键.6.(5分)等差数列{a n}满足a42+a72+2a4a7=9,则其前10项之和为()A.﹣9 B.﹣15 C.15 D.±15考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得=9,由此求得a4+a7的值,再根据其前10项之和为S10==,运算求得结果.解答:解:∵等差数列{an}满足a42+a72+2a4a7=9,则有=9,∴a4+a7=±3.故其前10项之和为S10===±15,故选D.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于基础题.7.(5分)△ABC中,BC=2,角B=,当△ABC 的面积等于时,sinC=()A.B.C.D.考点:解三角形.专题:计算题.分析:先利用三角形面积公式求得AB,进而利用余弦定理求得AC的值,最后利用正弦定理求得sinC.解答:解:三角形面积为:sinB•BC•BA=××2×AB=∴AB=1由余弦定理可知:AC==∴由正弦定理可知∴sinC=•AB=故选B点评:本题主要考查了正弦定理和余弦定理的运用.在解三角形问题中,正弦定理和余弦定理是常用的方法,应强化训练和记忆.8.(5分)在△ABC中,若lgsinA﹣lgcosB﹣lgsinC=lg2,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形考点:三角函数中的恒等变换应用.专题:计算题.分析:利用对数的运算法则可求得=2,利用正弦定理求得cosB,同时根据余弦定理求得cosB的表达式进而建立等式,整理求得b=c,判断出三角形为等腰三角形.解答:解:∵lgsinA﹣lgcosB﹣lgsinC=lg2,∴=2,由正弦定理可知=∴=∴cosB=,∴cosB==,整理得c=b,∴△ABC的形状是等腰三角形.故选D点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用正弦定理和余弦定理完成了边角问题的互化.9.(5分)对于任意a∈[﹣1,1],函数f (x)=x2+(a﹣4)x+4﹣2a的值总大于0,则x的取值范围是()A.{x|1<x<3} B.{x|x<1或x>3} C.{x|1<x<2} D.{x|x<1或x>2}考点:二次函数在闭区间上的最值.专题:计算题.分析:把二次函数的恒成立问题转化为y=a(x﹣2)+x2﹣4x+4>0在a∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.解答:解:原题可转化为关于a的一次函数y=a(x﹣2)+x2﹣4x+4>0在a∈[﹣1,1]上恒成立,只需⇒⇒x<1或x>3.故选B.点评:本题的做题方法的好处在于避免了讨论二次函数的对称轴和变量间的大小关系,而一次函数在闭区间上的最值一定在端点处取得,所以就把解题过程简单化了.10.(5分)(•山东)设x,y 满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为()A.B.C.D.4考点:基本不等式;二元一次不等式(组)与平面区域.专题:压轴题.分析:已知2a+3b=6,求的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.解答:解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=,故选A.点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上).11.(5分)(•咸安区模拟)数列{a n}中,S n是前n项和,若a1=1,a n+1=(n≥1,n∈N),则a n =.考点:数列递推式.专题:计算题.分析:由题设条件可知a1=1,,化简可得,4a n=3a n+1,即,由此可知答案.解答:解:a1=1,,当n≥2时,S n =3a n+1,S n﹣1=3a n,∴a n=S n﹣S n﹣1=3a n+1﹣3a n,∴4a n=3a n+1,∴,∴a n=.故答案:.点评:本题考查数列的性质和应用,解题时要注意公式的灵活运用.12.(5分)(•铁岭模拟)在△ABC中,角A,B,C所对应的边分别为a,b,c,若a=csinA,则的最大值为.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:根据正弦定理及a=csinA求得C.进而根据勾股定理可知c2=a2+b2,对化简整理得1+根据基本不等式得到的范围,进而得出答案.解答:解:a=csinA,得到==sinA.所以sinC=1,即C=90°.所以c2=a2+b2.==1+=1+=1+≤1+=2所以得最大值为故答案为.点评:本题主要考查正弦定理和基本不等式在解三角形中的应用.13.(5分)11月12日广州亚运会上举行升旗仪式.如图,在坡度为15°的观礼台上,某一列座位所在直线AB与旗杆所在直线MN共面,在该列的第一个座位A和最后一个座位B测得旗杆顶端N的仰角分别为60°和30°,且座位A、B 的距离为米,则旗杆的高度为30 米.考点:解三角形的实际应用.专题:计算题.分析:先画出示意图,根据题意可求得∠NBA和∠BAN,则∠BNA可求,然后利用正弦定理求得AN,最后在Rt△AMN中利用MN=AN•sin∠NAM求得答案.解答:解:如图所示,依题意可知∠NBA=45°,∠BAN=180°﹣60°﹣15°=105°∴∠BNA=180°﹣45°﹣105°=30°由正弦定理可知CEsin∠EAC=ACsin∠CEA,∴AN==20米∴在Rt△AMN中,MN=AN•sin∠NAM=20×=30米所以:旗杆的高度为30米故答案为:30.点评:本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决.14.(5分)若数列{a n}满足a1,a2﹣a 1,a 3﹣a2,…,a n﹣a n﹣1,…,是首项为1,公比为2的等比数列,那么a n等于2n﹣1 .考点:等比数列的通项公式.专题:等差数列与等比数列.分析:直接把数列a1,a2﹣a1,a3﹣a2,…,a n﹣a n﹣1,…的前n项求和即可得到答案.解答:解:由题意可知,a n=a1+(a2﹣a1)+(a3﹣a 2)+…+(a n﹣a n﹣1)=.故答案为2n﹣1点评:本题考查了等比数列的前n项和公式,考查了学生的灵活变形能力,是基础题.15.(5分)若,已知下列不等式:①a+b<ab;②|a|>|b|;③a<b ;④;⑤a2>b2;⑥2a >2b,其中正确的不等式的序号为①④⑥.考点:不等关系与不等式;命题的真假判断与应用.专题:常规题型.分析:若,则a<0,b<0,且a>b则①a+b为负数,ab为正数;②③⑤赋值来处理;④借助于均值不等式来处理;⑥由于a>b,且y=2x为增函数,则2a>2b解答:解:若,则a<0,b<0,且a>b则①a+b<0,ab>0,故①正确;②令a=﹣2,b=﹣3,则显然,但|a|=2,|b|=3,故②错误;③由②得a>b,故③错;④由于a<0,b<0,故则(当且仅当即a=b时取“=”)又a>b,则,故④正确;⑤由②知,a2<b2,故⑤错;⑥由于a<0,b<0,且a>b,则2a>2b,故⑥正确故答案为①④⑥点评:本题考查不等式的性质,属于基础题.三、解答题(共6小题,满分75分)16.(12分)在△ABC中,角A、B、C所对的边分别是a、b、c,若sin2B+sin2C=sin2A+sinBsinC,且,求△ABC的面积S.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:计算题.分析:由已知条件利用正弦定理可得 b2+c2=a2+bc,再利用余弦定理求出cosA=,故sinA=,由求得,bc=8,由S=求出结果.解答:解:由已知条件利用正弦定理可得 b2+c2=a2+bc,∴bc=b2+c2﹣a2=2bc•cosA,∴cosA=,∴sinA=,由得bc•cosA=4,bc=8.∴S==2.点评:本题主要考查正弦定理、余弦定理,两个向量的数量积的定义,求得cosA=,是解题的关键.17.(12分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?考点:简单线性规划.专题:应用题.分析:先设甲、乙两种产品月产量分别为x、y件,写出约束条件、目标函数,欲求生产收入最大值,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.解答:解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.3x+0.2y由约束条件画出可行域,如图所示的阴影部分由z=0.3x+0.2y可得5z为直线z=0.3x+0.2y在y轴上的截距,截距最大时z最大.结合图象可知,z=0.3x+0.2y在A处取得最大值由可得A(200,100),此时z=80万故安排生产甲、乙两种产品月的产量分别为200,100件可使月收入最大.点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件②由约束条件画出可行域③分析目标函数Z与直线截距之间的关系④使用平移直线法求出最优解⑤还原到现实问题中.18.(12分)(1)已知x <,求函数y=4x﹣2+的最大值(2)已知a>0,b>0,c>0,求证:.考点:综合法与分析法(选修);基本不等式.专题:不等式的解法及应用.分析:(1)化简可得函数y=3﹣(5﹣4x+),而由基本不等式可得5﹣4x+的最小值为2,从而求得函数y=3﹣(5﹣4x+)的最大值.(2)由条件利用基本不等式可得,,,把这三个不等式相加在同时除以2,即可正得不等式成立.解答:解:(1)∵已知x <,函数y=4x﹣2+=4x﹣5++3=3﹣(5﹣4x+),而由基本不等式可得(5﹣4x)+≥2,当且仅当 5﹣4x=,即x=1时,等号成立,故5﹣4x+的最小值为2,故函数y=3﹣(5﹣4x+)的最大值为 3﹣2=1.(2)∵已知a>0,b>0,c>0,∴,,,当且仅当a=b=c时,取等号.把这三个不等式相加可得,∴成立.点评:本题主要考查利用基本不等式求函数的最值,利用基本不等式证明不等式,注意检验等号成立的条件以及不等式的使用条件,属于中档题.19.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*),在数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项公式;(2)记T n=a1b1+a2b2+…+a n b n,求T n.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:(1)由S n=2a n﹣2得:S n﹣1=2a n﹣1﹣2(n≥2),两式相减可得a n=2a n﹣1(n≥2),再求得a1=2,可知数列{a n}是以2为首项,2为公比的等比数列,从而可求a n=2n;点P(b n,b n+1)在直线x﹣y+2=0上,可知b n+1﹣b n=2,又b1=1,从而可求得{b n}的通项公式;(2))T n=1×2+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)×2n①,2T n=1×22+3×23+…+(2n﹣3)×2n+(2n﹣1)×2n+1②,错位相减即可求得T n.解答:解:(1)由S n=2a n﹣2得:S n﹣1=2a n﹣1﹣2(n≥2),两式相减得:a n=2a n﹣2a n﹣1,即=2(n≥2),又a1=2a1﹣2,∴a1=2,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2n.∵点P(b n,b n+1)在直线x﹣y+2=0上,∴b n+1﹣b n=2,∴数列{b n}是等差数列,∵b1=1,∴b n=2n﹣1;(2)T n=1×2+3×22+5×23+…+(2n﹣3)×2n﹣1+(2n﹣1)×2n①∴2T n=1×22+3×23+…+(2n﹣3)×2n+(2n﹣1)×2n+1②①﹣②得:﹣T n=1×2+2(22+23+…+2n)﹣(2n﹣1)×2n+1=2+2×﹣(2n﹣1)×2n+1=2+2×2n+1﹣8﹣(2n﹣1)×2n+1=(3﹣2n)2n+1﹣6,∴T n=(2n﹣3)2n+1+6.点评:本题考查等差数列与等比数列的通项公式,考查等比关系的确定与错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.考点:一元二次不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)直接因式分解后求解不等式的解集;(2)把函数f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分离变量m后利用基本不等式求解m 的取值范围.解答:解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,即(x+2)(x﹣4)<0,解得﹣2<x<4.所以不等式g(x)<0的解集为{x|﹣2<x<4};(2)因为f(x)=x2﹣2x﹣8,当x>2时,f(x)≥(m+2)x﹣m﹣15成立,则x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,即x2﹣4x+7≥m(x﹣1).所以对一切x>2,均有不等式成立.而(当x=3时等号成立).所以实数m的取值范围是(﹣∞,2].点评:本题考查了一元二次不等式的解法,考查了数学转化思想方法,训练了利用基本不等式求函数的最值,是基础题.21.(14分)(•山东)等比数列{a n}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1•a2•a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行 3 2 10第二行 6 4 14第三行9 8 18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)如数列{b n}满足b n=a n+(﹣1)lna n,求数列b n的前n项和s n.考点:等比数列的通项公式;数列的求和.专题:计算题.分析:(Ⅰ)由表格可看出a1,a2,a3分别是2,6,18,由此可求出{a n}的首项和公比,继而可求通项公式(Ⅱ)先写出b n发现b n由一个等比数列、一个等差数列乘(﹣1)n的和构成,故可分组求和.解答:解:(Ⅰ)当a1=3时,不合题意当a1=2时,当且仅当a2=6,a3=18时符合题意当a1=10时,不合题意因此a1=2,a2=6,a3=18,所以q=3,所以a n=2•3n﹣1.(Ⅱ)b n=a n+(﹣1)n lna n=2•3n﹣1+(﹣1)n[(n﹣1)ln3+ln2]=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)n nln3所以s n=2(1+3+…+3n﹣1)+[﹣1+1﹣1+1+…+(﹣1)n](ln2﹣ln3)+[﹣1+2﹣3+4﹣…+(﹣1)n n]ln3 所以当n为偶数时,s n ==当n为奇数时,s n ==综上所述s n =点评:本题考查了等比数列的通项公式,以及数列求和的方法,只要简单数字运算时不出错,问题可解,是个中档题.。
西工大附高2022-2023学年高一下学期期中考试数学试卷及参考答案一、单项选择题:(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,1.复数11iz =+(i 为虚数单位),则z 在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.已知a ,b 为两条不重合的直线,α,β为两个不重合的平面,其中正确的命题为()A.a α∥,b a b α⊂⇒∥B.a α∥,b a b α⇒∥∥C.a α⊄,b α⊂,a b a α⇒∥∥ D.b α⊂,b αββ⇒∥∥3.已知向量(),1a x =,()2,1b =- ,若()()2a b a b +⊥- ,则实数x =()A.2B.12-C.2-或4D.44.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.232+ B.8C.6D.223+5.复数z 满足1z =,则1i z --的最大值为()A.21- B.1C.2D.21+6.已知ABC △中,()0BA BC AC +⋅= ,3ABACABAC+=,则此三角形为()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形7.在《九章算术•商功》中将上、下底面均为正方形的正棱台称为方亭,在方亭1111ABCD A B C D -中,1124AB A B ==,方亭的体积为283,则侧面11ABB A 的面积为()A.32B.7C.22D.3118.正方体1111ABCD A B C D -的棱长为2,E 为1DD 的中点,过点D 作正方体截面使其与平面11A EC 平行,则该截面的面积为()A.23B.26C.46D.43二、多项选择题:(本题共4小题,每小题3分,共12分,在每小题给出的选项中,有多项符合题目要求.全部选对的得3分,部分选对的得1分,有选错的得0分.)9.下列说法中正确的是()A.向量()12,3e =-,213,24e =-⎛⎫ ⎪⎝⎭ 不能作为平面内所有向量的一组基底B.非零向量a ,b ,满足a b > 且a 与b 同向,则a b>C.对于任意向量a ,b,必有a b a b+≤+ D.对于任意向量a 与b,不等式a b a b ⋅≤⋅ 恒成立10.下列命题中的真命题是()A.设1z ,2z 是复数,若120z z -=,则12z z =B.设1z ,2z 是复数,若12z z =,则12z z =C.若z 为复数,则22z z =D.已知m ,n 为实数,1i -(i 为虚数单位)是关于x 的方程20x mx n -+=的一个根,则4m n +=11.在棱长为2的正方体1111ABCD A B C D -中,AC 与BD 交于点O ,则()A.1AD ∥平面1BOC B.三棱锥1C BOC -的体积为23C.三角形1C OB 是锐角三角形D.三棱锥1C ABC -的四个面都是直角三角形12.下列命题中正确的是()A.用一个平面去截棱锥,底面和截面之间的部分叫做棱台B.圆柱形容器底半径为5cm ,两直径为5cm 的玻璃球都浸没在容器的水中,若取出这两个小球,则容器内水面下降的高度为5cm3C.已知圆锥的母线长为10,侧面展开图的圆心角为45π,则该圆锥的体积为32213D.已知三棱锥A BCD -的所有棱长均为2,若球O 经过三棱锥A BCD -各棱的中点,则到O 的表面积为4π三、填空题:(本题共6小题,每小题4分,共24分.)13.已知平面向量a ,b 满足2a = ,1b =,且a b ⋅= a 与b的夹角为______.14.在锐角ABC △中,角A 、B 所对的边长分别为a 、b ,若2sin a B =,则角A 等于______.15.设i 为虚数单位,则23101i i i i ++++⋅⋅⋅+=______.16.正四棱锥S ABCD -,点S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为______.17.如图所示,正方体1111ABCD A B C D -的棱长为2,E 、F 分别为1AA ,AB 的中点,点P 是正方体表面上的动点,若1C P ∥平面1CD EF ,则点P 在正方体表面上运动所形成的轨迹长度为______.18.在ABC △中,已知角A ,B ,C 所对的边分别为a ,b ,c ,若229611b bccosA c +=,则角B 的最大值为______.四、解答题:(本题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤。
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
浙江省杭州地区(含周边)重点中学2023-2024学年高一下学期4月期中考试数学试题一、单选题1.已知全集U =R ,集合{}0,3,4A =,{}0,1,2B =,下列能正确表示图中阴影部分的集合是( )A .{}0B .{}0,1,2C .{}3,4D .{}1,2 2.用一个平面截长方体,如果截面形状是三角形,则该截面三角形不可能是( ) A .等腰三角形B .等边三角形C .锐角三角形D .直角三角形3.已知()2i i z +=,i 为虚数单位,则z =( )A .15B .13CD 4.已知平面向量()2,0a =r ,()1,1b =-r ,且2ma b a b -=+r r r r ,则m =( )A .1-BCD .05.下列说法正确的是( )A .过空间中的任意三点有且只有一个平面B .四棱柱各面所在平面将空间分成27部分C .空间中的三条直线a ,b ,c ,如果a 与b 异面,b 与c 异面,那么a 与c 异面D .若直线a 在平面α外,则平面α内一定存在直线与a 平行6.若平面向量m u r ,n r ,p u r 均是非零向量,则“()()m n p m n p ⋅=⋅u r r u r u r r u r ”是“向量m u r 与p u r 共线”的( ) A .充要条件B .充分且不必要条件C .必要且不充分条件D .既不充分也不必要条件7.雷峰塔是“西湖十景”之一,中国九大名塔之一,为中国首座彩色铜雕宝塔.如图,某同学为了测量雷峰塔的高度,在地面C 处时测得塔顶A 在东偏北45°的方向上,向正东方向行走50米后到达D 处,测得塔顶A 在东偏北75°的方向上,仰角为45°,则可得雷峰塔离地面的高度值为( )A .B .50米C .25米D .50米 8.已知函数()()2ln 1,143,1x x f x x x x ⎧+>-⎪=⎨---≤-⎪⎩,若函数()()22312y f x af x a =++-有6个不同的零点,则实数a 的取值可以是( )A .3-B .3C .2e -D .2e二、多选题9.对于ABC V ,有如下说法,其中正确的是( )A .满足条件AB =1AC =,30B =o 的三角形共有两个B .若sin cos A B =,则ABC V 是直角三角形C .若222cos cos sin 2A B C ++<,则ABC V 为锐角三角形D .若ABC V 是锐角三角形,则不等式sin cos A B >恒成立10.已知圆台的轴截面如图所示,其上底面半径为1、下底面半径为2,母线AB 长为2,E 为母线AB 中点,则下列结论正确的是( )A .圆台的高为2B .圆台的侧面积为6πC .圆台外接球的体积是32π3D .在圆台的侧面上,从C 到E 的最短路径的长度为511.关于函数()sin cos 2f x x x =+(x ∈R ),如下结论中正确的是( )A .函数()f x 的最小正周期是π2B .函数()f x 的图象关于直线π2x =对称C .函数()f x 的值域是(]0,2D .函数()f x 在π3π,24⎛⎫ ⎪⎝⎭上单调递减三、填空题12.如图所示,长方形O A B C ''''的边长2O A ''=,它是水平放置的一个平面图形的直观图,则原图形的周长是.13.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,222a c ac b ++=,ABC ∠的角平分线交AC 于点D ,且4BD =,则4a c +的最小值为.14.已知正三角形ABC 的边长为1,P 是平面ABC 上一点,若2225PA PB PC ++=,则P A 的最大值为.四、解答题15.陀螺是中国民间最早的娱乐工具之一.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中,B C 分别是上、下底面圆的圆心,且339cm AC AB BD ===,现有一箱这种的陀螺共重6300g (不包含箱子的质量),陀螺的密度为35g /cm 6(π取3)(1)试问该箱中有多少个这样的陀螺?(2)如果要给这箱陀螺的每个表面涂上一种特殊的颜料,试问共需涂多少2cm 的颜料? 16.已知复数1z ,2z 是方程210z z -+=的解,复平面内表示1z 的点A 在第四象限,O 是原点.(1)点A 关于虚轴的对称点为点B ,求向量OB u u u r 对应的复数;(2)将复数2z 对应的向量OC u u u r 绕原点逆时针旋转2π得到向量OD u u u r ,OD u u u r 对应的复数为3z ,求223i z z +的值; 17.如图,在△ABC 中,已知2AC =,3AB =,60BAC ∠=︒,且0GA GB GC ++=u u u r u u u r u u u r r.(1)若AG AC AB λμ=+u u u r u u u r u u u r ,求2λμ+的值(2)求cos AGC ∠.18.已知向量()cos ,1a x =-r,1,2b x ⎫=-⎪⎭r ,函数()()2f x a b a =+⋅-r r r . (1)求函数()f x 的最小正周期及单调递增区间;(2)已知ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c 且满足()1f B =-,如图.(ⅰ)若33c a ==,求ABC V 的面积;(ⅱ)若30CAM ∠=o ,120BCM ∠=o ,CM ,求ACB ∠的值.19.若()(),f x g x 是定义在[],a b 上的增函数,其中[][),0,a b ⊆+∞,存在函数()()()2M x f x =,()()()2N x m g x =⋅,且函数()M x 图像上存在两点,A B ,()N x 图像上存在两点,C D ,其中,A C 两点横坐标相等,,B D 两点横坐标相等,且AB CD u u u r u u u r ∥,则称()f x 在[],a b 上可以对()g x 进行“m 型平行追逐”,即()f x 是()g x 在[],a b 上的“m 型平行追逐函数”. 已知()141x a f x =-+是定义在R 上的奇函数,()22x x g x b -=+⋅是定义在R 上的偶函数. (1)求满足()()83f xg x =的x 的值; (2)设函数()()()()()()22k x n f x g x g x =-+,若不等式()0k x <对任意的[)1,x ∞∈+恒成立,求实数n 的取值范围;(3)若函数()f x 是()g x 在10,2⎡⎤⎢⎥⎣⎦上的“m 型平行追逐函数”,求正数m 的取值范围.。
保密★启用前菏泽市2022—2023学年度第二学期期中考试高一数学试题(A )2023.04注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上,选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数1z 对应的点与232iz i+=对应的点关于虚轴对称,则1z =( ) A.23i -- B.23i -+ C.23i - D.23i +2.在平行四边形ABCD 中,4AB =,3AD =,2cos 3BAD ∠=,3CM MD =,则AM MB ⋅=( )A.-2B.2C.-4D.4 3.在ABC ∆中,6a =,8b =,40A ∠=︒,则B ∠的解的个数是( )A.0个B.2个C.1个D.无法确定4.已知正四棱台的上、下底面分别是边长为2和4 )A.10+B.34C.20+D.685.一艘船从河岸边出发向河对岸航行.已知船的速度()18v m =,,水流速度()260v =,,那么当航程最短时船实际航行的速度大小为( )A.5B.10C.8D. 6.已知正三棱锥A BCD -中,2AE EB =,AD CE ⊥,2AB =,则正三棱锥A BCD -内切球的半径为( )7.已知ABC ∆是直径为α满足3cos 5α=,则ABC ∆周长的最大值为( )A.20B. C. D.20+8.已知复数12z ,z 1=,3z 2i =,且1z 2=,在复平面内对应向量为1OZ ,2OZ ,3OZ ,(O 为坐标原点),则1213Z Z Z Z ⋅的最小值为( )A.4+B.4-C.4D.4-二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分.9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,则( ) A.若A B >,则sin sin A B >B.若2220a b c +->,则ABC ∆一定是锐角三角形C.点()13A ,,()41B -,,与向量AB 共线的单位向量为3455⎛⎫- ⎪⎝⎭, D.若平面向量a ,b 满足22b a ==,则2a b -的最大值是5 10.设α是给定的平面,A 、B 是不在α内的任意两点,则( ) A.在α内存在直线与直线AB 相交 B.平面α与直线AB 至多有一个公共点 C.在α内存在直线与直线AB 垂直D.存在过直线AB 的平面与α垂直11.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列判断正确的是( ) A.若tan tan tan 0A B C ++<,则ABC ∆为钝角三角形 B.若sin 2sin 2A B =,则ABC ∆为等腰三角形 C.若ABC ∆的三条高分别为114,110,15,则ABC ∆为钝角三角形 D.若2sin sin a bc B A+≤,则ABC ∆为直角三角形 12.如图,在矩形ABCD 中,2AB =,4BC =,E ,F 分别为BC ,AD 中点,将ABE ∆沿直线AE 翻折成1AB E ∆,1B 与B 、F 不重合,连结1B D ,H 为1B D 中点,连结CH ,FH ,则在翻折过程中,下列说法中正确的是( )A.CH 的长是定值;B.在翻折过程中,三棱锥1B AEB -的外接球的表面积为4π;C.当130AD B ∠=︒时,三棱锥H CDF -;D.点H 到面1AB E三、填空题:本大题共4小题,每小题5分,共20分.13.如图,A B C '''∆是斜二测画法画出的水平放置的ABC ∆的直观图,D '是B C ''的中点,且A D y ''轴,B C x ''轴,1A D ''=,2B C ''=,则ABC ∆的周长___________.14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,60A =︒,且ABC ∆b c +=则a =________________. 15.已知()31a =,,设与b 方向相同的单位向量为e ,若a 在b 3e ,则a 与b 的夹角θ=__________.16.已知向量a ,b 的夹角为3π,2b =,若对任意x ∈R ,恒有12b xa b a +≥-,则函数()()12f t tb a tb a t =-+-∈R 的最小值为________________.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知复数13iz 1i+=-(i 是虚数单位).(1)求复数z 的模;(2)若复数()2i z a -在复平面上对应的点在第四象限,求实数a 的取值范围.18.如图,Rt AOB ∆,1OA =,2OB =,点C 是OB 的中点,AOB ∆绕BO 所在的边逆时针旋转一周.设OA 逆时针旋转至OD 时,旋转角为θ,[)0θπ∈,.(1)求ABC ∆旋转一周所得旋转体的体积V 和表面积S ; (2)当23πθ=时,求点C 到平面ABD 的距离. 19.复数1z 1i =+,2z 12cos i θ=+,i 为虚数单位,()0θπ∈,.(1)若12z z ⋅是实数,求cos 2θ的值;(2)若复数1z ,2z 对应的向量分别是a ,b ,向量a ,b 的夹角为锐角,求θ的范围.20.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 且sin sin cos sin cos sin sin a A a B C c B A c C b A ++=+. (1)求C ; (2)若2A π=,3AC =,角C 的平分线交AB 于点D ,点E 满足DE CD =,求sin AEB ∠.21.如图,正方形ABCD 的边长为6,E 是AB 的中点,F 是BC 边上靠近点B 的三等分点,AF 与DE 交于点M .(1)设AM AF λ=,求λ的值;(2)若点P 自A 点逆时针沿正方形的边运动到C 点,在这个过程中,是否存在这样的点P ,使得EF MP ⊥?若存在,求出MP 的长度,若不存在,请说明理由.22.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=. (1)证明:2B C =; (2)求a bc+的取值范围.高一数学试题(A )参考答案一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1—4AABC5—8BCDB二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分. 9.AD10.BCD11.ACD12.ACD三、填空题:本大题共4小题,每小题5分,共20分.13.214.315.6π四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)z 12i =-+,z =;(2)因为()()()()22212i i 12i 1222i a a a a -+=+-=--+-⎡⎤⎣⎦()24322i a a a =-+-+-,所以()2430,220,a a a ⎧-+->⎪⎨-<⎪⎩解得12a <<18.解:(1)设底面半径为1r =,圆锥BO 底面面积为2S r ππ==,底面周长母线2l π=,母线AB ==圆锥BO 的体积11122333V S BO ππ=⋅=⨯⨯=,侧面积1222l S AB π=⨯==.圆锥CO 的体积2111333V S CO ππ=⋅=⨯⨯=,AC ==侧面积2222l S AC π=⨯==. ABC ∆旋转一周所得旋转体的体积123V V V π=-=ABC ∆旋转一周所得旋转体表面积12S S S π=+=.(2)连接AD ,23πθ=,AD ∴=4AOD S ∆∴=,136B AOD AOD V S OB -∆∴=⋅=,ABD S ∆∴=,设点O 到平面ABD 的距离为h ,13O ABD ABD B AOD V S h V -∆-∴=⋅=,17h ∴=,因为C 是OB 的中点.即点C 到平面ABD 的距离为217h =. 19.解:(1)因为()()1212cos 2cos 1i z z θθ⋅=-++, 因为12z z ⋅为实数,所以2cos 10θ+=,1cos 2θ=-, 21cos 22cos 12θθ∴=-=-;(2)复数1z 1i =+,()2z 12cos i θ=+复数1z 、2z 对应的向量分别是a ,b ,()11a =,,()12cos b θ=,, 12cos 0a b θ⋅=+>,1cos 2θ∴>-, 又()0θπ∈,,203πθ⎛⎫∴∈ ⎪⎝⎭,,当a 、b 同向时,设a b λ=,0λ>得3πθ=,综上,向量a 、b 的夹角为锐角时,θ的范围是20333πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,. 20.解:(1)依题意,由正弦定理sin sin sin a b cA B C==得22cos cos a ab C bc A c ab ++=+, 由余弦定理2222cos ab C a b c =+-,2222cos bc A b c a =+-,则222a b c ab +=+,则2221cos 22a b c C ab +-==,因为0C π<<,所以3C π=;(2)如图所示,因为3ACB π∠=,3AC =,所以AB =又因为CD 为ACB ∠的平分线,所以AD =CD DB ==因为DE CD =,所以在BDE ∆中,DB DE == 又3BDE π∠=,所以BDE ∆为等边三角形,所以BE =在ABE ∆中,由余弦定理可得22222cos 213AE AD DE AD DE π=+-⨯⨯=,即AE =在ADE ∆中,由正弦定理可得sin sin AB AEAEB ABE=∠∠,sin 3π=,得sin 14AEB ∠=.21.解:(1)如图所示,建立以点A 为原点的平面直角坐标系,因为AM AF λ=,则()62AM λλ=,,则()62M λλ,, 又D ,M ,E 三点共线,则设DM tDE =,01t <<,即()()62636t λλ-=-,,,则63266t t λλ=⎧⎨-=-⎩,,解得37λ=(2)由题意得()32EF =,,假设存在点P ,使得EF MP ⊥,①当点P 在AB 上时,设()0P x ,,06x ≤≤,18677MP x ⎛⎫∴=-- ⎪⎝⎭,, 则54123077x --=,则227x =,故2207P ⎛⎫ ⎪⎝⎭,,MP == ②当点P 在BC 上时,设()6P y ,,06y <≤,24677MP y ⎛⎫∴=- ⎪⎝⎭,,则72122077y +-=,307y ∴=-(舍去); 综上,存在符合题意的点2207P ⎛⎫⎪⎝⎭,,MP =22. 解:(1)22c ac b +=,22c b ac ∴-=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===, 即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,()2sin cos sin sin sin cos sin cos sin C B B C C B C C B C ∴⋅=+-=+-,整理得,sin cos sin cos sin 0B C C B C --=,即:()sin sin B C C -=, 又()0B C π∈,,,B C ∴-=,即:2B C =.(2)2B C =,3A C π∴=-,又sin 22sin cos C C C =⋅,()2sin3sin 2sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C =+=⋅+⋅=⋅+⋅,∴由正弦定理得:()sin 3sin 2sin sin sin 3sin 2sin sin sin C C a b A B C Cc C C Cπ-++++===22sin cos 22sin cos 2sin cos cos 22cos 2cos sin C C C C C CC C C C ⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又0030020300A C B C C C C ππππππππ<<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩, 1cos 12C ∴<<,令cos t C =,则2421a b t t c +=+-,112t <<,2421y t t =+-对称轴为14t =-,2421y t t ∴=+-在112⎛⎫⎪⎝⎭,上单调递增, 当时12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,15a bc+∴<<,即: a bc+的范围为()15,。
2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
上海宝山世外学校高中国内部2023/2024学年第二学期期中考试 高一数学 试卷(考试时间: 120分钟 满分: 150分)班级 学号 姓名一. 填空题(本大题共有12题, 满分54分, 第1~6题每题4分, 第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. 已知角α的终边经过点P(-3,4), 则cosα= .【答案】−35.2、复数 11−i的共轭复数的模是 .【答案】223、在复数范围内,方程.x²-2x+2=0的解为 .【答案】 1+3或 1−i.4.在△ABC 中, AB =c ,AC =b , 若点D 满足 BD =2DC ,则 AD =¯.【答案】23b +1c 5.已知 sin (π2+2α)=−13,则cos(π+2α)= 【答案】−136 关于x 的实系数一元二次方程. x²+kx +3=0有两个虚根x ₁和x ₂,若 |x 1−x 2|=22,则实数k= .【答案】 k =2或 k =−2.7.已知向量ā在向量b 方向上的投影向量为-2b ,且 |b |=3,则 a ⋅b =¯..(结果用数值表示)【答案】 −18.8 已知点A 的坐标为( (43,1),,将OA 绕坐标原点O 逆时针旋转π/3至OB ,则点B 的坐标为【答案】1329.正方体的6个面无限延展后把空间分成个部分【答案】 2710.如图,为计算湖泊岸边两景点B与C之间的距离,在岸上选取A和D两点, 现测得AB=5km, AD=7km, ∠ABD=60°,∠CBD=23°,∠BCD=117°,据以上条件可求得两景点B与C之间的距离为 km(精确到0.1km).【答案】5.811.在△ABC中, a=2, b=3, 若该三角形为钝角三角形, 则边C的取值范围是 .【答案】(1,5)∪(13,5).12 将函数f(x)=4cos(π2x)和直线g(x)=x-1的所有交点从左到右依次记为.A₁,A₂,……,Aₙ,若P的坐标为(0,5),则|PA1+PA2+⋯+PAn|的值为 .【答案】30二、选择题(本大题共有4题, 满分18分, 第13、14题每题4分, 第15、16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.下列说法正确的是 ( )A. 四边形一定是平面图形B.不在同一条直线上的三点确定一个平面C.梯形不一定是平面图形D.平面α和平面β一定有交线【答案】B14. 设z₁、z₂为复数, 则.z21+z22=0是z₁=z₂=0的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C15.设函数f(x)=asinx+bcosx,其中a>0,b>0,若f(x)≤f(π4)对任意的x∈R恒成立,则下列结论正确的是 ( )Af(π2)>f(π6)в f(x)的图像关于直线x=3π4对称C. f(x)在[π4,5π4]上单调递增D.过点(a,b)的直线与函数f(x)的图像必有公共点【答案】D16 给定方程: (12)x+sin x−1=0,给出下列4个结论:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x₀是方程的实数根,则x₀>−1.其中正确结论的个数是A.1B.2C.3D.4【答案】C三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知复数z是纯虚数,(z+2)²−8i是实数.(1) 求z; (2) 若1z1=1z+2−z,求|z1|.【答案】z=2i,2824118. (本题满分14分,第1小题满分6分,第2小题满分8分)已知平面内给定三个向量a=(3,2),b=(−1,2),c=(4,1).(1) 若a=mb−nc,求实数m,n的值;(2) 若(a−kc)⋅(kb)<6,求实数k的取值范围.【答案】m=59,n=−89, (−2,32)19. (本题满分14分,第1小题满分6分,第2小题满分8分)在△ABC中, 角A, B, C所对的边分别为a, b, c.(1) 若c=2,C=π3,且△ABC的面积.S=3,求a, b的值;(2) 若sinC+sin(B--A)=sin2A, 判断△ABC的形状.【答案】a=b=2,△ABC 为等腰或直角三角形20. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 f (x )=3sin ωx cos ωx +sin 2ωx−12(其中常数ω>0)的最小正周期为π.(1) 求函数y=f(x)的表达式;(2)作出函数y=f(x),x∈[0,π]的大致图像,并指出其单调递减区间;(3) 将y=f(x)的图像向左平移φ(0<φ<π)个单位长度得到函数y=g(x)的图像,若实数x ₁,x ₂满足. f (x₁)g (x₂)=−1,且 |x₁−x₂||的最小值是 π6,求φ的值.【答案】 y =f (x )=sin (2x−π6), [π3 , 5π6],φ=π3或 2π3【解析】(1)∵函数f (x )=3sin ωx cos ωx +sin 2ωx−12=32sin 2ωx +1−2cos 2ωx2−12=sin (2ωx−π6)(其中常数 ω>0)的最小正周期为 2π2ω=π,∴ω=1.函数 y =f (x )=sin (2x−π6).(2)作出函数 y =f (x ),x ∈[0,π]的大致图像:作图:2x-π6-π6π2π3π211π6xπ12π37π125π6πf(x)-12010—1-12作图:结合图像,可得其单调递减区间为[π3,5π6].(3)将y=f(x)=sin(2x−π6)的图像向左平移φ(0<φ<π)个单位长度,得到函数y=g(x)=sin(2x+2−π6)的图像,若实数x₁, x₂满足f(x₁)g(x₂)=−1,则f(x₁)与g(x₂)一个等于1,另一个等于.−1,且|x₁−x₂|的最小值为|T2−φ|=π6,即|122π2−φ|=π6求得φ=π3或2π3.21. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)在平面直角坐标系中,我们把函数y=f(x),x∈D上满足.x∈N°,y∈N*(其中N⁺表示正整数)的点P(x,y)称为函数y=f(x)的“正格点”.(1)写出当m=π2时, 函数f(x)=sin mx, x∈R图像上所有正格点的坐标;(2)若函数f(x)=sinmx, x∈R,m∈(1,2)与函数g(x)=lgx的图像有正格点交点, 求m的值,并写出两个图像所有交点个数,需说明理由.(3) 对于 (2) 中的m值和函数f(x)=sinmx, 若当x∈[0,59]时,不等式log a x>22f(x)恒成立,求实数a的取值范围.【答案】(4k+1,1)(k∈N),4,(2581,1)【解析】(1) 因为 m =π2,一所以 f (x )=sin π2x,所以函数 f (x )=sin π2x 的正格点为(1,1),(5,1), (9,1), ……, (4k+1,1)(k∈N).(2)作出两个函数图像,如图所示:可知函数. f (x )=sinmx,x ∈R,与函数 g (x )=lg x 的图像只有一个“正格点”交点(10,1),所以 2kπ+π2=10m,m =4k +120π, k ∈Z,又 m ∈(1,2),可得 m =9π20,根据图像可知,两个函数图像的所有交点个数为4;(3)由 (2) 知 f (x )=sin 9π20x,x ∈(0,59]所以 9π20x ∈(0,π4],所以f (x )=sin 9π20x ∈(0,22],故22f (x )∈(0,12],当 a >1时,不等式 log a x >22f (x )不能恒成立,当 0<a <1时, 由下图可知log a 59>22sin π4=12,由loga 59>12=logaa,.综上,实数a的取值范围是2581<a<1。
2022~2023学年度下期高中2022级期中联考数 学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,R ====∈A y y B y y x x {|{|cos },则=A BA .−[1,1]B .[0,1]C .+∞[0,)D .+∞(0,)2.已知角,∈(=αα25)cos π,24π3,则−=πα4cos()A .−10B .10C .−10D .103.下列函数是偶函数且在(20,)π上单调递增的是A .=y x sinB .=y x cosC .=y x tanD .=y x |sin |4.若=(+(<<ϕϕf x x )π()cos 2)0为奇函数,则=ϕA .6πB .3πC .2πD .4π3 5.如图,点O 为正六边形ABCDEF 的中心,下列说法正确的是A .=AB ODB .=EF AB ||||C .AB 与AD 共线D .>BE BC6.已知角x 为斜三角形的内角,…则,=−f x x f x ()3()0的x 的取值范围是 A .6)π[,πB .3)π[,πC .62[,)ππD .32[,)ππ7.函数=+(+f x x x 2()cos24cos )π的最大值为A .21B .1C .3D .48.已知函数=−(>ωωωf x x x 22()sin cos 0)1在()π0,上恰有2个不同的零点,则ω的取值范围为A .(66,]713B .(66,)713C .(33,)713D .(33,]713二、选择题:本题共4小题,每小题5分,共20分。
数学试题(理)一、选择题( 本题共12小题,每小题5分,共60分。
)1.一所中学有高一、高二、高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是()A. 10B. 15C. 20D. 302.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A. 48B. 60C. 64D. 72t=-,则输出的n的值为()3.执行如图所示的程序框图,若输入的25A.3 B.4C.5 D.64.某企业的一种商品的产量与单位成本数据如下表:若根据表中提供的数据,求出y 关于x的线性回归方程为ˆ 1.1528.1y x =-+,则 a 的值等于( )A .4.5B .5C .5.5D .65.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.976.设等差数列{a n }的前n 项和为S n ,若a 1=35,S 8=S 28,则S n 最大值为 ( ) A.324B.196C.431D.5317. 设一元二次方程x 2+bx+c=0,若b,c 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为 ( ) A.B.C.D.8.已知n S 是等差数列)}({*N n a n ∈的前n 项和,且576S S S >>,有下列四个命题:①0<d ;②011>S ;③012<S ;④数列{}n S 中的最大项为11S ,其中正确命题的序号是( )A .②③ B.①② C.①③ D.①④9.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 10. 在△ABC 中,B=120°,AB=,A 的角平分线AD=,则AC=( )A.3B. 6C.2D.511.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样 C .这五名男生成绩的方差小于这五名女生成绩的方差 D .该班级男生成绩的平均数小于该班女生成绩的平均数12若△ABC 的面积为(a 2+c 2-b 2),且∠C 为钝角,则c a的取值范围是 .A. (2,+∞)B. (1,+∞)C. (1,3)D. (2,3)产量x (万件) 14 16 18 20 22 单位成本y (元/件) 12 10 7a3二、填空题:本大题共4小题,每小题5分,共20分.13. 数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为14. 若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1, ∠B =45°,S △ABC =2,则b =_________. 15. 在△ABC 中,B=60°,AC=,则AB+2BC 的最大值为___________.16. 在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 三、解答题:本大题共6个小题,共70分。
1
春季期中联考高一数学试题(理)
考试时间:4月27日上午8:00—10:00 试卷满分:150分
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1、下列关于x的不等式解集是实数集R的为( )
A. B.4x2+4x+1>0
C.3x-1>0 D.
2、在△ABC中,a,b,c分别为角A,B,C对应的边,若,则角C等
于( )
A.60° B.45°
C.120° D.30°
3、等比数列{an}各项均为正数,且a5a6+a4a7=54,则log3a1+log3a2+…+log3a10=( )
A.8 B.10
C.15 D.20
4、在△ABC中,a,b,c分别为角A,B,C对应的边,则满足A=45°,c=8,a=6的△ABC
的个数为m,则am的值为( )
A.36 B.6
C.1 D.不存在
5、已知数列{an}首项,则a2016=( )
2
A.-2 B.
C. D.3
6、对任意实数x,不等式2kx2+kx-3<0恒成立,则实数k的取值范围是( )
A.-24<k<0 B.-24<k≤0
C.0<k≤24 D.k≥24
7、数列{an}满足a1=1,,且,则an等于( )
A. B.
C. D.
8、在300米高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,45°,则塔高为( )
A. B.
C. D.
9、若等差数列{an}中,|a5|=|a11|,公差d<0,则使前n项和Sn取得最大值的n是( )
A.8 B.7或8
C.8或9 D.7
3
10、设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的
最大值为1,则的最小值为( )
A. B.49
C.35 D.
11、两千多年前,古希腊毕达哥拉斯学派的数学家们曾经在沙滩上研究数学问题.他们在沙
滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点
的个数5,9,14,20,……为梯形数.根据图形的构成,记此数列的第2016项为a2016,则
a2016-5=( )
A.2023×2016 B.2015×2022
C.2023×1008 D.2015×1011
12、己知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn为数列{an}的
前n项和,则的最小值为( )
A. B.
C. D.
4
第Ⅱ卷 非选择题
二、填空题:本大题共4小题,每小题5分,共20分.
13、已知a>0,b>0,2a+b=16,则ab的最大值为__________.
14、中国古代数学巨著《九章算术》中有“分钱问题”:现有5人分五钱,5人所得数依次
成等差数列,前两人分的数与后三人分的数相等,问第二人分__________钱.
15、在△ABC中,已知A=60°,b=1,其面积为,则__________.
16、设a>0,b>0,称为a,b的调和平均数.如图,线段AC过⊙O的圆心与圆交于
点C,E,AB为圆的切线,B为切点,BD⊥OA于D,F在圆上且FO⊥OA于O.AC=a,AE=b,
线段__________的长度是a,b的几何平均值,线段__________的长度是a,b的调和平均值.
三、解答题:本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤.
17、(本小题满分10分)求下列关于实数x的不等式的解集:
(1)-x2+5x-6≤0;
(2).
5
18、(本小题满分12分)在等差数列{an}中,a2=4,a3+a8=15.
(1)求数列{an}的通项公式;
(2)设,求b1+b2+b3+…+b10的值.
19、(本小题满分12分)已知a,b,c分别是△ABC的三个内角A,B,C的对边,
.
(1)求角B的大小;
(2)求函数的值域.
20、(本小题满分12分)某市人民广场立有一块巨大的电子显示屏,如图,为测量它的上
下宽度(即AB的长度).一名学生站在如图C处测得A,B的仰角分别为60°,45°,从C
点出发,沿着直线OC再前进20米到达D点,在D点测得A的仰角为30°.不考虑测角仪
的高度和人的高度(即C,D视为测角仪所在的位置,E视为人的眼睛所在位置)
(1)求电子显示屏的上下宽度AB;
(2)该生站在E点观看电子显示屏,为保证观看节目的视觉效果最佳,即人的眼睛与
A,B连线所成角最大,求O,E两点间的距离.(第二问结果保留一位小数,参考数据:
)
6
21、(本小题满分12分)定义:在平面直角坐标系中落在坐标轴上的整点(即横坐标和纵
坐标均为整数的点)称为“轴点”.设不等式|x|+|y|≤n(n∈N+)所表示的平面区域为
Dn,记Dn内的“轴点”个数为an.
(1)求a1,a2,a3,并猜想an的表达式(不需要证明);
(2)利用(1)的猜想结果,设数列{an-1}的前n项和为Sn,数列的前n项和为
Tn,若对一切n∈N+,恒成立,求实数m的取值范围.
22、(本小题满分12分)若数列{an}的前n项和Sn满足:Sn=2an-2,记bn=log2an.
(1)求数列{bn}的通项公式;
(2)若c1=1,,求证:cn<3;
(3)记,求的值.(注:[x]表示不超过
x的最大整数,例:[2.1]=2,[-1.3]=-2)
7
答案与解析:
1、C
解析:A中的解集是{x|x>1或x<-1},B中的解集是,C中的解集是R,D
中的解集是{x|x≠-1},故答案为C.
2、D
解析:由余弦定理得,又0°<C<180°,∴C=30°,
故答案为D.
3、C
解析:{an}是等比数列,∴a5a6=a4a7=27,
log3a1+log3a2+…+log3a10=log3(a1a2…a10)
=log3(a1a10)5=5log3a1a10=5log3a5a6=5log327=5×3=15,故答案为C.
4、A
解析:∵csinA<a<c,∴这样的三角形有2个,即m=2,∴am=62=36.
5、C
解析:
故数列{an}是周期数列且周期T=4,,故选择C.
6、B
解析:当k=0时不等式即为-3<0,不等式恒成立,当k≠0时,若不等式恒成立,则,
即,即-24<k<0,综合知-24<k≤0,故选择B.
8
7、D
解析:由题知是等差数列,又,∴公差为
.,故答案为D.
8、A
解析:如图,山高为AB=300m,塔高为CD.
∴BC=300,∵∠EAB=60°,.
Rt△ECD中,,
,故选择A.
9、B
解析:∵|a5|=|a11|,∴a5+a11=0,又a5+a11=a8+a8,∴a8=0.
又公差d<0,∴a7>0,a9<0,∴Sn中S7=S8最大,故选择B.
10、A
解析:画出可行域,如图,
9
可知z=ax+by在A(3,4)处取得最大值,故3a+4b=1.
,
当时取最小值,故选A.
11、D
解析:
……
归纳出.
.
,故选D.
12、A
10
13、32
14、
15、
16、AB,AD
17、解:(1)不等式变形为:(x-2)(x-3)≥0,所以不等式解集为(-∞,2]∪[3,
+∞).(5分)
(2)不等式等价于2(x-a)(x-a2-1)<0,,
所以不等式解集为(a,a2+1).(10分)
18、解:(1)由a2=a1+d=4,a3+a8=2a1+9d=15得a1=3,d=1.
∴an=a1+(n-1)d=n+2(6分)
(2)bn=2n+2n+1
(12分)
19、解:(1)由正弦定理得:
11
20、解:(1)设OB=x,则由∠OCB=45°,∠OCA=60°,∠ODA=30°,
得OC=x,,OD=3x.
则由OD=OC+CD,得3x=x+20,所以x=10
所以电子屏的宽度.(6分)
(2)设OE=y,则,
当且仅当即y≈13.2时,tan∠AEB最大,即∠AEB最大.
答:(1)电子屏的宽度为米.
(2)当OE为13.2米时,观看节目的视觉效果最佳.(12分)
21、解:(1)a1=5,a2=9,a3=13,故猜想an=4n+1.(4分)
12
22、解:(1)当n=1时,S1=2a1-2,解得a1=2
当n≥2时,an=Sn-Sn-1=(2an-2)-(2an-1-2)=2an-2an-1
即an=2an-1
所以数列{an}是以a1=2为首项,公比为2的等比数列
∴an=2·2n-1=2n,从而bn=log2an=n. (3分)
(2)由(1)知
∴cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1(n≥2)
13