散热器扩散热阻的计算
- 格式:doc
- 大小:109.00 KB
- 文档页数:7
钢质散热器选择及散热计算钢质散热器价格选择及散热计算金旗舰散热计算任何器件在工作时都有一定的损耗,大部分的损耗变成热量。
小功率器件损耗小,无需散热装置。
而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。
因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。
在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。
散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。
功率器件安装在散热器上。
它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间。
若没有风扇以一定风速冷却,这称为自然冷却或自然对流散热。
热量在传递过程有一定热阻。
由器件管芯传到器件底部的热阻为RJC,器件底部与散热器之间的热阻为RCS,散热器将热量散到周围空间的热阻为RSA,总的热阻RJA="R"JC+RCS+RSA。
若器件的最大功率损耗为PD,并已知器件允许的结温为TJ、环境温度为TA,可以按下式求出允许的总热阻RJA。
RJA≤(TJ-TA)/PD则计算最大允许的散热器到环境温度的热阻RSA为RSA≤({T_{J}-T_{A}}over{P_{D}})-(RJC+RCS)出于为设计留有余地的考虑,一般设TJ为125℃。
环境温度也要考虑较坏的情况,一般设TA=40℃60℃。
RJC的大小与管芯的尺寸封装结构有关,一般可以从器件的数据资料中找到。
RCS的大小与安装技术及器件的封装有关。
如果器件采用导热油脂或导热垫后,再与散热器安装,其RCS典型值为0.10.2℃/W;若器件底面不绝缘,需要另外加云母片绝缘,则其RCS可达1℃/W。
PD为实际的最大损耗功率,可根据不同器件的工作条件计算而得。
这样,RSA可以计算出来,根据计算的RSA值可选合适的散热器了。
散热器简介小型散热器(或称散热片)由铝合金板料经冲压工艺及表面处理制成,而大型散热器由铝合金挤压形成型材,再经机械加工及表面处理制成。
立管编号房间编号房间名称每个热负荷热媒平均tpj室内计算温度高区垂直单管16办公644.628101358.75205办公644.628101356.25204办公644.628101353.75203办公644.628101351.25202办公644.628101348.75201办公644.628101346.25202和36办公951.126883558.75205办公951.126883556.25204办公951.126883553.75203办公951.126883551.25202办公951.126883548.75201办公951.126883546.2520 46办公868.604155958.75205办公868.604155956.25204办公868.604155953.75203办公868.604155951.25202办公868.604155948.75201办公868.604155946.2520 56办公663.637067758.75205办公663.637067756.25204办公663.637067753.75203办公663.637067751.25202办公663.637067748.75201办公663.637067746.2520 66办公774.36992658.75205办公774.36992656.25204办公774.36992653.75203办公774.36992651.25202办公774.36992648.75201办公774.36992646.2520 76办公816.885697158.75205办公816.885697156.25204办公816.885697153.75203办公816.885697151.25202办公816.885697148.75201办公816.885697146.2520 86办公600.945784158.75205办公600.945784156.25204办公600.945784153.75203办公600.945784151.25202办公600.945784148.75201办公600.945784146.2520 96办公748.050207258.75205办公748.050207256.25204办公748.050207253.75203办公748.050207251.25202办公748.050207248.75201办公748.050207246.2520水箱间水箱间水箱间1413.425516低区1层水平串6个的1商业1091.93361458.7518 2商业1091.93361456.25183商业1091.93361453.75184商业1091.93361451.25185商业1091.93361448.75186商业1091.93361446.2518 5个的1商业1091.93361458.518 2商业1091.93361455.5183商业1091.93361452.5184商业1091.93361449.5185商业1091.93361446.518 4个的1商业1091.93361458.12518 2商业1091.93361454.375183商业1091.93361450.625184商业1091.93361446.87518 3个的1商业1091.93361457.518 2商业1091.93361452.518低区2~4水平串6个的1商业597.915801958.7518 2商业597.915801956.25183商业597.915801953.75184商业597.915801951.25185商业597.915801948.75186商业597.915801946.2518 5个的1商业597.915801958.518 2商业597.915801955.5183商业597.915801952.5184商业597.915801949.5185商业597.915801946.518楼梯41楼梯4(1层)629.251446746.87514 2楼梯4(2层)599.287092150.625143楼梯4(3层)599.287092154.375144楼梯4(4层)569.322737558.12514楼梯31楼梯3(1层)858.737486247.514 2楼梯3(2层)817.845224946.25143楼梯3(3层)817.845224946.25144楼梯3(4层)776.952963746.2514地下室水平串4个的1戊类储藏885.3458.12514 2戊类储藏885.3454.375143生活泵房811.8500450.625144生活泵房811.8500446.875145个的1排风机房609.592858.518 2排风机房609.592855.5183排风机房609.592852.5184前室698.422849.5185前室698.422846.518 4个的1楼梯间911.852458.12514 2楼梯间911.852454.375143加压送风机房427.689950.625144加压送风机房427.689946.87514 4个的1值班室426.61858.12514 2值班室426.61854.375143加压送风机房427.689950.625144加压送风机房427.689946.87514 4个的1消防控制中心631.0363258.12514 2消防控制中心631.0363254.375143消防控制中心631.0363250.625144值班室426.61846.87514 4个的1库房756.510658.12514 2库房756.510654.375143库房756.510650.625144库房756.510646.87514传热系数K面积Fβ1修正后片数6.750315002 2.513701239196.615718283 2.741728151 1.05106.474476588 3.009060804 1.05116.325730577 3.326202558 1.05136.168429628 3.707634733 1.05146.001268186 4.173852167 1.05166.750315002 3.708880858 1.05146.615718283 4.045326827 1.05156.474476588 4.439767083 1.05176.325730577 4.907698977 1.1196.168429628 5.470489205 1.1226.001268186 6.158377204 1.1246.750315002 3.387086815 1.05136.615718283 3.694341686 1.05146.474476588 4.054559077 1.05156.325730577 4.481891744 1.05176.168429628 4.995852541 1.1206.001268186 5.624057237 1.1226.750315002 2.587825935 1.05106.615718283 2.822576966 1.05116.474476588 3.097792796 1.05126.325730577 3.424286512 1.05136.168429628 3.816966461 1.05146.001268186 4.296931839 1.05166.750315002 3.019624243 1.05116.615718283 3.293545257 1.05126.474476588 3.614682927 1.05146.325730577 3.995654586 1.05156.168429628 4.453856152 1.05176.001268186 5.013907379 1.1206.750315002 3.185412775 1.05126.615718283 3.474373065 1.05136.474476588 3.81314238 1.05146.325730577 4.215030791 1.05166.168429628 4.698389316 1.05186.001268186 5.289189426 1.1216.750315002 2.343363807196.615718283 2.555938797 1.05106.474476588 2.805156028 1.05116.325730577 3.100807117 1.05126.168429628 3.456392077 1.05136.001268186 3.891016941 1.05156.750315002 2.916991563 1.05116.615718283 3.181602396 1.05126.474476588 3.491825059 1.05136.325730577 3.859848039 1.0515 6.168429628 4.302475994 1.0516 6.001268186 4.843491886 1.119 6.763437723 5.465618336 1.1226.853691047 3.987900106 1.0515 6.723891221 4.330562283 1.0516 6.588026691 4.728953147 1.0518 6.44535826 5.197059577 1.121 6.294992404 5.753817422 1.123 6.135833365 6.425462578 1.125 6.840965514 4.019980839 1.0515 6.683799707 4.443669112 1.0517 6.51759471 4.95324673 1.120 6.340971064 5.576093947 1.122 6.152181392 6.352174434 1.125 6.821774005 4.068965749 1.0515 6.62259948 4.623436686 1.0517 6.408527337 5.327060704 1.121 6.176516785 6.244976213 1.125 6.789508041 4.152991142 1.0516 6.51759471 4.95324673 1.1206.853691047 2.183******** 6.723891221 2.37130864519 6.588026691 2.589457615 1.0510 6.44535826 2.845781102 1.0511 6.294992404 3.150647908 1.0512 6.135833365 3.51842416 1.0513 6.840965514 2.20124193918 6.683799707 2.43324314419 6.51759471 2.712275226 1.0510 6.340971064 3.053330935 1.0512 6.152181392 3.478293388 1.0513 6.423318308 3.039479292 1.0512 6.636312513 2.514957398196.834582178 2.215188001187.020382404 1.87461985817 6.459955344 4.047494528 1.0515 6.386191821 4.050415869 1.0515 6.386191821 4.050415869 1.05156.386191821 3.847895076 1.05157.020382404 2.915178572 1.0511 6.834582178 3.272548905 1.0512 6.636312513 3.406995229 1.0513 6.423318308 3.921487027 1.05156.840965514 2.24423109918 6.683799707 2.48076317219 6.51759471 2.765244612 1.0511 6.340971064 3.566582342 1.05146.152181392 4.062979101 1.05157.020382404 3.002473824 1.0511 6.834582178 3.37054564 1.0513 6.636312513 1.794835717176.423318308 2.065874622187.020382404 1.4047332420.965 6.834582178 1.57693881116 6.636312513 1.794835717176.423318308 2.065874622187.020382404 2.0778******* 6.834582178 2.33254495718 6.636312513 2.648195634 1.05106.423318308 2.060697013187.020382404 2.4909769119 6.834582178 2.796344566 1.0511 6.636312513 3.174758734 1.0512 6.423318308 3.6541804 1.0514。
散热器选型-散热面积理论计算及风扇选择散热器选型,散热面积理论计算及风扇选择。
散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。
Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。
(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。
散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。
热管散热器散热计算公式热管散热器是一种高效的散热设备,它通过热管的热传导和散热片的散热来实现散热效果。
在工程实践中,我们需要通过一定的计算来确定热管散热器的散热效果,以确保设备正常运行。
本文将介绍热管散热器的散热计算公式,并对其进行详细的讲解。
热管散热器的散热计算公式可以分为两部分,热管的热传导计算和散热片的散热计算。
首先我们来看热管的热传导计算。
热管的热传导计算公式如下:Q = kAΔT / L。
其中,Q为热管的传热量,单位为瓦特(W);k为热管的导热系数,单位为瓦特/米-摄氏度(W/m·°C);A为热管的横截面积,单位为平方米(m^2);ΔT为热管两端的温度差,单位为摄氏度(°C);L为热管的长度,单位为米(m)。
在实际应用中,热管的导热系数k通常是已知的,可以根据热管的材料和结构参数进行查阅。
热管的横截面积A和长度L也是已知的,可以通过测量得到。
而热管两端的温度差ΔT则需要根据具体的工况和散热需求来确定。
通过这个公式,我们可以计算出热管的传热量,从而评估热管的散热性能。
接下来我们来看散热片的散热计算。
散热片的散热计算公式如下:Q = hAΔT。
其中,Q为散热片的传热量,单位为瓦特(W);h为散热片的对流换热系数,单位为瓦特/平方米-摄氏度(W/m^2·°C);A为散热片的表面积,单位为平方米(m^2);ΔT为散热片表面和环境的温度差,单位为摄氏度(°C)。
在实际应用中,散热片的表面积A是已知的,可以通过测量得到。
散热片的对流换热系数h通常需要根据具体的工况和散热片的形状来确定,可以通过经验公式或者计算流体力学模拟得到。
而散热片表面和环境的温度差ΔT也需要根据具体的工况和散热需求来确定。
通过这个公式,我们可以计算出散热片的传热量,从而评估散热片的散热性能。
综合考虑热管和散热片的散热计算公式,我们可以得到整个热管散热器的散热量。
在实际应用中,我们还需要考虑热管和散热片的布局和组合方式,以及热管散热器的整体热阻等因素。
散热器的散热量计算公式散热器是一种用于降低电子设备或机械设备温度的装置。
它通过将设备产生的热量转移到周围环境中,从而保持设备的正常运行温度。
散热器的散热量计算公式可以帮助我们了解散热器的散热能力和热量传递效率。
散热器的散热量计算公式如下:Q = U * A * ΔT其中,Q表示散热器的散热量,U表示散热器的传热系数,A表示散热器的表面积,ΔT表示散热器与环境之间的温度差。
我们来了解一下散热器的传热系数U。
传热系数是指单位时间内通过单位面积的热量传递量与温度差之间的比值。
它决定了散热器传热的效率和能力。
散热器的传热系数受到散热器材料、散热片结构和流体状态等因素的影响。
散热器的表面积A也是计算散热量的重要参数。
表面积越大,散热器与周围环境之间的热交换面积就越大,从而能够更快地将热量散发出去。
温度差ΔT是指散热器表面温度与环境温度之间的差值。
温度差越大,散热器的散热能力越强。
散热器的散热量计算公式可以帮助我们评估散热器的散热性能。
通过调整散热器材料、改进散热片结构和优化流体状态,可以提高散热器的传热系数和表面积,从而提高散热器的散热能力。
除了散热器自身的设计和性能,散热器的散热量还受到其他因素的影响。
例如,周围环境的温度和湿度、设备的功率和工作状态等都会对散热器的散热效果产生影响。
在实际应用中,我们可以根据设备的功率、工作温度和环境温度等参数,计算出散热器所需的散热量。
然后,根据散热器的传热系数和表面积,选择合适的散热器型号和规格。
散热器的散热量计算公式是评估散热器散热性能的重要工具。
通过合理选择散热器和优化散热系统设计,可以有效降低设备温度,提高设备的可靠性和稳定性。
在未来的发展中,我们可以期待散热器技术的进一步创新和提高,以满足不断增长的散热需求。
设备散热器风扇的选型和设计计算一、选型1.确定散热要求:首先需要确定设备的散热要求,包括散热功率和散热温度。
散热功率指设备在工作状态下产生的热量,一般单位为瓦特(W)。
可以通过设备的技术规格书或者测试数据来获取。
散热温度指设备的工作温度,一般以最高工作温度为基准。
如果设备的工作温度过高,可能会导致设备的性能下降或者故障。
2.风扇的空气流量:在选型过程中,需要确定所需要的风扇的空气流量。
空气流量是风扇在单位时间内能够移动的空气体积。
一般单位为立方米/小时(m³/h)。
空气流量的大小跟设备的散热功率有关,可以通过下面的公式计算:空气流量=散热功率/(ΔT*空气比热)其中,ΔT为散热温度和环境温度之差,单位为摄氏度(℃),空气比热一般为1.007J/g℃。
3.风扇的静压:静压是风扇在单位面积上产生的压力。
它决定了风扇能否将空气有效地送到散热器上,影响了散热器的散热效果。
一般单位为帕斯卡(Pa)。
散热器的阻力越大,所需的风扇静压越大。
可以通过设备的技术规格书或者测试数据来获取。
4.根据散热器的尺寸和安装位置来确定风扇的尺寸和形式。
风扇的尺寸和形式需要与散热器相匹配,以确保能够充分利用空间,并且方便安装。
二、设计计算1.根据选型得到的风扇空气流量,可以计算风扇的转速。
转速=空气流量/(π*风叶半径²*风叶速度)*60其中,π为圆周率,风叶半径为风扇风叶的半径,风叶速度为风叶转速的线速度。
2.根据选项得到的风扇静压,可以计算风扇的功率。
风扇功率=风扇静压*空气流量/风扇效率风扇功率可以根据设备的电源容量来选择。
3.确定散热器的设计参数,包括材质、散热片面积和散热片厚度。
散热器的材质需要具有良好的导热性能,一般选择铝合金或铜。
散热片的面积越大,散热效果越好。
根据散热要求,可以计算散热片的面积。
散热片的厚度一般选择1-5mm,最大不宜超过10mm。
过厚可能导致热阻增加。
4.根据散热器的面积和散热管的数量和直径,可以计算热阻。
散热器散热量怎么计算?详细点放出热量Q放=cm(t-t0)散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T(十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5=1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52=926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42=704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M 点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
(三)利用传热系数Q=K·F·△T一般来说△T已经计算出来,F是散热面积,传热系数K,可通过类似散热器中计算出来或者从经验得到的,这种计算方法一般用在还没有经过热工检验,正在试制的散热器中。
散热器扩散热阻的计算Accident?Consider the scenario where a designer wishes to incorporate a newly developed device into a system and soon learns that a heat sink is needed to cool the device. The designer finds a rather large heat sink in a catalog which marginally satisfies the required thermal criteria. Due to other considerations, such as fan noise and cost constraints, an attempt to use a smaller heat sink proved futile, and so the larger heat sink was accepted into the design. A prototype was made which, unfortunately, burned-out during the initial validation test, the product missed the narrow introduction time, and the project was canceled. What went wrong?The reasons could have been multi-fold. But, under this scenario, the main culprit could have been the spreading resistance that was overlooked during the design process. It is very important for heat sink users to realize that, unless the heat sink is custom developed for a specific application, thermal performance values provided in vendor's catalogs rarely account for the additional resistances coming from the size and location considerations of a heat source. It is understandable that the vendors themselves could not possibly know what kind of devices the users will be cooling with their products.Figure 1 - Normalized local temperature rise with heat sources of different size; from L to R, source area =100%, 56%, 25%, 6%, of heat-sink areaIntroductionSpreading or constriction resistances exist whenever heat flows from one region to another in different cross sectional area. In the case of heat sink applications, the spreading resistance occurs in the base-plate when a heat source of a smaller footprin footprint area is mounted on a heat sink with a larger base-plate area. This results in a higher local temperature at the location where the heat source is placed. Figure 1 illustrates how the surface temperature of a heat sink base-plate would respond as the size of the heat source is progressively reduced from left to right with all other conditions unchanged: the smaller the heat source, the more spreading has to take place, resulting in a greater temperature rise at the center. In this example, the effect of the edge surfaces of the heat sink is ignored and the heat source is assumed to be generating uniform heat flux. In cases where the footprint of a heat sink need not be much larger than the size of the heat source, the contribution of the spreading resistance to the overall device temperaturerise may be insignificant and usually falls within the design margin. However, in an attempt to remove more heat from today's high performance devices, a larger heat sink is often used and, consequently, the impact of spreading resistance on the performance of a heat sink is becoming an important factor that must not be ignored in the design process. It is not uncommon to find in many high performance, high power applications that more than half the total temperature rise of a heat sink is attributed to the spreading resistance in the base-plate.The objectives of this article are:1) to understand the physics and parameters associated with spreading resistance2) to provide a simple design correlation for accurate prediction of the resistance3) to discuss and clarify the concept of spreading resistance with an emphasis on the practical use of the correlation in heat sink applicationsThe correlation provided herein was originally developed in references 1 and 2. This article is an extension of the earlier presentation.Spreading ResistanceBefore we proceed with the analysis, let us attend to what the temperature distributions shown in Fig. 1 are telling us. The first obvious one, as noted earlier, is that the maximum temperature at the center increases as the heat source becomes smaller. Another important observation is that, as the temperature rises in the center, the temperatures along the edges of the heat sink decrease simultaneously. It can be shown that this happens in such a way that the area-averaged surface temperature of the heat sink base-plate has remained the same. In other words, the average heat sink thermal performance is independent of the size of a heat source. In fact, as will be seen later, it is also independent of the location of the heat source.The spreading resistance can be determined from the following set of parameters: ∙footprint or contact area of the heat source, A s∙footprint area of the heat sink base-plate, A p∙thickness of the heat sink base-plate, t∙thermal conductivity of the heat sink base-plate, k∙average heat sink thermal resistance, R0We will assume, for the time being, that the heat source is centrally mounted on the base-plate, and the heat sink is cooled uniformly over the exposed finned surface. These two assumptions will be examined in further detail. Figure 2 shows a two-dimensional side view of the heat sink with heat-flow lines schematically drawn in the base-plate whose thickness is greatly exaggerated. At the top, the corresponding surface temperature variation across the center line of the base-plate is shown by the solid line. The dotted line represents the average temperature of the surface which is, again, independent of theheat source size and can be easily determined by multiplying R0 with the total amount of heat dissipation, denoted as Q.As indicated in Fig. 2, the maximum constriction resistance R c, which accounts for the local temperature rise over the average surface temperature, is the only additional quantity that is needed for determining the maximum heat sink temperature. It can be accurately determined from the following correlation.Figure 2 - Two dimensional schematic view of local resistance or temperature variation of a heat sinkshown with heat flow LinesNote that the correlation addresses neither the shape of the heat source nor that of the heat sink base-plate. It was found in the earlier study that this correlation typically results in an accuracy of approximately 5% over a wide range of applications with many combinations of different source/sink shapes, provided that the aspect ratio of the shapes involved does not exceed 2.5. See references 1 and 2 for further discussions.Example ProblemConsider an aluminum heat sink (k = 200W/mK) with base-plate dimensions of 100 x 100 x 1.3 mm thick. According to the catalog, the thermal resistance of this heat sink under a given set of conditions is 1.0 °C/W. Find the maximum resistance of the heat sink if used to cool a 25 x 25 mm device.SolutionsWith no other specific descriptions, it is assumed that the heat source is centrally mounted, and the given thermal resistance of 1.0 °C/W represents the average heat sink performance. From the problem statement, we summarize:∙A s = 0.025 x 0.025 = 0.000625 m2∙A p = 0.1 x 0.1 = 0.01 m2∙t = 0.0013 m∙k = 200 W/mK∙R0 = 1.0 °C/WTherefore,Hence, the maximum resistance, R total , is:R total = R o + R c = 1.0 + 0.66 = 1.66 °C/WReaders should note the far right temperature distribution in Fig. 1 which is the result of a numerical simulation for the present problem in rectangular coordinates.Effect of Source LocationIn the following two sections, we will limit our examination to the current example problem. As we shall see, the result of this limited case study will allow us to draw some general yet useful conclusions. Suppose the same heat source in the above example was not centrally located, but mounted a distance away from the center. Obviously, the maximum temperature would further rise as compared to that found in the above example. Figure 3 shows the local resistances corresponding to two such cases:Figure 3 - Heat-sink local resistance showing the effect of source location:from L to R, heat source at (37.5,0) and (37.5,37.5)the first one is for the case where the heat source is mounted midway along the edge, and the other, where it is mounted on one corner of the heat sink. For these two special cases,the maximum spreading resistance can be calculated by using Eq. (1) for R c with input parameters t and R0 modified as shown below:R c = C x R c (A p,A s,k,t/C,R0/C)(3) with for the first case, and C = 2 for the second case. It is to be noted that this expression is independent of the source size. Numerically, for the current problem with a 25 x 25 mm heat source, it results in the maximum spreading resistances of 1.29 and2.38 °C/W, or the total resistances of 2.29 and3.38 °C/W for the first and second cases, respectively. For both cases, it can be shown that the average surface resistance has not changed from unity.For other intermediate source locations, numerical simulations were carried out and a plot is provided in Fig. 4 for the correction factor C f which can be used to compute the total resistance asR total = R0 + C f R c(4) where R c is determined from Eq. (1), given for the case with the heat source placed at the center.Figure 4 - Correction factor as a function of source locationThe coordinates in Fig. 4 indicate the location of the center of the heat source measured from the center of the base-plate in mm: the case with a centrally located heat source corresponds to (0,0), and the cases shown in Fig. 3 correspond to (37.5,0) and (37.5,37.5) for the first and second cases, respectively. Only one quadrant is shown in Fig. 4 as they would be, owing to the assumption of uniform cooling, symmetrical about (0,0). As can be seen from the figure, the correction factor increases from 1 as the heat source is placed away from the center. It is worthwhile noting that the increase is, however, very minimal over a wide region near the center, and most increases occur closer to the edges.Unlike C in the earlier expression, C f is case dependent (i.e. it depends on the heat-source size). However, it was found that the plots of C f obtained for many other cases exhibit essentially the same profile as that shown in Fig. 4, with magnitudes at the corners determined from Eq. (3), and the domain of the plot defined by the maximum displacement of the heat source. Based on this observation, a general conclusion can be made: for all practical purposes, as long as the heat source is placed closer to the center than to the edges of the heat sink, the correctional increase in the spreading resistance may be ignored, and C f =1 may be used. As noted above, this would introduce a small error of no greater than 5-10% in the spreading resistance which, in turn, is a fraction of the total resistance.So far, we have assumed a uniform cooling over the entire finned-surface area of the base-plate. Although this is a useful assumption, it is seldom realized in actual situations. It is well known that, due to the thinner boundary layer and the less down-stream heating effect, a device would be cooled more effectively if it is mounted toward the air inlet side. Again, a numerical simulation is carried out using our example problem with the boundary layer effect included.Figure 5 shows the resulting modified correction factor as a function of the distance from the center of the heat sink to the heat source placed along the center line at y=0: x = -37.5 mm corresponds to the front most leading edge location of the heat source and x = 37.5 mm the rear most trailing edge placement.Figure 5 - Correction factor modified for boundary layer effect at y=0As can be seen from the figure, it is possible to realize a small improvement by placing the heat source forward of the center location where C f < 1. However, it was experienced in practice that accommodating a heat source away from the center and ensuring its mounting orientation often cause additional problems during manufacturing and assembly processes.Summary and DiscussionA simple correlation equation is presented for determining spreading resistances in heat sink applications. A sample calculation is carried out for a case with a heat source placed at the center of the heat sink base-plate and a means to estimate the correction factor to account for the effect of changing the heat-source location is provided. It is to be noted that the correlation provided herein is a general solution which reduces to the well known Kennedy's solution3 when R0 approaches 0: the mathematical equivalent of isothermal boundary condition. Kennedy's solution is valid only when R0 is sufficiently small such that the fin-side of the heat sink base-plate is close to isothermal. Otherwise, Kennedy's solution, representing the lower boundary of the spreading resistance, may result in gross underestimation of the resistance.The earlier study revealed that, depending on the relative magnitude of the average heat sink resistance, the spreading resistance may either increase or decrease with the base-plate thickness. If the heat sink resistance is sufficiently small, as in liquid cooled heat sink applications, the spreading resistance always increases with the thickness, and an optimum thickness does not exist. On the other hand, if the heat sink resistance is large, as experienced in most air-cooled applications, the spreading resistance decreases with the thickness and a finite optimum thickness exists.It is to be noted that the present correlation calculates the spreading resistance only in the base-plate and does not account for the effect of additional spreading that may exist in other places, such as the fins in a planar heat sink. This additional spreading in the fins usually affects the spreading resistance in a similar way to a thicker base-plate. The current author found that an increase of 20% in the base-plate thickness during the calculation roughly accounts for the effect of this additional spreading in the fins of the same material for most planar heat sinks under air cooling. No modification is required for pin-fin heat sinks.Seri LeeAmkor Electronics, Inc.1900 South Price RoadChandler, AZ 85248, USATel: +1 (602) 821-2408 x 5459Fax: +1 (602) 821-6730Email: lees@References1.S. Lee, S. Song, V. Au, and K.P. Moran, Constriction/Spreading Resistance Model for ElectronicPackaging, Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference, Vol. 4, 1995, pp. 199-206.2.S. Song, S. Lee, and V. Au, Closed Form Equation for Thermal Constriction/Spreading Resistanceswith Variable Resistance Boundary Condition, Proceedings of the 1994 IEPS Conference, 1994, pp.111-121.3. D. P. Kennedy, Spreading Resistance in Cylindrical Semiconductor Devices, Journal of AppliedPhysics, Vol. 31, 1960, pp. 1490-1497.。