锆钛酸铅系压电陶瓷
- 格式:ppt
- 大小:416.50 KB
- 文档页数:13
压电材料的主要性能参数(1) 介电常数ε介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。
不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。
例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。
介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为ε=C ·t/A式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。
由于所需的检测频率较低,所以ε应大一些。
因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。
(2)压电应变常数压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U= 式中 U ——施加在压电晶片两面的压电;△t ——晶片在厚度方向的变形。
压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。
其值大,发射性能好,发射灵敏度越高。
(3)压电电压常数33g压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小:31(m/N)P U g V P=• 式中 P ——施加在压电晶片两面的应力;P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。
压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。
其值大,接收性能好,接收灵敏度高。
(4)机械品质因数机械品质因数也是衡量压电陶瓷的一个重要参数。
它表示在振动转换时材料内部能量消耗的程度。
产生损耗的原因在于内摩擦。
m E E θ=储损m θ值对分辨力有较大的影响。
机械品质因数越大,能量的损耗越小,晶片持续振动时间长,脉冲宽度大,分辨率低。
(5)频率常数由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 022LL C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。
压电效应材料的组成压电效应是指某些晶体材料在受到外力作用时,会产生电荷分离现象,从而产生电压。
这种效应被广泛应用于声波发生器、压力传感器、振动传感器等各种应用中。
在压电效应的实现中,材料的组成起着重要的作用。
本文将介绍几种常见的压电材料及其组成。
1. 铅锆钛酸钛(PZT):铅锆钛酸钛是一种经典的压电材料,由铅酸钛和锆酸钛组成。
铅锆钛酸钛具有优异的压电性能和储能性能,被广泛应用于超声波传感器、压电陶瓷换能器等领域。
其主要成分是铅、锆、钛等元素,通过合适的比例混合制备而成。
2. 锆钛酸铅(PTZ):锆钛酸铅是另一种常见的压电材料,由铅酸钛和锆酸钛组成。
与PZT相比,PTZ具有更高的压电系数和更宽的工作温度范围。
PTZ通常由铅、锆、钛等元素按照特定的配比制备而成。
3. 铁电材料:除了铅锆钛酸钛和锆钛酸铅,还有一些其他的铁电材料也具有压电效应。
铁电材料是一类具有铁电性质的材料,常见的有钛酸锶钡(SBS)、钛酸铋镧(BLT)等。
这些材料的主要成分包括钛、锶、钡、铋、镧等元素,通过合适的比例混合制备而成。
4. 聚合物压电材料:除了无机压电材料,还有一类聚合物也具有压电效应。
聚合物压电材料主要由聚合物基质和压电填料组成。
常见的聚合物基质有聚乙烯、聚丙烯等,而压电填料则通常是铅锆钛酸钛或锆钛酸铅等无机压电材料微粒。
通过将聚合物基质和压电填料进行混合、加工制备而成。
压电效应材料的组成对于其性能和应用具有重要影响。
不同的材料组成会导致其具有不同的压电性能、工作温度范围、机械强度等特点。
在选择压电材料时,需要根据具体的应用需求来确定合适的材料组成。
同时,材料的制备工艺也对其性能有影响,需要采用适当的方法进行制备和加工。
压电效应材料的组成是实现压电效应的关键。
常见的压电材料包括铅锆钛酸钛、锆钛酸铅、铁电材料和聚合物压电材料等。
它们的组成对于其性能和应用具有重要影响,需要根据具体需求选择合适的材料组成。
在制备和加工过程中,也需要采用适当的方法来提高材料的性能和稳定性。
压电陶瓷性能的老化与改善途径1 压电陶瓷性能老化的定义、规律及重要性极化处理后的压电陶瓷性能随存放时间的延长而变化的现象,称为其性能的老化(ageing)。
压电陶瓷放置的时间越长,总的变化量越大,但变化的速度会逐渐减缓。
这个变化是不可逆的,除非其受到新的激励和干扰(如重新人工极化处理等),否则不会再具有原来水平的性能。
一般规律是:介电常数、介电损耗、压电常数、弹性柔顺系数都变小;而频率常数、机械品质因数值变大。
而发现这些性能参数的变化基本上与时间的对数呈线性关系,即111()()lg ()y t y t t A y t t -= (1) 式中y 代表陶瓷材料的性能参数,y(t 1)是极化处理以后单位时间t 1(例如1天等)测得的该参数的值,y(t)是极化以后经过t 时间(例如100天等)后测得的值;t 1及t 以天数或小时数表示。
A 为常数,称为老化率。
若取以10为底的对数,求得的A 称为十倍时间老化率。
显然,∣A ∣越小,材料的稳定性就越好。
图1表示了BaTiO 3压电陶瓷性能参数的老化情况(以时间对数作横坐标的半对数作图)。
可以看出随着时间的延长,变化趋缓。
A 代表图线的斜率。
A >0,表示该参数随时间变大;A <0,表示该参数随时间变小。
图1 典型的BaTiO 3压电陶瓷性能参数的经时变化实验研究表明,A 的典型数值,对于谐振频率常数,在0.05%至1.5%之间,对于压电耦合系数与介电系数,A 值在-0.5%至-5%范围内。
介电损耗的A 为高负值,机械品质因数的A 为较高的正值。
必须指出,式(1)只是一个近似公式。
事实上,A 不是常数,否则按(1)式的变化规律,在足够长的时间以后,参数值趋向零或无穷大,而实际情况并不是这样。
图2为代表性PZT 压电陶瓷性能参数的老化情况。
可以看出,各项参数的老化率A 随时间有小的变化,半对数坐标作图的结果不是直线。
老化率A 的测定方法:按照有关参数的测试方法,测出第101天、第102天、第103天的参数值,然后按式(1)便可算出A 值。
压电陶瓷报告1.基本概念压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。
图1 BSPT压电陶瓷样品断面SEM照片每个小晶粒内还具有铁电畴组织,如图所示。
图PZT陶瓷中电畴结构的电子显微镜照片1.1晶胞结构目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、KxNa1-xNbO3、Pb(ZrxTi1-x)O3等。
该类材料的化学通式为ABO3。
式中A的电价数为1或2,B的电价为4或5价。
其晶胞(晶格中的结构单元)结构如图所示。
压电陶瓷的晶胞结构随温度的变化是有所变化的。
如下式及图6所示。
PbTiO3(PT ):四方相 立方相BaTiO3(BT ):三角相 正交相 四方相 立方相自发极化的产生以BT 材料由立方到四方相转变为例,分析自发极化的产生,如图7所示。
(a )立方相 (b )四方相由图可知,立方相时,正负电荷中心重合,不出现电极化;四方相时,因490℃ 120℃ 5℃ -90℃Ti4+沿c轴上移,O2-沿c轴下移,正负电荷中心不重合,出现了平行于c 轴的电极化。
这种电极化不是外加电场产生的,而是晶体内因产生的,所以成为自发极化,其相变温度TC称为居里温度。
1.2压电效应某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
其中,如果压力是一种高频震动,产生的就是高频电流。
如果将高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动)。
1.3压电陶瓷具有这种性能的陶瓷称为压电陶瓷,发生正压电效应时,表面电荷的密度与所受的机械应力成正比。
当发生负压电效应时,形变的大小与电场强度成正比。
1.4压电作用机理压电效应首先是在水晶晶体上发现的,现在我们以水晶晶体为模型,说明产生压电效应的物理机理。
当不施以压力时,水晶晶体正、负电荷中心如上图分布,设这时正、负电荷中心重合,整个晶体的总电矩等于零,晶体表面不荷电(不呈压电性)。
1. 大功率发射材料YT-8型压电陶瓷: 该压电陶瓷材料具有良好压电性,机械强度高、矫顽场高,强场介电损耗低。
它主要用于超声清洗、强力超声钻孔、超声焊接、洁牙机探头、美容仪探头、超声手术刀探头、心血管治疗仪探头等。
2. 高灵敏度接收材料YT-5型压电陶瓷: 该压电陶瓷材料具有高机电耦合系数,适宜的介电常数、较高的灵敏度。
它主要用于高灵敏度换能器、流量计换能器、液位计换能器、加速度计换能器、超声检测换能器等。
3. 收发两用材料YT-4型压电陶瓷: 该压电陶瓷材料介于YT-8与YT-5之间,兼顾二者特点,具有较高的灵敏度,又具有较低介电损耗,对于发射功率不大而且可同时做接收用的收发两用换能器,选用本材料最合适。
目前用该压电陶瓷材料生产的超声雾化换能器已批量投产。
4. PZT压电陶瓷是将二氧化铅、锆酸铅、钛酸铅在1200度高温下烧结而成的多晶体。
具有正压电效应和负压电效应。
PZT压电陶瓷(锆钛酸铅):其中P是铅元素Pb的缩写,Z是锆元素Zr的缩写,T是钛元素Ti的缩写
PZT是反铁电相PbZrO3和铁电相PbTiO3的二元固溶体,具有钙钛矿型结构。
PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族,
PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。
研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点.。
压电陶瓷基本术语介绍1 极化 polarization在电场作用下,电介质中束缚着的电荷发生位移或者极性按电场方向转动的现象,称为电介质的极化。
2 自发极化 spontaneous polarization在没有外电场作用时,铁电晶体或铁电陶瓷中存在着由于电偶极子的有序排列而产生的极化,称为自发极化。
在垂直于极化轴的表面上,单位面积的自发极化电荷量称为自发极化强度。
它是一个矢量,用P表示,其单位为C/m2。
3 铁电性 ferroelectricity某些材料在一定温度范围内具有自发极化。
而且其自发极化可以因外电场的作用而转向,材料的这种特性称为铁电性。
4 铁电畴 ferroeletric domain铁电体内部分成若干个小区域,自发极化方向一致的区域称为铁电畴,简称电畴。
两个畴之间的界面称为畴壁。
5 电滞回线 ferroelectric hysteresis loop在较强的交变电场作用下,铁电体的极化强度P随外电场呈非线性变化,而且在一定的温度范围内,P表现为电场E的双值函数,呈现出滯后现象,如图1`所示。
这个P-E(或D-E)回线就称为电滯回线。
6 反铁电性 anti-ferroelectricty反铁电体是一种反极性晶体。
由顺电相向反铁电相转变时,高温相的两个相邻晶胞产生反平行的电偶极子而成为子晶格,两者构成一个新的晶胞。
因此,晶胞的体积增大一倍。
其自由能与该晶体的铁电态自由能很接近,因而在外加电场作用下,它可由反极性相转变到铁电相,故可观察到双电滯回线。
这种性质称为反铁电性。
7 钙钛结构矿 perovskite structure具有钙钛矿结构的铁电,压电陶瓷属于ABO3型氧八面体,其中A为一价或二价金属离子,而B为四价或五价金属。
半径较大的A正离子,半径较小的B正离子和氧离子分别位于晶胞格子的顶角,体心和面心。
如图所示。
这种结构也可看成是一组BO6八面体按简立方图样排列而成,各氧八面体由公有的氧离子联结,A正离子占据氧八面体之间的空隙,钙钛矿原胞是立方的,也可畸变成具有三角和四方对称性。
收稿日期:2004203211 作者简介:李涛(19742),男,山东滕州人,讲师,硕士,主要从事铁电功能材料与纳米材料的研究。
文章编号:100422474(2006)0120069203锆钛酸铅纳米陶瓷粉体的低温水热合成李 涛,彭同江(西南科技大学工程技术中心,四川绵阳621010) 摘 要:使用TiO 2粉体、ZrOCl 2・8H 2O 、Pb (NO 3)2为原料,KO H 为矿化剂,Pb/(Zr +Ti )=1.0,在160℃下反应3h ,获取了分散性较好的锆钛酸铅纳米粉体。
用X 2射线衍射仪、扫描电子显微镜等测试手段分析了实验结果,结果表明,所得锆钛酸铅纳米粉体颗粒为四方晶相钙钛矿结构,呈立方体状,粒子粒径为 0.5~2.0μm ,同时分析了在本实验条件下锆钛酸铅纳米粉体可能的合成机理。
关键词:水热合成;锆钛酸铅;纳米粉体中图分类号:TN304 文献标识码:ALow T emperature H ydrothermal Synthesis of PZTPiezoelectricity Ceramics PowdersL I T ao ,PENG Tong 2jiang(Sout hwest University of Science and Technology ,Engineering and Technology Cenedr ,Mianyang 621010,China ) Abstract :Lead zirconate 2titanate (PZT )nano 2powders ware synthesized with the proportion of Pb/(Zr +Ti )=1.0by a hydrothermal method based on the reaction of TiO 2powders ,ZrOCl 2・8H 2O ,Pb (NO 3)2,and KO H at 160℃for 3h.The nano 2powders were characterized by X 2ray diff raction (XRD )and scanning electron microscopy (SEM ).The nano 2powders consists of cubic grains with tetragonal crystal phase and an average diameter of 0.5~2.0μm.A possible formation mechanism of PZT nano 2powders ware analyzed.K ey w ords :hydrothermal synthesis ;lead zirconate 2titanate ;nano 2powders 锆钛酸铅(Pb (Zr x Ti 1-x )O 3简称PZT )系列陶瓷是一类典型的压电陶瓷,因其具有居里温度高,机电性能优良,稳定性好等优点,在电子技术、超声技术、计算机技术等高新技术领域中广泛地用作滤波器、传感器、换能器、存储器等电子元器件[1]。
压电材料Qf值压电材料分为压电单晶体,多晶体压电陶瓷、高分子压电材料及聚合物-压电陶瓷复合材料四类。
由于其具有不同的工艺及应用特点,因此应用领域各有不同。
在这四类压电材料中,压电陶瓷占据有相当大的比重,也是目前市场上应用最为广泛的压电材料。
引言1880年居里兄弟发现,在石英晶体的特定方向上施加压力或拉力会使晶体表面出现电荷,并且电荷的密度与施加外力的大小成比例,这就是压电材料的正压电效应。
随后,居里兄弟又通过实验验证了逆压电效应,并且得到了石英晶体的正逆压电系数。
1894年沃伊特指出,结构上具有不对称中心的晶体介质都可能是压电材料。
在现代社会中,压电材料作为机电转换的功能材料,在高新领域扮演着重要的角色。
目前,利用压电材料制作的压电传感器广泛的应用于压电滤波器、微位移器、驱动器和传感器等电子器件中,在卫星广播、电子设备、生物以及航空航天等高新技术领域都有着重要的地位。
随着电子工业的快速发展,压电材料逐步出现复合化、功能特殊化、性能极限化和结构微型化等趋势,性能优良的压电材料将成为本世纪最重要的新材料之一。
压电效应原理压电材料即具有压电效应的一类功能材料。
压电效应是指材料在压力作用下产生电信号的效应;或者在电场作用下,材料发生机械形变的现象。
材料的压电性由压电常数决定,与晶体的对称性密切相关。
石英晶体是最早发现的压电晶体,也是目前最好的和最重要的压电晶体之一。
压电效应是由于晶体在机械力的作用下发生形变而引起带电粒子的相对位移,从而使得晶体的总电矩发生改变而造成的。
晶体是否具有压电性与晶体结构的对称性有关,只有具有不对称中心的晶体才有可能具有压电特性。
因为压电晶体首先必须是不导电的,同时结构上还必须要有分别带正电荷和负电荷的质点—离子或离子团的存在。
因此,压电晶体还必须是粒子性晶体或有离子团组成的分子晶体。
压电材料主要特性:一般来说,压电材料应具备以下几个主要特性:(1)转换特性:要求具有较高的压电常数d33;(2)机械性能:机械强度高、刚度大;(3)电性能:高电阻率和高介电常数,防止加载驱动电场时被击穿;(4)环境适应性:温度和湿度稳定性好,要求具有较高的居里点,工作温度范围宽;(5)时间稳定性:要求压电性能不随时间变化,增强压电材料工作稳定性和寿命。
压电陶瓷.txt机会就像秃子头上一根毛,你抓住就抓住了,抓不住就没了。
我和你说了10分钟的话,但却没有和你产生任何争论。
那么,我们之间一定有个人变得虚伪无比!过错是短暂的遗憾,错过是永远的遗憾。
相遇是缘,相知是份,相爱是约定,相守才是真爱。
基本概念所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。
在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。
电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。
用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。
编辑本段发现某些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。
具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。
反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。
1946年美国麻省理工学院绝缘研究室发现,在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞生了压电陶瓷。
常用的压电陶瓷有钛酸钡系、钛酸铅-锆酸铅二元系及在二元系中添加第三种ABO3(A 表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3)Nb2/3)O3和Pb(CO1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。