第4章-长基线水声定位系统(LBL)
- 格式:ppt
- 大小:2.00 MB
- 文档页数:56
LBL声学定位技术在深水膨胀弯测量中的应用戚蒿;李一凡;邓冠华【摘要】针对深海油气田由于饱和潜水员的下潜深度通常在300 m以内,无法依靠潜水员完成海底管线膨胀弯和跨接管的测量的问题,介绍长基线水下定位技术,利用该技术,南海某气田项目成功测量和安装了多条膨胀弯和跨接管.%The mooring monitoring data of each FPSO is different in various aspects.The configuration of existing mooring monitoring system of FPSO was investigated to summarize a simple method of sending back the mooring monitoring data to a moor-ing monitoring database without any drastic changes.【期刊名称】《船海工程》【年(卷),期】2017(046)005【总页数】4页(P164-166,174)【关键词】深水;长基线;声学定位;膨胀弯;精确测量【作者】戚蒿;李一凡;邓冠华【作者单位】中海油能源发展股份有限公司采油服务分公司,广东湛江524057;中海石油(中国)有限公司湛江分公司,广东湛江524057;中海油能源发展股份有限公司采油服务分公司,广东湛江524057【正文语种】中文【中图分类】P754膨胀弯和跨接管主要由弯头、直管段、法兰三部分组成,是整个海管系统的重要组成部分,用于吸收海底管线因热胀冷缩而产生的应力和应变。
膨胀弯和跨接管的水下精确测量、陆地准确预制和水下法兰对接安装质量是清管试压顺利进行的基础[1]。
然而,对于300 m以深的海上油气田来说,采用传统的饱和潜水员外加法兰测量仪的方式已经无法得到预制膨胀弯和跨接管所需的数据,同时,由于海上施工船队日费率极高,如何在最短的时间内完成2个对接法兰之间相对空间位置和方位角的精确测量就显得非常关键[2]。
基于并行蚁群算法的长基线定位方法张海如;汪俊;王海斌【摘要】为了降低各个误差源对水声目标导航定位精度的影响,该文将水声目标导航定位问题抽象为带约束条件的非线性优化问题,并论证了最优化表达式参数求解过程与降低误差源干扰的过程具有同一性;设计了并行蚁群算法求其最优解.海试数据处理结果表明,该方法具有收敛速度快、解稳定和定位精度高等优点,能有效地降低各个误差源对水声目标导航定位精度的影响.【期刊名称】《应用声学》【年(卷),期】2019(038)005【总页数】6页(P845-850)【关键词】长基线声学定位;导航定位;非线性优化;并行蚁群算法【作者】张海如;汪俊;王海斌【作者单位】中国科学院声学研究所声场声信息国家重点实验室北京 100190;中国科学院声学研究所声场声信息国家重点实验室北京 100190;中国科学院声学研究所声场声信息国家重点实验室北京 100190【正文语种】中文【中图分类】TP3910 引言目前,世界各国正积极实施“数字海洋”战略。
水下导航定位技术在“数字海洋”战略中扮演着非常重要的角色。
如何实现水下高精度导航定位已成为海洋开发与利用中最迫切的问题之一[1−3]。
长基线(Long baseline,LBL)定位系统具有定位精度高、可靠性好、可进行大面积和深水海域的定位等优点,获得了国内外该领域多个研究机构的研究兴趣。
文献[4]针对测量误差影响全向声呐浮标目标定位精度的问题,提出了采用总体最小二乘法对水下目标进行定位,仿真结果表明该方法优于求解定位方程组最小二乘解方法;文献[5]将同步模式下的水下目标定位问题简化为求解矩阵方程的问题,即采用球面交会的方法对目标进行定位,在此基础上,分析了目标测量深度误差、基元测量时间误差、基元位置测量误差、声速误差等相关参数的测量误差对定位精度的影响;文献[6]提出了一种改进的水声网络定位算法,该算法在进行定位运算前先对原始数据进行降噪处理,以提升其抗噪能力,同时降低了计算结果的冗余性。
第一章绪论1.名词解释(1)海洋测绘/海洋测绘学:研究海洋定位、测定海洋大地水准面和平均海面、海底和海面地形、海洋重力、海洋磁力、海洋环境等自然和社会信息的地理分布,及编制各种海图的理论和技术的学科。
(2)海洋:海洋是地球表面包围大陆和岛屿的广大连续的含盐水域,是由作为海洋主体的海水水体、溶解和悬浮其中的物质、生活于其中的海洋生物、邻近海面上空的大气、围绕海洋周缘的海岸和海底等部分组成的统一体。
(3)海岸带:海陆交互的地带,其外界应在15~20m等深浅一带,这里既是波浪、潮汐对海底作用有明显影响的范围,也是人们活动频繁的区域;其内界,海岸部分为特大潮汐(包括风暴潮)影响的范围,河口部分则为盐水入侵的上界。
(4)海岸线:近似于多年平均大潮、高潮的痕迹所形成的水陆分界线。
(5)潮上带(海岸):高潮线以上狭窄的陆上地带,大部分时间里裸露于海水面之上,仅在特大风暴潮时才被淹没,故又称为潮上带。
⑹潮间带(海滩):高低潮之间的地带,高潮时被水淹没,低潮时露出水面,故又称为潮间带。
(7)潮下带(水下岸坡):低潮线以下直到波浪作用所能到达的海底部分,又称为潮下带。
(8)大陆边缘:大陆与大洋连接的边缘地带,也是大陆与大洋之间的过渡带。
通常由大陆架、大陆坡、大陆隆及海沟组成。
(9)大陆架:大陆周围被海水淹没的浅水地带,是大陆向海洋底的自然延伸,其范围是从低潮线起以极其平缓的坡度延伸到坡度突然变大的地方(大陆架外缘)为止。
(10)内海:亦称内水,指领海基线以内的水域。
(11)领海:沿海国主权之下的、与其陆地或内海相邻接的一定宽度的水域。
(12)领海基线:沿海国家测算领海宽度的起算线。
(13)毗连区:一种毗连国家领海并在领海外划定的一定宽度、供沿海国行使关于海关、财政、卫生和移民等方面管制权的一个特定区域。
(14)大陆专属经济区:领海以外并邻接领海,介于领海与公海之间,具有特定法律制度的国家管辖水域。
(15)绝对精度(点位精度):指确定的点相对于某一参考点或坐标系的可靠性,属于外符合精度。
in tegrated positi oning system 卫星-声学组合定位系统satellite-acoustics卫星-声学组合定位系统是将卫星接收机接口和声学定位系统接口与计算机连接,并相应连接其他定位设备所组成的定位系统。
产品种类:1基于GPS孚标的水下长基线(LBL)定位系统1)定位精度与DGPS精度相当;2)定位范围20-100平方公里2高精度短基线(SBL)和超短基线(USBL)定位系统1 )工作半径大于4公里2 )定位精度优于1%斜距3 )使用方便灵活3水下声学应答器/释放器可工作在水下1000米/4000米/8000米4水声通信链通信速率240-2400bps5根据用户需求的水下声学定位系统主要应用领域:海洋工程、水下考古、海洋资源勘探与开发、近岸工程、水下反恐、水下RUV/UUV/AUX定位与导航、蛙人/潜员水下定位与导航。
GAPS型全球声学定位系统仪器介绍:该系统是一套无需标定的便携式超高精度超短基线(USBL系统,它将惯性导航与水下声学定位完美地结合在一起,并融入了GPS定位技术。
这使它能最大限度地满足水面和水下定位及导航的需要。
可同时对多个水下目标(ROV AUV拖鱼)精确定位,并可提供高精度的姿态及航向数据。
即使在GPS数据中断或有跳点的情况下,仍不丢失定位数据。
在系统的有效作用距离内,不管水深多大,均可保持水下目标定位数据的高速更新输岀。
技术规格:水下定位精度:斜距的0.2%;有效距离:4000m ;覆盖范围:200o(声学阵下方);工作频率:20〜30kHz。
法国IXSEA GAPS全球声学定位惯性导航系统♦惯性导航和水下声学宦位的完美组合GAPS是一套勿需标定的便携式、即插即用趙短基融声学宦位(USBL)制性导航磁它将高蓿度光纤紀螺惯性导就技术与水下声学址位究芙地结合在 -曲年融人了GF5测駁技术,斎逾可臥同时追踪爹个水F目标,这愎用妄須途的CAPS能呈大琨度她满足海jE j和水卜宦位及导航的要求"• 水下声学定位的一场革命传统的USBL系统由于涉及的外弼传感器多,如罗经、运动传感器、声学换能器等,在系统T作之前,等传感器之间的相对偏移虽需要宿确的测虽,系统还需要进厅海I.杯定。
第一章绪论1. 名词解释(1) 海洋测绘/海洋测绘学:研究海洋定位、测定海洋大地水准面和平均海面、海底和海面地形、海洋重力、海洋磁力、海洋环境等自然和社会信息的地理分布,及编制各种海图的理论和技术的学科。
(2) 海洋:海洋是地球表面包围大陆和岛屿的广大连续的含盐水域,是由作为海洋主体的海水水体、溶解和悬浮其中的物质、生活于其中的海洋生物、邻近海面上空的大气、围绕海洋周缘的海岸和海底等部分组成的统一体。
(3) 海岸带:海陆交互的地带,其外界应在15~20m等深浅一带,这里既是波浪、潮汐对海底作用有明显影响的范围,也是人们活动频繁的区域;其内界,海岸部分为特大潮汐(包括风暴潮)影响的范围,河口部分则为盐水入侵的上界。
(4) 海岸线:近似于多年平均大潮、高潮的痕迹所形成的水陆分界线。
(5) 潮上带(海岸):高潮线以上狭窄的陆上地带,大部分时间里裸露于海水面之上,仅在特大风暴潮时才被淹没,故又称为潮上带。
(6) 潮间带(海滩):高低潮之间的地带,高潮时被水淹没,低潮时露出水面,故又称为潮间带。
(7) 潮下带(水下岸坡):低潮线以下直到波浪作用所能到达的海底部分,又称为潮下带。
(8) 大陆边缘:大陆与大洋连接的边缘地带,也是大陆与大洋之间的过渡带。
通常由大陆架、大陆坡、大陆隆及海沟组成。
(9) 大陆架:大陆周围被海水淹没的浅水地带,是大陆向海洋底的自然延伸,其范围是从低潮线起以极其平缓的坡度延伸到坡度突然变大的地方(大陆架外缘)为止。
(10) 内海:亦称内水,指领海基线以内的水域。
(11) 领海:沿海国主权之下的、与其陆地或内海相邻接的一定宽度的水域。
(12) 领海基线:沿海国家测算领海宽度的起算线。
(13) 毗连区:一种毗连国家领海并在领海外划定的一定宽度、供沿海国行使关于海关、财政、卫生和移民等方面管制权的一个特定区域。
(14) 大陆专属经济区:领海以外并邻接领海,介于领海与公海之间,具有特定法律制度的国家管辖水域。
长基线水声定位基阵阵形优化设计1. 研究背景与意义介绍长基线水声定位在海洋勘探、海事救援、水下建设等领域的广泛应用,并阐述基阵阵形优化设计的研究意义和应用前景。
2. 基阵阵形优化设计的原理与方法2.1 传统的长基线水声定位方法2.2 基阵阵形优化设计的原理2.3 基阵阵形优化设计的方法和流程3. 基阵阵形优化设计的关键技术3.1 基阵阵形的参数选取3.2 阵元间距的优化3.3 基阵长度的选择3.4 基阵与基线的配合4. 基阵阵形优化设计的实验分析4.1 设计实验方案4.2 实验结果分析4.3 结果验证与误差分析5. 基阵阵形优化设计的应用与展望5.1 基阵阵形优化设计在海洋勘探中的应用5.2 基阵阵形优化设计在水下建设中的应用5.3 基阵阵形优化设计在海事救援中的应用5.4 未来的发展和研究方向注:以上仅为提纲内容,具体的论文结构、排版和具体细节可根据需要进行调整。
长基线水声定位是利用声波在水中的传播特性,在海洋中测量水下目标位置的技术。
近年来,随着海事勘探、水下建设以及海洋环境监测等领域的不断发展,长基线水声定位技术也逐渐得到了广泛的应用。
长基线水声定位技术的优势在于精度高、可靠性强、波束宽度小、覆盖范围广,适用于各种复杂的水下环境。
因此,如何进一步提高长基线水声定位系统的性能和精度,是海洋工程领域亟待解决的一项问题。
基阵阵形优化设计是最近几年在长基线水声定位系统中广泛研究的一个领域。
传统的长基线水声定位系统主要采用三点定位和多边定位方法,这种方法需要多个声源和接收器的协作,无法有效地减少系统误差。
同时,由于声源和接收器的固定方式和位置的影响,传统的定位系统测量精度也有局限性。
而基阵阵形优化设计则可以通过合理的阵列布局和协同工作方式,有效地降低定位误差、提高定位精度,提高系统性能。
基阵阵形优化设计不仅仅是简单的阵列布局,还涉及到多个方面的优化设计。
比如,阵元间距、基阵长度、阵面朝向和配合基线等多个参数对系统性能影响需要进行详细的优化研究。
基于长基线水声定位系统水下定位技术初步应用研究田春和;秦建【摘要】Long baseline positioning system, referred to as LBL,is a kind of high precise deep underwater posi⁃tioning system. Based on analyzing the development situations of LBL, the positioning theory and method were stud⁃ied systematically according to the experiment in Songhua lake, and the problems of seabed beacons laying, fixation and recycle in 50 m water depth were solved in this paper. Then relative calibration (baseline calibration) method and absolute calibration (box⁃in) were explored, and the tracking and positioning mode of localizer was determined. An integrated system and a positioning process of LBL were formed, and the high precise underwater positioning da⁃ta were obtained.%长基线定位系统(Long Baseline),简称LBL,是一种高精度深水水下定位系统。
文章在介绍了国内外LBL发展现状基础上,通过松花湖LBL水下定位系统试验,介绍了其定位理论和方法,解决了50 m水深海底信标布放、固定及回收问题,探索了海底应答器相对校准(基线校准)、绝对校准方法,确定了定位标的跟踪定位方式,形成了相对完整的LBL水下定位流程和方法体系,得到了高精度水下定位数据,为实际工程应用提供了真实的理论基础。