基因工程讲义总结精品
- 格式:ppt
- 大小:1.69 MB
- 文档页数:25
基因工程总结一.概念(1)原理:。
(2)优点:与杂交育种相比,;与诱变育种相比,。
(3)基因工程成功的原因:①成功拼接的原因:②成功表达的原因:二.基本工具1、两种酶:(1):作用特点:。
(2):E ·coli DNA 连接酶与T 4 DNA 连接酶的区别:2、一种运载体(1)条件:①;②;③具有特殊的标记基因(作用:)(2)种类:最常用;其他动植物病毒、三、操作程序(1):方法:①:不知道脱氧核苷酸序列②:已知目的基因两端一小段序列,便于③利用化学方法人工合成:知道全部序列,且基因比较小。
这种方法不需要模板。
(2)——基因工程的核心基因表达载体的组成:(3)生物种类常用方法受体细胞将目的基因插入到Ti 植物动物受精卵将含有目的基因的表+微生物原核细胞Ca 2处理细胞→感受态细胞→重组表达载体DNA 分子与感受态细胞混合→感受态细胞吸收DNA 分子质粒的T-DNA 上→农达载体提纯→取卵转化过程杆菌→导入植物细胞→整合到受体细胞染(受精卵)→显微注射→受精卵发育→获得色体的DNA 上→表达具有新性状的动物(4)①目的基因是否插入到转基因生物的染色体DNA 上:②是否转录:③是否翻译:④个体水平鉴定:抗虫、抗病接种实验易错点说明:1、切割目的基因和运载体的要求:用限制酶。
目的是:。
同种的含义是:同一种或相同两种,即单酶切或双酶切。
选择双酶切的原因是。
2、工具≠工具酶;运载体≠质粒。
3、启动子≠起始密码子,终止子≠终止密码子起始密码子和终止密码子位于mRNA上,分别控制翻译过程的启动和终止。
启动子:。
终止子:一段有特殊结构的DNA短片段,位于基因的尾端,作用是使转录过程停止。
4、基因探针的要求:①单链②有③5、农杆菌转化法中的“2”次导入:第一次:将含有目的基因的T—DNA的质粒导入农杆菌;第二次(非人工操作):将含有目的基因的T—DNA导入受体细胞并整合到植物细胞的染色体DNA上。
6、转化:。
《基因工程的基本操作程序》讲义基因工程是现代生物技术的核心,它让我们能够按照人类的意愿改造生物的遗传特性。
下面咱们就来详细说一说基因工程的基本操作程序。
一、获取目的基因目的基因是我们想要导入受体细胞的特定基因。
获取目的基因的方法主要有以下几种:1、从基因文库中获取基因文库就像是一个基因的大仓库,里面存放着各种各样的基因。
我们可以根据目的基因的有关信息,比如它的核苷酸序列、功能等,从基因文库中筛选出我们需要的目的基因。
2、利用 PCR 技术扩增目的基因PCR 技术就像是基因的复印机。
如果我们已经知道了目的基因的核苷酸序列,就可以设计引物,通过 PCR 反应让目的基因在短时间内大量扩增。
3、人工合成当目的基因较小,而且核苷酸序列又已知的时候,我们可以通过化学方法直接人工合成目的基因。
二、构建基因表达载体有了目的基因还不够,还得给它安个“家”,这个“家”就是基因表达载体。
基因表达载体就像是一辆搭载着目的基因的“专车”,能把目的基因准确无误地送到受体细胞中,并且让目的基因能够稳定存在和表达。
基因表达载体通常包括以下几个部分:1、启动子启动子就像是基因表达的“开关”,它能启动目的基因的转录。
2、终止子终止子就像是基因表达的“刹车”,它能让转录在需要的时候停止。
3、标记基因标记基因就像是基因表达载体的“身份证”,它能帮助我们筛选出含有目的基因的受体细胞。
4、目的基因这是我们想要导入受体细胞的基因。
构建基因表达载体是基因工程的核心步骤,一般需要用到限制酶和DNA 连接酶。
限制酶能够识别特定的核苷酸序列,并在特定的位点切割 DNA 分子;DNA 连接酶则能够把切割后的 DNA 片段连接起来,形成一个完整的基因表达载体。
三、将目的基因导入受体细胞目的基因只有进入受体细胞,并且在受体细胞中稳定存在和表达,才能发挥作用。
将目的基因导入受体细胞的方法有很多种,下面介绍几种常见的方法:1、农杆菌转化法对于植物细胞来说,农杆菌是一种天然的“基因运输员”。
第18讲 基因工程考点01 基因工程★ 考向1 基因工程的理论基础1、基因工程的理论基础2、基因工程的基本操作程序(1)目的基因的获取:方法有从基因文库中获取、利用PCR 技术扩增和人工合成。
(2)基因表达载体的构建:是基因工程的核心步骤,基因表达载体包括目的基因、启动子、终止子和标记基因等,启动子在基因的首段,它是RNA 聚合酶的结合位点,能控制着转录的外源基因在受体细胞内表达理论 基础 ①基因是控制生物性状的遗传物质的结构和功能的基本单位。
②遗传信息的传递都遵循中心法则。
③生物界共用一套遗传密码。
重组DNA : 载体+目的基因 复制转录 RNA 翻译 蛋白质基因拼接 ①DNA 的基本组成单位都是四种脱氧核苷酸。
②DNA 分子都遵循碱基互补配对原则。
③双链DNA 分子的空间结构都是双螺旋结构。
开始;终止子在基因的尾端,它控制着转录的结束;标记基因便于目的基因的鉴定和筛选。
(3)将目的基因导入受体细胞:根据受体细胞不同,导入的方法也不一样,将目的基因导入植物细胞的方法有农杆菌转化法、基因枪法和花粉管通道法;将目的基因导入动物细胞最有效的方法是显微注射法;将目的基因导入微生物细胞的方法是感受态细胞法。
(4)目的基因的检测与鉴定。
分子水平上的检测:①检测转基因生物染色体的DNA是否插入目的基因--DNA分子杂交技术;②检测目的基因是否转录出了mRNA--分子杂交技术;③检测目的基因是否翻译成蛋白质--抗原-抗体杂交技术,个体水平上的鉴定:抗虫鉴定、抗病鉴定、活性鉴定等。
易错警示:辨析农杆菌转化法中的两次拼接与两次导入(1)两次拼接:第一次拼接是将目的基因拼接到Ti质粒的T-DNA中;第二次拼接指被插入目的基因的T-DNA被拼接到受体细胞染色体的DNA上。
(2)两次导入:第一次导入是将含目的基因的Ti质粒导入农杆菌;第二次导入是将含目的基因的T-DNA导入受体细胞。
3、DNA的粗提取与鉴定(1)原理:利用DNA、RNA、蛋白质和脂质等在物理和化学性质方面的差异,提取DNA,去除其他成分。
《基因工程的基本操作程序》讲义基因工程,这一现代生物技术的核心领域,为我们打开了一扇通往生命奥秘和创新应用的大门。
它让我们能够在分子水平上对生物的遗传物质进行操作和改造,从而实现特定的目标。
接下来,让我们深入了解基因工程的基本操作程序。
一、获取目的基因目的基因是我们期望在受体细胞中表达和发挥特定功能的基因。
获取目的基因的方法多种多样。
一种常见的方法是从基因文库中获取。
基因文库就像是一个基因的“图书馆”,包含了某种生物的全部基因。
我们可以根据目的基因的相关信息,在这个“图书馆”中进行筛选和查找。
另一种方法是利用 PCR 技术扩增目的基因。
PCR 技术就像是一台基因的“复印机”,能够以少量的 DNA 为模板,通过多次循环的变性、退火和延伸过程,快速大量地扩增出特定的基因片段。
此外,如果已知目的基因的核苷酸序列,还可以通过化学方法人工合成目的基因。
二、构建基因表达载体获取了目的基因后,接下来需要构建基因表达载体。
这就像是给目的基因打造一个“专车”,使其能够顺利地进入受体细胞并发挥作用。
基因表达载体通常由目的基因、启动子、终止子、标记基因等部分组成。
启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。
终止子则像是“停车信号”,告诉基因表达在何处结束。
标记基因则用于筛选和鉴定含有目的基因的受体细胞,常见的标记基因有抗生素抗性基因等。
构建基因表达载体时,需要使用限制酶和 DNA 连接酶等工具酶。
限制酶能够识别特定的核苷酸序列,并在特定的位点切割 DNA 分子。
DNA 连接酶则能够将切割后的 DNA 片段连接起来,形成完整的基因表达载体。
三、将目的基因导入受体细胞有了基因表达载体,接下来要将其导入受体细胞。
这是基因工程中的关键步骤之一,就像是把“专车”开到目的地。
导入植物细胞的方法有农杆菌转化法、基因枪法和花粉管通道法等。
农杆菌转化法是利用农杆菌能够感染植物细胞,并将其 Ti 质粒上的TDNA 转移到植物细胞中的特点来实现目的基因的导入。
基因工程重点总结(完整)基因工程名词解释:基因工程:重组DNA技术或者基因转移技术,在体外将核酸分子插入病毒、质粒或其他载体分子,构成遗传物质的新组合,并使之渗入到原先没有这类分子的宿主细胞内,而能持续稳定的传递和表达。
报告基因:其编码产物能够被快速测定,常用来判断外源基因是否成功地导入受体细胞(器官或组织)并检测其表达活性的一类特殊用途的基因。
双元载体:由两个分别含有T—DNA和Vir区的相容性突变Ti质粒构成的双质粒载体系统。
受体系统:用于转化的外植体通过组织培养途径或其他非组织培养途径,能高效、稳定地再生无性系,并能接受外源基因的整合,对转化选择抗生素敏感的再生系统。
正负选择法:哺乳动物细胞转染DNA发生随机整合的几率相当高,而同源重组的频率则相当低。
正是由于这种缘故,给哺乳动物细胞的基因定向插入事件的检测造成了很大困难。
用于富集同源重组事件的特殊试验体系,涉及正选择和负选择两个方面。
基因靶标:通过在转染细胞中发生的外源基因与核基因组目标基因之间的DNA同源重组,使外源基因定点地整合到核基因组的特定位置上,从而达到改变系把你遗传特性的目的。
密码子使用的偏爱性:无论是真核基因还是原核基因,一种特定的氨基酸并不是以同等频率使用所有的同义密码子,而主要使用其中的某一两种。
这种密码子使用的非随机性现象选择标记基因:用于鉴别目标DNA的存在,将成功转化了质粒的宿主挑选出来的基因。
主要是一类编码可使抗生素或除草剂失活的蛋白酶基因。
HA T选择法:由于选择TK+细胞的培养基含有次黄嘌呤、氨基蝶呤和胸苷,所以称之为。
生殖细胞浸泡法:将供试外植体如种子、胚、胚珠、子房、花粉粒、幼穗悬浮细胞培养物等直接浸泡在外源DNA溶液中,利用渗透作用把外源基因导入受体细胞并稳定地整合、表达和遗传。
胚囊、子房注射法:使用微量注射器把外源DNA溶液注射到子房或胚囊中,由于卵细胞的吸收使外源DNA进入受精的卵细胞中,从而获得转基因的种子。
基因工程总结教学总结第一章绪论1、基因工程的含义:按照人们的意愿,进行严密的设计,通过体外DNA重组和转基因等技术,有目的地改造生物种性,使现有的物种在较短时间内趋于完善,创造出更符合人们需求的新的生物类型。
2、基因工程的优点:打破物种间基因交流的隔离界限;②克服常规育种的周期长,效率低的缺点,定向改造生物性状;③可按照人的意愿去改造物种。
3、基因工程理论依据:不同基因具有相同的物质基础;②基因是可分割的;③基因是可以转移的;④多肽与基因之间存在对应关系;⑤遗传密码是通用的;⑥基因可以通过复制传递给下一代。
注:基因工程及其应用的图解看看第二章DNA重组的相关技术及原理1、重组DNA技术的原理重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序2、碱性SDS法提取质粒DNA原理:强碱使所有DNA变性沉淀,而pH为中性时,质粒DNA复性快,形成闭合环状从沉淀物中分离。
3、提取DNA总的原则保证核酸一级结构的完整性;其他生物大分子如蛋白质、多糖和脂类分子的污染应降低到最低程度;核酸样品中不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子;其他核酸分子,如RNA也应尽量去除。
4、核酸鉴定浓度鉴定②纯度鉴定③完整性鉴定5、限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列(4-8bp),并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
6、限制性内切酶的命名用属名的第一个字母和种名的头两个字母组成3个字母的略语表示寄主菌的物种名。
大肠杆菌(Escherichiacoli)Eco流感嗜血菌(Haemophilusinfluenzae)Hin用一个右下标的大写字母表示菌株或型。
如Ecok,Ecor(现在都写成平行,如EcoR)。
如果一种特殊的寄主菌内有几种不同的限制性内切酶,用罗马字母表示。
基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。
下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。
一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。
其实现的基本原理包括基因定位、基因克隆和基因传递。
1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。
常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。
2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。
常用的方法有限制酶切、连接酶切和DNA合成等。
3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。
常用的方法有基因枪、电穿孔和冷冻贮存等。
二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。
1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。
通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。
2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。
通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。
基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。
此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。
3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。
通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。
此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。
三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。
基因工程知识点总结基因工程,这个在现代生物学中熠熠生辉的领域,正以惊人的速度改变着我们的生活和对生命的认知。
它就像是一把神奇的钥匙,开启了无数未知的大门,为解决人类面临的诸多问题带来了前所未有的希望和可能。
一、基因工程的定义与基本原理基因工程,简单来说,就是按照人们的意愿,将一种生物的基因在体外进行切割、拼接和重组,然后导入另一种生物的细胞内,使之稳定遗传并表达出相应产物的技术。
其基本原理基于三个重要的步骤:首先是获取目的基因,这就像是在茫茫基因海洋中找到我们想要的那一颗珍珠;其次是构建基因表达载体,相当于给这颗珍珠打造一个合适的盒子,使其能够安全、有效地传递;最后是将重组 DNA 分子导入受体细胞,并使其在受体细胞中稳定存在和表达。
二、获取目的基因的方法1、从基因文库中获取基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。
我们可以根据已知的信息,从这个文库中筛选出我们需要的目的基因。
2、利用 PCR 技术扩增目的基因PCR 技术就像是一个基因的复印机,能够以极少量的基因片段为模板,快速大量地复制出我们想要的基因。
3、人工合成法如果已知目的基因的核苷酸序列,或者其氨基酸序列,我们可以通过化学方法直接人工合成目的基因。
三、基因表达载体的构建基因表达载体是基因工程的核心部分,它就像是一辆专门运输基因的列车,需要具备多个关键组件。
1、启动子启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。
2、终止子终止子则是基因表达的“刹车”,告诉基因在何处停止表达。
3、标记基因标记基因就像是一个个小标签,帮助我们筛选出成功导入目的基因的受体细胞。
4、目的基因这是我们最终想要表达的基因片段。
四、将目的基因导入受体细胞1、导入植物细胞(1)农杆菌转化法农杆菌就像是一个天然的基因运输工具,能够将其携带的基因转移到植物细胞中。
(2)基因枪法通过高速的微粒将目的基因直接打入植物细胞。
(3)花粉管通道法利用花粉管通道将目的基因导入植物的受精卵中。
《基因工程的原理》讲义一、什么是基因工程基因工程,简单来说,就是一种在分子水平上对基因进行操作的技术。
它就像是一把神奇的“分子剪刀”,能够让我们按照自己的意愿,对生物的基因进行剪裁、拼接和重组,从而创造出具有新特性的生物。
基因是生命的蓝图,它决定了生物的各种特征和功能。
而基因工程则为我们提供了一种直接干预和改变这些蓝图的手段。
通过基因工程,我们可以将一个物种的基因转移到另一个物种中,赋予后者原本不具备的特性。
二、基因工程的基本工具要实现基因工程,就需要一些特殊的工具,就像工匠需要合适的工具才能打造出精美的作品一样。
1、限制性内切酶限制性内切酶就像是一把极其精准的“分子剪刀”,能够识别特定的核苷酸序列,并在这个位置将 DNA 分子切断。
不同的限制性内切酶识别的序列不同,这使得我们能够在特定的位置对 DNA 进行切割,为后续的基因重组做好准备。
2、 DNA 连接酶当我们把基因片段切割下来之后,需要把它们重新连接起来。
这时候,DNA 连接酶就派上用场了。
它能够将两个 DNA 片段的末端连接起来,形成一个完整的 DNA 分子。
3、载体基因片段很小,很难直接进入细胞发挥作用。
这时候就需要一个载体来帮忙,常见的载体有质粒、噬菌体和病毒等。
载体就像是一辆“小货车”,能够把我们需要的基因片段装载起来,并运输到目标细胞中。
三、基因工程的基本步骤1、目的基因的获取首先,我们要确定需要的基因,也就是目的基因。
这可以通过从生物的基因组中直接分离,或者利用 PCR 技术(聚合酶链式反应)进行扩增得到。
2、基因表达载体的构建将获取的目的基因与载体连接,构建成基因表达载体。
这一步就像是把货物装到货车上,并且要确保货物能够在货车上稳定存在,并且能够在合适的时候被卸载下来。
3、将目的基因导入受体细胞这一步就是要把装载着目的基因的载体“小货车”开到受体细胞里。
常用的方法有农杆菌转化法、基因枪法、花粉管通道法等,对于动物细胞,可以采用显微注射法,对于微生物细胞,可以用感受态细胞法。
基因工程知识点总结基因工程是一门新兴的科学,主要是通过改变基因结构并将其用于创造新型物种来解决现今生物科技技术领域中的一系列问题。
它具有高度的发展潜力,可以在许多领域发挥强大的作用,如化学工程、物理工程和信息技术等。
它的应用有助于改变现有的物种、修复基因缺陷和开发新的基因特征。
在本文中,将讨论基因工程的基本理念、过程、技术和应用。
1、基本理念基因工程是一种技术,可以用来修改和改变基因特征。
它将基因的改变带入生物体,从而影响其物种性状。
主要思想是通过引入外源基因改变或修改本地基因,使生物体产生新的特性,如生产特定蛋白质、抗病毒性或种植新品种等。
2、过程步骤一:选择要改变或修改的基因,并确定改变或修改的目的。
步骤二:将基因片断复制或增殖,以便将它们移植到其他有机体中。
步骤三:将克隆的基因片段植入有机体中,以便基因改变或修改产生一种新的特性。
步骤四:观察和测试植入的基因是否发挥预期的作用。
3、技术分子克隆是基因工程最常用的技术之一。
分子克隆程序是指把一段小片段的DNA剥离、复制和植入一个有机体中。
此外,原核表达系统(PEER)也是基因工程中常用的技术,它可以把不可见的DNA序列与可见蛋白质相互连接,使基因的遗传特性在实验室中可见。
4、应用基因工程的应用可以帮助科学家创造新的细胞、物种和药物等。
例如,它可以用于制造抗病毒治疗或抗生素,以帮助解决抗药性问题,以及修改物种和植物,以改变他们的生长特征、口感和外观等。
此外,它还可以用于设计新的生物分子装置,帮助科学家解决日常问题。
综上所述,基因工程是一种令人兴奋的技术,它可以解决日常生物科学问题,并帮助人类的社会发展。
其优点在于可以节省时间和金钱,以及减少了较少的和谐,例如使用抗生素抵抗病毒。
虽然基因工程在一定程度上提高了人们的生活质量,但也存在一些风险。
它可能会导致过度开发、环境污染和细胞和生物变异等不良后果。
因此,未来的发展将要求科学家做出更多的选择,以确保其应用的安全性和有效性。
高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,对于我们理解生命的奥秘和解决现实中的许多问题具有重要意义。
接下来,让我们一起深入学习高中生物中基因工程的相关知识点。
一、基因工程的概念基因工程,又称为 DNA 重组技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
二、基因工程的基本工具1、限制性核酸内切酶(简称限制酶)这是基因工程中的“剪刀”,能够识别特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
2、 DNA 连接酶它是基因工程中的“针线”,能将两个具有相同末端的 DNA 片段连接起来。
3、运载体常见的运载体有质粒、噬菌体和动植物病毒等。
运载体需要具备的条件包括:能够在宿主细胞中稳定保存并自我复制;具有多个限制酶切点,以便与外源基因连接;具有标记基因,便于筛选含有目的基因的受体细胞。
三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界中已有的物种中分离出来,也可以通过人工合成的方法获取。
常用的方法有从基因文库中获取、利用 PCR 技术扩增目的基因等。
2、基因表达载体的构建这是基因工程的核心步骤。
目的基因与运载体结合形成重组 DNA 分子,这个过程需要用到限制酶和 DNA 连接酶。
重组 DNA 分子除了包含目的基因外,还需要有启动子、终止子和标记基因等元件。
3、将目的基因导入受体细胞将目的基因导入植物细胞常用的方法有农杆菌转化法、基因枪法和花粉管通道法;导入动物细胞常用的方法是显微注射法;导入微生物细胞则常用感受态细胞法。
4、目的基因的检测与鉴定目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,需要进行检测与鉴定。
检测的方法包括分子水平的检测和个体水平的鉴定。
《基因工程赋予生物新的遗传特性》讲义在当今科技飞速发展的时代,基因工程作为一项具有革命性的生物技术,正以前所未有的方式改变着我们对生命的理解和塑造能力。
它犹如一把神奇的钥匙,为生物打开了一扇通往新遗传特性的大门,为人类带来了无限的可能和机遇。
一、基因工程的基本概念和原理基因工程,简单来说,就是在分子水平上对基因进行操作的技术。
它基于我们对基因的结构和功能的深入了解,通过一系列精细的实验手段,实现对生物体遗传信息的改造和重组。
基因是生物体遗传信息的基本单位,它们以特定的序列排列在染色体上。
基因工程的核心原理就是要对这些基因进行切割、拼接和转移,以创造出具有新的遗传组合的生物体。
这其中,关键的工具包括限制酶、DNA 连接酶和载体。
限制酶能够识别特定的碱基序列,并在这些位置将 DNA 分子切断。
而 DNA 连接酶则负责将切割后的 DNA 片段重新连接起来。
载体,比如质粒和病毒,它们可以携带我们想要转移的基因片段进入受体细胞。
二、基因工程的操作步骤基因工程的操作通常包括以下几个主要步骤:首先是目的基因的获取。
这可以通过从生物体的基因组中直接分离,或者利用反转录技术从 mRNA 合成 cDNA 来实现。
然后是基因载体的构建。
选择合适的载体,并将目的基因连接到载体上,形成重组 DNA 分子。
接下来是将重组 DNA 分子导入受体细胞。
常用的方法有转化、转染和感染等,要根据受体细胞的类型和特点选择合适的导入方式。
导入后的受体细胞需要经过筛选和鉴定,以确定哪些细胞成功地接纳了目的基因并表达出相应的产物。
三、基因工程赋予生物的新遗传特性基因工程为生物带来了多种多样的新遗传特性,这些特性在农业、医学、工业等领域都发挥着重要的作用。
在农业方面,通过基因工程,我们可以培育出具有抗病虫害能力的作物。
比如,将编码抗虫蛋白的基因导入农作物中,使它们能够自身产生抵抗害虫的物质,减少农药的使用,既降低了成本,又保护了环境。
还可以改良作物的品质。
基因工程知识点总结一、基因工程的概念基因工程,又称基因拼接技术或 DNA 重组技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
简单来说,基因工程就是在分子水平上对基因进行操作的复杂技术。
二、基因工程的工具(一)“分子手术刀”——限制性核酸内切酶(限制酶)1、来源:主要从原核生物中分离纯化出来。
2、特点:能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
3、作用结果:产生黏性末端或平末端。
(二)“分子缝合针”——DNA 连接酶1、分类:E·coli DNA 连接酶和 T4DNA 连接酶。
2、作用:将两个具有相同末端的 DNA 片段连接起来。
(三)“分子运输车”——载体1、作用:将目的基因送入受体细胞。
2、具备条件:能在受体细胞中复制并稳定保存。
具有一至多个限制酶切点,供外源 DNA 片段插入。
具有标记基因,便于筛选。
3、种类:质粒、λ噬菌体的衍生物、动植物病毒等。
其中质粒是基因工程中最常用的载体。
三、基因工程的基本操作程序(一)目的基因的获取1、从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。
基因组文库包含了一种生物的全部基因;cDNA 文库只包含了一种生物的部分基因,是由 mRNA 反转录得到的 DNA 组成。
2、利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。
原理:DNA 双链复制。
条件:模板 DNA、引物、四种脱氧核苷酸、热稳定 DNA 聚合酶(Taq 酶)等。
3、人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。
(二)基因表达载体的构建(核心步骤)1、目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。
《基因工程的原理》讲义基因工程,这一现代生物技术的核心领域,正以惊人的速度改变着我们的生活和未来。
那么,什么是基因工程?它的原理又是什么呢?让我们一起来深入了解一下。
基因工程,简单来说,就是在分子水平上对基因进行操作的技术。
它的出现,使得人类能够按照自己的意愿,对生物的遗传特性进行定向改造。
要理解基因工程的原理,首先我们得明白基因是什么。
基因是具有遗传效应的 DNA 片段,它就像是生命的密码,决定了生物的各种性状。
比如说,我们的眼睛颜色、身高、血型等等,都是由基因决定的。
基因工程的第一步是获取目的基因。
这就像是在一个巨大的基因宝库中挑选出我们需要的那一颗“珍珠”。
获取目的基因的方法有多种,常见的有从生物体的基因组中直接分离,或者通过人工合成的方式来获得。
有了目的基因后,接下来就要将它导入到受体细胞中。
受体细胞可以是细菌、真菌、植物细胞或者动物细胞。
这就像是把一颗珍贵的种子种到合适的土壤里。
为了实现这一步,我们需要用到载体。
载体就像是一辆“小货车”,能够把目的基因运送到受体细胞中。
常见的载体有质粒、噬菌体和病毒等。
然后是将目的基因与载体进行重组。
这需要用到一些工具酶,比如限制性内切酶和 DNA 连接酶。
限制性内切酶能够识别特定的核苷酸序列,并在特定的位点将 DNA 切断。
而 DNA 连接酶则能够将切断的DNA 片段重新连接起来,形成重组 DNA 分子。
重组 DNA 分子构建完成后,就要将其导入受体细胞。
这一步就像是把货物成功地送到了目的地。
导入的方法也有很多种,比如对于植物细胞,可以使用农杆菌转化法、基因枪法等;对于动物细胞,可以使用显微注射法等。
目的基因成功导入受体细胞后,还不能保证它能够稳定地遗传和表达。
所以,接下来需要对导入的目的基因进行检测和鉴定。
检测的方法包括分子水平的检测,比如 DNA 分子杂交、PCR 技术等,也包括个体水平的检测,比如观察受体细胞是否表现出了我们期望的性状。
基因工程的应用非常广泛。
《基因工程的原理》讲义一、什么是基因工程在我们深入探讨基因工程的原理之前,让我们先弄清楚基因工程到底是什么。
简单来说,基因工程是一种在分子水平上对基因进行操作的技术。
它就像是一位“基因编辑大师”,能够让我们有目的地改变生物的遗传特性,从而创造出具有特定性状的新生物或者改良现有的生物品种。
想象一下,我们可以像搭积木一样,把不同生物的基因组合在一起,赋予生物新的功能和特性,这是不是很神奇?但要做到这一点,我们需要了解基因工程背后的原理。
二、基因工程的基本工具要进行基因工程,就离不开一些关键的工具,就像木匠需要锯子、锤子一样。
1、限制性内切酶限制性内切酶是基因工程中的“剪刀”。
它能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切断。
不同的限制性内切酶识别的序列不同,这就使得我们能够在特定的位置对 DNA 进行切割,为后续的基因操作做好准备。
2、 DNA 连接酶当我们把 DNA 片段切开后,还需要把它们连接起来。
这时候就轮到 DNA 连接酶登场了,它就像是“胶水”一样,能够将两个 DNA 片段连接在一起,形成一个完整的 DNA 分子。
3、载体载体就像是一辆“运输卡车”,负责将我们需要的基因运送到目标生物的细胞中。
常见的载体有质粒、噬菌体和病毒等。
这些载体能够在宿主细胞中自主复制,并且能够携带外源基因稳定存在。
三、基因工程的基本操作步骤了解了基因工程的工具,接下来让我们看看基因工程是如何操作的。
1、目的基因的获取首先,我们需要确定我们想要的基因,也就是目的基因。
获取目的基因的方法有多种,比如从基因文库中筛选、通过 PCR 技术扩增或者人工合成。
基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。
我们可以根据我们的需求,在这个仓库中筛选出我们想要的基因。
PCR 技术则是一种快速扩增特定基因片段的方法。
通过设计特定的引物,我们可以让 DNA 在体外大量复制,从而得到我们需要的基因片段。
而对于一些简单的基因,我们还可以通过化学方法人工合成。
生物基因工程知识点总结(精选4篇)生物基因工程学问点总结(精选4篇)生物基因工程学问点总结篇1一、基因工程及其应用基因工程概念:基因工程又叫基因拼接技术或DNA重组技术。
通俗的说,就是根据人们意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
原理:基因重组结果:定向地改造生物的遗传性状,获得人类所需要的品种。
二、基因工程的工具1、基因的“剪刀”—限制性核酸内切酶(简称限制酶)(1)特点:具有专一性和特异性,即识别特定核苷酸序列,切割特定切点。
(2)作用部位:磷酸二酯键(4)例子:EcoRI限制酶能专一识别GAATTC序列,并在G和A 之间将这段序列切开。
(黏性末端)(黏性末端)(5)切割结果:产生2个带有黏性末端的DN断。
(6)作用:基因工程中重要的切割工具,能将外来的DNA切断,对自己的DNA无损害。
注:黏性末端即指被限制酶切割后露出的碱基能互补配对。
基因的“针线”——DNA连接酶作用:将互补配对的两个黏性末端连接起来,使之成为一个完整的DNA分子。
连接部位:磷酸二酯键基因的运载体(1)定义:能将外源基因送入细胞的工具就是运载体。
(2)种类:质粒、噬菌体和动植物病毒。
三、基因工程的操作步骤1、提取目的基因2、目的基因与运载体结合3、将目的基因导入受体细胞4、目的基因的检测和鉴定四、基因工程的应用1、基因工程与作物育种:转基因抗虫棉、耐贮存番茄、耐盐碱棉花、抗除草作物、转基因奶牛、超级绵羊等等2、基因工程与药物研制:干扰素、白细胞介素、溶血栓剂、凝血因子、疫苗3、基因工程与环境爱护:超级细菌五、转基因生物和转基因食品的平安性两种观点是:1、转基因生物和转基因食品担心全,要严格掌握2、转基因生物和转基因食品是平安的,应当大范围推广。
三个方法让你生物成果飙升对比记忆法在生物学学习中,有许多相近的名词易混淆、难记忆,对于这样的内容,可运用对比法记忆。
基因工程笔记总结一、基因工程的概念。
基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
又称为DNA重组技术。
(一)基因工程的理论基础。
1. DNA是遗传物质。
- 肺炎双球菌的转化实验和噬菌体侵染细菌的实验证明了DNA是遗传物质,这为基因工程中对DNA的操作提供了理论依据。
2. DNA双螺旋结构和中心法则的确立。
- 沃森和克里克构建的DNA双螺旋结构模型,阐明了DNA的结构特点,为DNA的切割、连接等操作提供了可能。
- 中心法则揭示了遗传信息的传递规律,使得人们能够理解基因表达的过程,从而在基因工程中对目的基因的表达进行调控。
3. 遗传密码的破译。
- 遗传密码的破译使得人们能够根据蛋白质的氨基酸序列推测出相应的DNA序列,反之亦然,这有助于在基因工程中准确获取目的基因并预测其表达产物。
二、基因工程的基本工具。
1. “分子手术刀”——限制性核酸内切酶(限制酶)- 来源:主要从原核生物中分离纯化而来。
- 作用:识别双链DNA分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
例如,EcoRI限制酶识别的序列是 - GAATTC -,在G和A之间切开。
- 结果:产生黏性末端(如EcoRI产生的是黏性末端)或平末端。
2. “分子缝合针”——DNA连接酶。
- 类型。
- E.coli DNA连接酶:来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间连接起来。
- T4 DNA连接酶:来源于T4噬菌体,既可以连接黏性末端,也可以连接平末端。
- 作用:恢复被限制酶切开的两个核苷酸之间的磷酸二酯键。
3. “分子运输车”——载体。
- 种类。
- 质粒:是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的双链环状DNA分子,是基因工程最常用的载体。
- λ噬菌体的衍生物:经过改造后可作为基因工程的载体。