大涡模拟理论及其应用综述
- 格式:pdf
- 大小:203.00 KB
- 文档页数:5
CFD分析各种流场的紊流施密特数摘要:CFD对湍流流质使用雷诺平均RANS模式,在梯度扩散理论下,它的应用可以估计湍流标量通量,这样就需要定义湍流施密特数。
然而,全球并没有统一的紊流施密特数,同时不同的研究中又在使用着不同的经验值。
本文即对先前研究中与大气色散有关的工程流体最佳紊流施密特数进行了综述。
紊流施密特数最优质分布在0.2-.3范围内,选择的具体值对预测结果有显著的影响。
根据目前的研究结果,紊流施密特数最优质取决于当地的流动特性,所以建议考虑各种情况下的主导流体结构来选定紊流施密特数。
关键词:紊流施密特数;CFD;扩散;RANS;最优值1. 刖言建筑物周围和附近的空气污染是一个重要的环境问题。
然而,由于建筑物之间复杂的交互大气流动和绕流,使得很难以一定的精度预测污染物扩散。
计算流体动力学技术利用快速发展的计算机硬件,通过建立数值模型而广泛用于研究建筑物周围和附近风场和污染物的运输,然而,此技术很难选择“通用”的建模常量。
当前对于建筑物环境中大气色散的CFD研究,RANS模拟湍流与传质一般把D■ u i c =Dt ■梯度扩散理论应用于动荡的质量流,也就是审。
其中,D t是湍流质量扩散率,力/以是平均质量梯度。
为了表示动黏滞系数v t与湍流扩散系数D t的比值,紊流施密特数定义如下如果动黏滞系数v t大于湍流扩散系数D t那么施密特数就大于1。
这个施密特数类似于另一个施密特数Sc, Sc是一个无量纲数,逼近于分子动量扩散系数(运动粘度)和分子质量扩散系数的比率。
应该指出的是湍流的普朗特数Pr t,它代表湍流动量扩散系数和湍流热扩散系数的比值。
Rey no lds(1975检查并分类了施密特数和普朗特数的各种预测方法,并设法把他们作为函数的形式统一表达出来,就像粘度和扩散率的比值形式。
Koeltzsch (2000)回顾了之前的调查实验,发现大多数作者都使用0.5-0.9之间的施密特数。
他的实验表明,在平板上的湍流边界层做风洞实验对边界层高度的施密特数有很大的依赖性。
SST-DDES模型在大分离流动问题中的应用胡偶;赵宁;沈志伟【摘要】The numerical method for solving Navier-Stokes equations is developed based on the SST k-w turbulence model and the delayed detached-eddy simulation(DDES).Meanwhile,the preconditioning technique coupled with implicit dual time stepping approach is implemented to simulate large separated flows with low speed and high Reynolds number.Low speed flow over a delta wing and separation flows around a 6:1 prolate spheroid are simulated.The simulated complex vortex structures agree well with physical analyzed results and experimental data.%采用基于SST k-w湍流模型耦合延迟脱体涡模拟技术(Delayed detached-eddy simulation,DDES)的SST-DDES模型,数值求解Navier-Stokes方程.并针对低速流动问题,发展了基于隐式双时间步方法的低速预处理技术,用于数值模拟低速、高雷诺数湍流大分离流动问题.数值模拟了低速大迎角三角翼绕流及大迎角6∶1椭球绕流,观察到与物理现象相一致的旋涡特征,且得到的定量数值结果与实验数据相吻合.【期刊名称】《南京航空航天大学学报》【年(卷),期】2017(049)002【总页数】6页(P206-211)【关键词】SST k-w湍流模型;延迟脱体涡模拟;预处理;Navier-Stokes方程;分离流动【作者】胡偶;赵宁;沈志伟【作者单位】中国直升机设计研究所,景德镇,333000;南京航空航天大学航空宇航学院,南京,210016;南京航空航天大学航空宇航学院,南京,210016【正文语种】中文【中图分类】V211在直升机、固定翼等飞行器设计领域,大分离流动和旋涡主导流动是经常会遇到的流动现象,如飞机大迎角飞行时机翼后部形成分离涡、直升机旋翼脱出的尾迹涡等,这些脱体涡结构在形成、发展、破碎等过程中,存在着复杂的流动机理,在整个流场中起着主导作用。
磨料水射流抛光技术综述王中昱;张连新;孙鹏飞;李建;尹承真【摘要】磨料水射流抛光技术是一种新兴的确定性加工技术,目前主要用于光学系统中非球面镜,包括自由曲面的加工.其加工机理是通过高速水射流裹挟磨料颗粒冲击工件表面,形成对材料的微切削,从而产生对材料的去除.简要阐述了磨料水射流抛光技术的去除机理与特点,并探讨了其最新的发展方向.【期刊名称】《电加工与模具》【年(卷),期】2019(000)0z1【总页数】5页(P70-74)【关键词】磨料水射流;抛光;去除机理;发展趋势【作者】王中昱;张连新;孙鹏飞;李建;尹承真【作者单位】中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;中国工程物理研究院机械制造工艺研究所,四川绵阳621900【正文语种】中文【中图分类】TG456.9随着现代光学系统镜面愈来愈趋向于复杂化,非球面镜面(包括自由曲面)被广泛应用于各个领域,随之而来的是对光学镜面的加工精度和表面质量要求越发严格,在前期加工工艺后必须通过非球面抛光技术对工件表面进行后期修正。
传统的抛光技术不适用于自由曲面的加工,难以保证加工质量及加工效率[1]。
在这种情况下,磨料水射流抛光技术(abrasive jet polishing,AJP)由于其柔性射流为载体、小粒径磨料颗粒为去除主导的独特加工方式,获得了极高的加工质量及自由可调的去除函数,同时具有无热加工、去除函数稳定可控、适用于高陡度内腔加工等优点,成为近年来的研究热点。
1 技术特点磨料水射流抛光技术是由纯水射流发展而来的磨料水射流技术,再经切割、钻井、破碎岩石应用等高压射流发展成为面向高精度光学元件加工的一种新兴的高精度表面加工技术。
磨料水射流抛光技术是通过高速运动的液体裹挟磨料颗粒冲击工件表面并与工件发生碰撞,形成冲蚀及剪切作用以去除材料。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 2 期气力输送颗粒系统中静电的研究进展刘浩宇1,赵彦琳1,姚军1,WANG Chi-Hwa 2(1 中国石油大学(北京)机械与储运工程学院,清洁能源科学与技术国际联合实验室,过程流体过滤与分离技术北京市重点实验室,北京 102249;2 新加坡国立大学化学与生物分子工程系,新加坡 肯特岗 117585)摘要:在过去的几十年里,由于许多工业问题和相关新技术的发展,颗粒和颗粒流的静电学得到了越来越多的关注。
颗粒-颗粒和颗粒-壁面之间发生碰撞从而产生静电。
静电的发生会受多种因素的影响,随着颗粒与壁面之间的接触会在它们的表面产生静电荷的积累,静电量可以达到饱和状态。
本文分别综述了气力输送颗粒系统中的静电发生及静电平衡,着重分析了颗粒与壁面之间接触带电的两种方式(碰撞带电和摩擦带电)、颗粒流模式及受力情况,讨论了颗粒带电过程所受的影响因素,包括外界条件(温度、相对湿度)、颗粒几何条件(尺寸、形状、接触面积、粗糙度)以及受力条件(摩擦力、常压)等。
此外,对气力输送颗粒系统中静电的数值计算作了简单介绍。
最后,为澄清气力输送颗粒系统中静电发生的机理,对单颗粒发生静电的物理机制进行了分析。
根据对相关研究结果的总结,发现由于碰撞或摩擦造成的电荷转移的工作机制尚未完全明了,这些问题将在未来逐步得到解决。
关键词:静电效应;颗粒;气力输送;接触带电中图分类号:TH3;TQ012 文献标志码:A 文章编号:1000-6613(2024)02-0565-14Research advances of electrostatics in pneumatic conveyinggranules systemsLIU Haoyu 1,ZHAO Yanlin 1,YAO Jun 1,WANG Chi-Hwa 2(1 International Joint Laboratory on Clean Energy Science and Technology, Beijing Key Laboratory of Process FluidFiltration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; 2 Department of Chemical and Biomolecular Engineering, National University of Singapore,Kent Ridge 117585, Singapore)Abstract: In past decades, the electrostatics of granules and granular flows has obtained more and moreattention due to many industrial problems and development of new technologies. The collisions between granule-granule and granule-wall generate electrostatics. The occurrence of electrostatic can be affected by a variety of factors. As the contact between the granular and the wall, the accumulation of electrostatic charge on their surfaces can reach to an equilibrium state. The present work reviewed electrostatic generation and electrostatic equilibrium in pneumatic conveying granules systems. Two main contact charging ways between granule and wall (collision electrification and friction electrification), granular flowpattern and dynamic analysis were analyzed emphatically. The factors affecting the charging process of综述与专论DOI :10.16085/j.issn.1000-6613.2023-1341收稿日期:2023-08-07;修改稿日期:2023-09-14。
文章编号:1006-7639(2003)-03-0074-05大气边界层气象学研究综述张 强(中国气象局兰州干旱气象研究所,甘肃兰州 730020)摘 要:文中回顾了大气边界层气象学的发展历史,总结了目前大气边界层气象学的主要进展,并指出国内外在未来大气边界层气象学研究方面面临的一些主要科学问题,以及对未来大气边界层气象学的发展方向提出若干建议,同时还指出了大气边界层气象学在思想上和方法上应该注意的一些相关问题。
关键词:大气边界气象学;研究进展;主要问题;发展方向中图分类号:P404 文献标识码:A引 言什么是边界层?广义讲:在流体介质中,受边界相对运动以及热量和物质交换影响最明显的那一层流体。
具体到大气边界层,是指受地球表面摩擦以及热过程和蒸发显著影响的大气层。
大气边界层厚度,一般白天约为1.0km ,夜间大约在0.2km 左右,地表提供的物质和能量主要消耗和扩散在大气边界层内。
大气边界层是地球-大气之间物质和能量交换的桥梁。
全球变化的区域响应以及地表变化和人类活动对气候的影响均是通过大气边界层过程来实现的。
1 大气边界层气象学发展历史大气边界层气象学是大气科学中一门重要的基础理论学科,大气边界层气象学的发展,不仅受到观测系统和探测技术的制约,也受到数学、物理学等基础支撑学科发展水平的影响,并随着它们的发展而发展。
大气边界层气象学是以湍流理论为基础的,研究大气和它下垫面(陆面和洋面)相互作用以及地球—大气之间物质和能量交换的一门新型气象学科分支。
什么是湍流?英文湍流为“turbulence ”,日文为“乱流”,湍流简单定义:流体微团进行的有别于一般宏观运动的不规则的随机运动,从宏观上看,它没有稳定的运动方向,但它能够象分子运动一样通过其随机运动过程有规律地传递物质和能量。
从1915年由Taylor [1]提出大气中的湍流现象到1959年Priestley [2]提出自由对流大气湍流理论,可以说,到20世纪50年代以前经典的湍流理论基本上已经形成。
天津理工大学安全检测课程学习报告浅析FDS火灾模拟及应用现状姓名:张志魁学号:123140301学院:环境科学与安全工程学院专业:安全技术与工程 _ 班级: 2012级研究生 _2013年9月1日浅析FDS火灾模拟及应用现状摘要:FDS(Fire Dynamics Simulator)是火灾模拟中一款重要的软件,它根据建筑和火灾的特性,以简单直观的形式动态的显示出火灾发展的全过程,并通过计算获得较为准确的火灾信息的相关参数,例如,烟气的流动,有毒气体的浓度,温度场的分布以及热辐射等。
本文概述了FDS在不同建筑和火灾场景中的应用现状,并结合相关火灾实例证明FDS火灾模拟软件在较为可信的准确性,另外,对FDS在火灾模拟方面提出了笔者的相关意见和建议。
关键字:火灾模拟;FDS;应用现状0前言近些年,计算机技术的飞速发展,引导了科学领域的各个方面,成为科研深讨中不可或缺的工具。
其中,计算机模拟和仿真技术已经成为火灾科学研究重要手段,各种火灾模拟软件也在不断的涌现, 比较有名的火灾模拟软件有FDS, CFAST 和FA3 等[1]。
FDS( 火灾动力模拟) 是由美国国家标准局建筑火灾研究实验室开发的基于场模拟的火灾模拟软件, 在火灾安全工程领域中应用十分广泛[2]。
FDS 是一个由CFD( 计算流体力学) 分析程序开发出来的专门用于研究火灾烟气传播的模型,可以模拟三维空间内空气的温度、速度和烟气的流动情况等[1]。
1 FDS计算步骤FDS火灾模拟软件包含FDS和SomkerView 2部分。
FDS是软件的主体部分,主要完成模拟场景的构建和计算,而SomkerView是FDS计算结果后处理程序,它既能处理动态数据也能显示静态数据,并将这些数据以二维或三维形式显现出来。
模型的输入数据包括:空间环境温度,建筑内物品的燃烧性质,灭火系统的影响,烟气的性质,是否考虑某些障碍物的影响,为收集有用数据所需的模拟时间,网格划分(计算精确度),所需要测量的数据类型及位置,火源种类及初始温度等。
流体流动中的湍流动力学研究摘要湍流是流体流动中常见的一种流动状态,它具有复杂的动力学特性和不可预测性。
湍流动力学是研究湍流的产生、演化和控制规律的学科,对于理解流体力学中的复杂现象和优化流体运动至关重要。
本文综述了流体流动中湍流动力学研究的主要内容和研究方法,包括湍流产生机制、湍流表征方法、湍流模拟和湍流控制等方面。
通过对湍流动力学的深入研究,有望揭示湍流的本质规律,并为湍流控制和流体工程应用提供理论和方法支持。
1. 引言流体流动是自然界和人工系统中广泛存在的一种现象,而湍流则是流体流动中常见的一种流动状态。
与稳定流动相比,湍流具有更为复杂的动力学特性和不可预测性,给流体力学研究和工程应用带来了很大挑战。
湍流动力学是研究湍流的产生、演化和控制规律的学科,对于理解流体力学中的复杂现象和优化流体运动至关重要。
2. 湍流产生机制湍流的产生涉及到流体流动中的各种力学过程,包括非线性扰动的产生和扩大、能量的级联转移、湍流尺度的形成和衰减等等。
目前,湍流产生机制的研究主要基于Navier-Stokes方程的数学分析和实验观测,以及计算流体力学中的数值模拟方法。
研究认为,湍流产生机制是一个复杂的非线性过程,受到多个因素的相互作用影响,包括流体的性质、流动的几何形状和边界条件等。
3. 湍流表征方法湍流的复杂性和不可预测性使得湍流的表征成为湍流动力学研究的核心问题之一。
湍流的表征方法通常包括统计平均方法、相关函数和功率谱密度等。
统计平均方法通过对湍流中各个物理量的时间平均或空间平均,来描述湍流的平均特性。
相关函数用于描述湍流中不同位置的物理量之间的相关性。
功率谱密度则用于分析湍流中各个湍流尺度对能量的贡献。
4. 湍流模拟湍流模拟是湍流动力学研究中的一种重要方法,通过数值计算模拟来揭示湍流的演化和流动规律。
常用的湍流模拟方法包括直接数值模拟(Direct Numerical Simulation, DNS)、大涡模拟(Large Eddy Simulation, LES)和雷诺平均Navier-Stokes 方程(RANS)等。