湍流大涡数值模拟
- 格式:ppt
- 大小:5.27 MB
- 文档页数:49
LES,DNS,RANS模型计算量比较摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟(Direct Numerical Simulation: DNS),Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。
直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。
RANS方程通过对Navier-Stokes方程进行系综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stokes方程进行低通滤波得到描述湍流大尺度运动的方程,RANS和LES方法的计算量远小于DNS,目前的计算能力均可实现。
关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型1 引言湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态,是流体力学中有名的难题,其性。
传统计算复杂性主要表现在湍流流动的随机性、有旋性、统计[]1流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S 方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。
直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。
雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场紊动的细节信息。
大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。
2 直接数值模拟(DNS)湍流直接数值模拟(DNS)就是不用任何湍流模型,直接求解完整的三维非定常的N - S 方程组,计算包括脉动在内的湍流所有瞬时运动量在三维流场中的时间演变。
大气湍流模拟与方法研究大气湍流是指在自然界中,由于空气分子的热运动和流体不均匀性造成的气流乱流现象。
它对于气象学、环境科学等领域具有重要意义。
为了更好地理解和预测大气湍流,科研人员们进行了大量的模拟与方法研究。
本文将介绍大气湍流模拟的方法和相关研究进展。
一、大气湍流模拟方法1. 直接数值模拟(DNS)直接数值模拟是指通过求解流体动力学方程,对湍流进行精确的数值模拟。
这种方法能够提供精确的湍流数据,但由于计算量巨大,目前只适用于小尺度的湍流问题。
2. 大涡模拟(LES)大涡模拟是指模拟并求解大尺度涡旋,而忽略小尺度湍流的准确表示。
它通过将湍流分解成大涡和小涡来减少计算量,更适用于中等和大尺度的湍流研究。
3. 湍流统计模拟(TST)湍流统计模拟是一种基于概率和统计的模拟方法,通过对湍流的统计特性进行建模,推导出湍流的各种物理参量。
虽然它无法提供湍流的详细结构信息,但能够在计算成本较低的情况下估计湍流的平均性质。
二、大气湍流模拟方法的应用1. 大气环流模拟大气环流是指大尺度的大气运动模式,是全球气候变化和天气预报的重要基础。
通过模拟大气环流中的湍流现象,可以更准确地预测天气变化和气候变化趋势。
2. 污染物扩散模拟污染物扩散是大气科学中的重要研究内容。
将湍流模拟方法应用于污染物扩散模拟中,可以帮助科研人员分析城市污染物的来源、传输路径和浓度分布,为环境保护和污染治理提供科学依据。
3. 风能资源评估利用风能发电是一种清洁、可再生的能源利用方式。
通过模拟大气湍流,可以评估风能资源的分布和利用潜力,为风电场选址和设计提供技术支持。
三、大气湍流模拟方法的挑战与展望1. 精度提升当前的大气湍流模拟方法仍然存在精度不高的问题,特别是对于小尺度湍流的模拟。
因此,需要进一步改进模拟算法和数值计算技术,提高模拟结果的准确性。
2. 计算成本降低目前的大气湍流模拟方法需要耗费大量的计算资源和时间。
在提高精度的前提下,需要寻求更高效的计算方法,降低计算成本。
3 大涡模拟(LES )湍流大涡数值模拟(LES )是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段。
利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动, 将N-S 方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。
3.1 基本思想很多尺度不同的旋涡一起组成了湍流运动平均流动主要取决于大漩涡的流动,大尺度运动则受到小旋涡的影响。
流动中的大涡实现了动量、能量质量、热量的交换,耗散主要是由于小涡作用的。
大旋涡中受到流场形状、阻碍物的影响,,使大漩涡的各向异性更加明显。
然而小漩涡之间各项同性,相互没有太大的区别,所以建立统一的模型比较容易一些。
综上所述,大涡模拟将湍流瞬时运动量通过滤波将运动分成小尺度和大尺度。
大尺度的运动受到小尺度的运动的影响可以通过应力项(类似于雷诺应力项)来表示,即为亚格子雷诺应力,以建立这种模型的方法来模拟。
而大尺度则是求解运动微分方程而计算出来的,也就是说大涡模拟,要先过滤掉小尺度的脉动,然后再推出小尺度的运动封闭方程以及大尺度的运动控制方程。
3.2 滤波函数正如上面提到,大涡模拟要先将流动变量分解成小尺度量和大尺度量,我们把这个作用叫做滤波。
滤波运算就是在一区域内按照一定的条件对函数进行加权平均,作用是将高波数滤掉,使低波数保留,滤波函数的特征尺度决定了截断波数的最大波长,下面三种滤波函数是最为常用的主要有以下三种:盒式、富氏截断以及高斯滤波函数。
不可压常粘性系数的湍流运动控制方程为N-S 方程:j ij i j j i i x S x P x u u t u ∂⋅∂+∂∂-=∂∂+∂∂)2(1γρ式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ∂∂+∂∂=;γ分子粘性系数;ρ流体密度。
设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,即'+=i i i u u u ,i u 可以采用Leonard 提出的算式表示为:(11)式中)(x x G '-称为过滤函数,显然G(x)满足 3.3 控制方程将过滤函数作用与N-S 方程的各项,得到过滤后的湍流控制方程组:由于无法同时求解出变量i u 和j i u u ,所以将j i u u 分解成i j i j ij u u u u τ=⋅+,ij τ即称为次网格剪切应力张量(亦称为亚格子应力)。
工程流体力学中的湍流模型比较与分析引言:湍流是流体力学中一种复杂的流动现象,它广泛存在于自然界和工程应用中。
研究和模拟湍流流动是工程流体力学中的一个重要课题。
湍流模型是用来描述湍流流动的数学模型,对于工程实践中的湍流模拟有着重要的影响。
本文将比较和分析几种常用的湍流模型,包括雷诺平均Navier-Stokes方程(RANS)模型、大涡模拟(LES)和直接数值模拟(DNS)。
1. 雷诺平均Navier-Stokes方程(RANS)模型雷诺平均Navier-Stokes方程是湍流模拟中最常用的模型之一。
它基于雷诺平均的假设,将流动场分解为平均流动和湍流脉动两部分。
RANS模型通过求解平均流动方程和湍流脉动方程来描述流场的平均状态和湍流效应。
经典的RANS模型包括k-ε模型和k-ω模型,它们通过引入湍流能量和正应力来描述湍流的传输和衰减。
2. 大涡模拟(LES)大涡模拟是一种介于RANS模型和DNS模型之间的模型。
在LES模拟中,较大的湍流涡旋被直接模拟,而较小的涡旋则通过子网格模型(subgrid model)来描述。
LES模型可以较好地模拟湍流的空间变化特性,对于流动中的尺度较大的湍流结构有着较好的描述能力。
然而,由于需要模拟较小的湍流结构,LES模拟通常需要更高的计算资源和更复杂的数值算法。
3. 直接数值模拟(DNS)直接数值模拟是一种最为精确的湍流模拟方法,它通过直接求解包含所有空间和时间尺度的Navier-Stokes方程来模拟湍流流动。
DNS模拟可以精确地捕捉湍流流动中的所有涡旋和尺度结构,提供最为详细的湍流统计信息。
然而,由于湍流流动具有广泛的空间和时间尺度,DNS模拟通常需要巨大的计算资源和较长的计算时间。
4. 模型比较与选择在实际工程应用中,选择合适的湍流模型需要综合考虑计算资源、计算效率和模拟精度。
如果在工程实践中仅关注流场的整体特征和平均效应,RANS模型是一种简便且有效的选择,尤其是k-ε模型和k-ω模型在工程应用中得到了广泛的应用。
大涡模拟的原理
大涡模拟(LES)是一种计算流体力学(CFD)方法,用于模拟流动中的大尺度涡旋行为。
相比于传统的雷诺平均纳维-斯托克斯(RANS)方法,LES可以更准确地捕捉流动中的湍流结构。
LES将流动场分解
为大尺度涡旋和小尺度涡旋,大尺度涡旋被直接模拟,而小尺度涡旋则被认为是一种随机噪声,并通过子网格模型(SGS)计算。
LES方法的基本原理是通过在时间和空间上对流场进行分解,将大尺度的湍流结构通过直接数值模拟(DNS)进行计算,而小尺度的
结构则通过SGS模型计算。
LES方法在时间上的分解通常采用滤波器方法,通过对流场进行滤波来分离大尺度结构和小尺度结构。
在空间上的分解通常采用泰勒级数展开,将流场分解为平均流量和流量扰动。
LES方法的优点是可以提供更准确的流场预测,适用于需要对湍流结构进行精细分析的复杂流动问题。
同时,LES方法也存在一些挑战,如计算成本高和需要更高的计算资源等问题。
因此,LES方法通常适用于高性能计算领域和需要进行高精度模拟的工程和科学研究
领域。
- 1 -。
湍流流场的模拟与分析方法综述一、前言湍流流场的模拟与分析方法是目前流体力学领域的热门研究方向之一。
湍流是指流体介质在运动过程中出现的无规律涡旋运动,其运动状态具有不确定性,因此湍流流场模拟与分析方法的研究具有重要的理论和应用价值。
本文主要综述湍流流场的模拟与分析方法,包括数值方法、实验方法和统计方法三个方面。
二、数值方法数值方法是湍流流场模拟与分析的主要方法之一。
常用的数值模拟方法包括直接数值模拟 (Direct Numerical Simulation, DNS)、大涡模拟 (Large Eddy Simulation, LES) 和雷诺平均 (Reynolds Averaged Navier-Stokes, RANS) 方法。
1、直接数值模拟直接数值模拟是指通过直接求解三维湍流流场的原始材料来模拟湍流流场。
该方法需要极大的计算量和存储量,因此只能用于小尺度和简单流动的模拟。
直接数值模拟可以得到完整的流场信息,但计算量太大,限制了其在实际工程中的应用。
2、大涡模拟大涡模拟是指通过对湍流流场中能量最大的涡旋进行求解,以降低模拟所需的计算量和存储量的流场模拟方法。
其优点是适用范围广,能模拟中等和大尺度的流动现象,所需计算量较小,但仍然需要大量的计算资源。
3、雷诺平均雷诺平均是指通过平均流场变量来消除湍流流场中的涡旋结构,将湍流流场转化为平均流场的一种稳态方法。
在计算中,通常采用贡献加权平均法来消除湍流涡旋。
雷诺平均方法的计算量较小,适用于复杂流动,但精度较低。
三、实验方法实验方法是模拟和分析湍流流场的一种常用方法,包括流体力学实验、激光测速实验和高速摄影实验等。
实验方法可以直接观测到湍流现象,尤其适用于复杂的流动现象,但成本较高,仅适用于实验室规模的研究。
1、流体力学实验流体力学实验是实验方法中应用最为广泛的一种方法,通过测量流体介质中各种流动物理量随时间和空间的变化,探究湍流流场的结构和演化规律。
水力学中的湍流流场数值模拟方法湍流是自然界中最常见的流动现象之一,它不仅出现在河道中,也出现在空气中、海洋中等自然环境中。
湍流带有不规则、无序的运动形式,可以将能量从大尺度输送到小尺度。
然而,湍流流场的物理机理十分复杂,难以通过实验和经验来全面理解和研究。
因此,采用数值模拟方法来模拟湍流流场已成为一种重要的研究手段。
本文将介绍目前水力学中常用的湍流流场数值模拟方法,包括雷诺平均NAVIER-STOKES方程模型(RANS)、大涡模拟(LES)、直接数值模拟(DNS)等。
1. 雷诺平均NAVIER-STOKES方程模型(RANS)RANS是目前水力学中常用的湍流流场数值模拟方法,它的基本思想是用平均流动变量来描述湍流流场,从而将部分湍流运动视为均匀的分析。
RANS假设流场中的湍流运动呈现稳定流动形式(平均流动),模拟平均流动状态,再通过额外的方程组描述湍流中的脉动变化,求解平均流动和湍流脉动变化的复合方程。
RANS方法否认任何尺度上的湍流结构,其主要适用于稳态的湍流运动,如河流、管道流动等。
2. 大涡模拟(LES)与RANS不同,LES方法重点关注大尺度上的湍流结构,将湍流流场分解成大尺度流动和小尺度结构,对大尺度结构进行数值模拟,对小尺度结构进行忽略(或近似处理)。
因此,LES适用于小尺度结构对大尺度流动影响较显著的湍流流场,例如紊流冲击波、湍流尾涡等。
在LES中,大尺度上的湍流结构通过方程组求解,而小尺度上的结构则需借助湍流模型的辅助说明。
由此,需要找到适合模拟大尺度流动和小尺度结构的模型参数。
3. 直接数值模拟(DNS)与RANS和LES不同,DNS方法直接模拟所有尺度上的湍流结构,没有任何参数模型的干扰,相比其他两种方法更加精确和准确。
但DNS需要在计算机模拟中处理每个细节,内存和处理能力的要求比较高。
因此DNS目前仅应用于小尺度流动的研究,例如涡街、微小水滴的湍流等。
综上所述,湍流流场数值模拟是研究湍流流场运动机理的重要手段。