4蛋白组学-翻译后修饰
- 格式:ppt
- 大小:1.27 MB
- 文档页数:34
百泰派克生物科技
蛋白质修饰鉴定
蛋白质修饰及蛋白质翻译后修饰,指蛋白质在翻译中或翻译后经历的一个共价加工过程,在该过程中,蛋白质的1个或几个氨基酸残基可以共价结合不同的修饰基团而改变原来蛋白质的性质和功能。
目前已发现300多种不同的翻译后修饰,主要形式包括磷酸化、糖基化、甲基化、乙酰化、泛素化、羟基化、核糖基化和二硫键的配对等。
蛋白质翻译后修饰对维持机体正常生命活动具有重要作用,调节着蛋白质的活性状态、定位、折叠以及蛋白质与蛋白质之间的交互作用等。
蛋白质翻译后修饰鉴定就是对修饰类型、位点以及修饰水平进行鉴定,其分析鉴定难度远高于蛋白质的鉴定,主要是因为发生翻译后修饰的蛋白质样本量相对较少、发生修饰时形成的共价键很不稳定且处于动态变化中、修饰与未修饰的或多种修饰形式的蛋白质常混合存在。
目前,翻译后修饰蛋白质的分析主要是利用现有的蛋白质组学技术体系,包括电泳、色谱、生物质谱以及生物信息学工具等。
百泰派克生物科技采用Thermo Fisher的Q ExactiveHF质谱平台结合Nano-LC色谱,提供快速高效的蛋白质翻译后修饰鉴定服务技术包裹,您只需要将您的实验目的告诉我们并将您的样品寄给我们,我们会负责项目后续所有事宜,包括蛋白提取、蛋白酶切、修饰肽段富集、肽段分离、质谱分析、质谱原始数据分析、生物信息学分析,欢迎免费咨询。
翻译后修饰的基因表达调控随着基因组学技术的不断进步,人们对基因的理解也愈发深刻。
在研究基因表达调控中,翻译后修饰逐渐成为重要的研究方向之一。
翻译后修饰是指蛋白质在翻译后发生的化学修饰,通过改变蛋白的化学结构和性质进而影响蛋白的功能和活性。
翻译后修饰可以影响蛋白的稳定性、局部结构、跨膜结构等方面的性质,从而影响到蛋白的功能和调控。
下面将就翻译后修饰在调控基因表达方面的研究进展进行阐述。
一、翻译后修饰对蛋白的稳定性和降解速率的影响蛋白质的稳定性和降解速率是与基因表达调控密切相关的因素之一。
在翻译后修饰方面,泛素化和泛素降解是一个被广泛关注的研究领域。
泛素是一种小分子蛋白,可以通过连接到目标蛋白的氨基酸残基上完成泛素化修饰。
泛素化可以标记蛋白,将其引导至泛素蛋白酶体降解途径,促进蛋白的降解。
研究表明,泛素化这一翻译后修饰方式对于细胞周期调控、DNA修复、细胞信号转导等方面的基因表达调控起到至关重要的作用。
除泛素化外,其他翻译后修饰方式,如磷酸化、甲基化等也可以影响蛋白的稳定性和降解速率。
如磷酸化可以改变蛋白的电荷和空间构型,降低其稳定性;而甲基化能够影响蛋白的叠加和空间结构,进而改变蛋白的稳定性和降解速率。
这些翻译后修饰方式的调控作用为我们深入理解基因表达调控提供了有力的实验依据。
二、翻译后修饰对蛋白的局部结构和功能的影响除了稳定性和降解速率外,局部结构和功能也是翻译后修饰对基因表达调控的影响重要方面。
磷酸化、甲基化等修饰方式可通过改变蛋白的活性位点、空间结构等方面的性质,调控蛋白的功能。
例如,磷酸化可以刺激酶和激酶信号转导途径,改变蛋白的代谢和运输、细胞增殖等功能。
又如,甲基化作为一种基因表达调控方式,可以通过改变DNA合成、RNA合成等方面的生化途径,影响到蛋白的表达和功能。
除特异性修饰方案外,糖基化也是一种影响蛋白局部结构的修饰方式。
糖部分可以结合到特定氨基酸残基上,改变蛋白分子的堆积和跨膜结构,影响蛋白的稳定性和生物学功能。
蛋白质组学英语
蛋白质组学是一种研究生物体内蛋白质的组成、结构和功能的技术和方法,是生物学、生化学、药学等领域的前沿学科。
蛋白质组学的主要研究内容包括蛋白质组分析、蛋白质组测序、蛋白质结构与功能分析等。
在蛋白质组学研究中,英语是必不可少的工具和语言。
因此,掌握蛋白质组学英语是非常重要的。
以下是一些蛋白质组学常用英语词汇:
1. proteome - 蛋白质组
2. protein identification - 蛋白质鉴定
3. protein quantification - 蛋白质定量
4. mass spectrometry - 质谱分析
5. peptide mapping - 肽质谱图分析
6. protein structure analysis - 蛋白质结构分析
7. protein function analysis - 蛋白质功能分析
8. protein-protein interaction - 蛋白质间互作
9. protein modification - 蛋白质修饰
10. post-translational modification - 翻译后修饰
除了以上词汇外,还有许多其他与蛋白质组学相关的英语词汇,需要我们在学习和研究中不断积累和运用。
- 1 -。
翻译后修饰蛋白质组与代谢组整合分析蛋白质的翻译后修饰(Post Translational Modifications, PTMs)是蛋白质在翻译中或翻译后经历的一个共价加工过程。
翻译后修饰蛋白质组是指细胞或组织等整体水平上的翻译后修饰蛋白质。
目前,已知的蛋白质翻译后修饰主要包括糖基化、磷酸化、酰化、泛素化、二硫键配对、甲基化和亚硝基化等等。
代谢组是细胞、组织或生物体内的小分子(通常称为代谢物)的整体水平。
翻译后修饰蛋白质可以调节细胞生物过程、影响机体的代谢变化。
影响代谢的翻译后修饰蛋白质不仅包括翻译后修饰转录因子,还包括翻译后修饰代谢酶。
因此,整合分析翻译后修饰蛋白质组和代谢组,比较它们的表达异同,有利于从不同层面解析生物的代谢机制,挖掘差异修饰蛋白质、代谢物、及它们参与的重要通路和相关基因,以进行后续深入研究。
百泰派克生物科技采用Thermo Fisher的Orbitrap Fusion Lumos质谱平台结合nanoLC-MS/MS纳升色谱,将磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键/亚硝基化等翻译后修饰鉴定服务,多种样品靶向和非靶向代谢组学分析服务,结合可定制化的生物信息学分析方法进行整合,为广大科研工作者提供基于质谱的翻译后修饰蛋白质组与代谢组整合分析服务。
翻译后修饰蛋白质组与代谢组整合分析流程翻译后修饰蛋白质组与代谢组整合分析流程。
应用领域农林领域:抗逆胁迫机制,物种保护研究等;畜牧业:致病机理研究,肉类及乳制品品质研究等;海洋水产:渔业环境与水产品安全等;微生物:致病机理,耐药机制,病原体-宿主相互作用研究等;生物医药:生物标志物,疾病机理机制,疾病分型,药物开发,个性化治疗等;环境科学:发酵过程优化,生物燃料生产,环境危害风险评估研究等;食品科学:食品储藏及加工条件优化,食品组分及品质鉴定,食品安全监检测等。
中/英文项目报告在技术报告中,百泰派克会为您提供详细的中/英文双语版技术报告,报告包括:1. 实验步骤(中英文)。
翻译后修饰蛋白组分析蛋白质翻译后修饰(PTMs)是指蛋白质在翻译中或翻译后的化学修饰过程。
蛋白质翻译后修饰(PTMs)通过给蛋白质添加磷酸酯,乙酸酯,酰胺基或甲基等官能团增加蛋白质组的功能多样性,并影响正常细胞生物学和发病机理的几乎所有方面。
蛋白质翻译后修饰在许多细胞过程中起着关键作用,如细胞分化、蛋白质降解、信号传导和调节过程、基因表达调节以及蛋白质相互作用。
蛋白质翻译后修饰PTMs通常包括磷酸化,糖基化,泛素化,亚硝基化,甲基化,乙酰化,脂质化和蛋白水解。
因此,PTM的特征(包括修饰类别和修饰位点)在细胞生物学以及疾病诊断和预防研究中至关重要。
蛋白质翻译后修饰(PTMs)受许多因素影响,鉴定过程比较繁琐。
例如:大多数翻译后修饰水平很低。
因此,在鉴定之前必须对修饰蛋白进行富集。
此外,修饰的稳定性以及质谱的检测效率也是PTMs分析过程中的关键因素。
百泰派克生物科技搭建有高级的分析平台,可用于表征各种翻译后修饰(PTM)。
BTP-蛋白质翻译后修饰鉴定能够解决的生物学问题百泰派克公司采用Thermo Fisher的Q ExactiveHF质谱平台,Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,为广大科研工作者提供磷酸化/糖基化/泛素化/乙酰化/甲基化/二硫键/亚硝基化等翻译后修饰鉴定。
蛋白质氨基酸序列的特定位置可以与化学基团或者小分子量的蛋白共价结合从而发生蛋白质翻译后修饰(post-translational modifications,PTMs),相较于没有发生修饰的蛋白,PTMs会导致特定序列分子量的增加。
在蛋白翻译后修饰方式的鉴定过程中,蛋白会首先被酶切成肽段,然后进入质谱进行分析;通过质谱分析,得到的是一系列肽段的分子质量信息。
对于某一个特定肽段而言,在没有发生任何翻译后修饰的情况下,其序列信息和分子量是确定的;蛋白质翻译后修饰方式鉴定示意图当它发生了某种翻译后修饰之后,例如磷酸化修饰,由于序列信息和分子量是确定的,磷酸根的分子量也是确定的;在质谱检测过程中发现其中的部分肽段的分子量刚好增加了一个磷酸根的分子量,假设这个肽段就发生了磷酸化修饰,再通过二级质谱图进行二次确认。
蛋⽩翻译后修饰(研究⽣⾼级⽣化)蛋⽩翻译后修饰(齐以涛⽼师)上课⽼师没说重点1.蛋⽩的概念:由许多氨基酸通过肽键相连形成的⾼分⼦含氮化合物。
2.蛋⽩后修饰概念和意义(PPT4-5)3.蛋⽩后修饰种类1. 切除加⼯2. 糖基化3. 羟基化4. 甲基化5. 磷酸化6. ⼄酰化7. 泛素化8. 类泛素化9. …200. …磷酸化修饰1.概念:磷酸化是通过蛋⽩质磷酸化激酶将ATP的磷酸基转移到蛋⽩的特定位点上的过程。
⼤部分细胞过程实际上是被可逆的蛋⽩磷酸化所调控的,⾄少有30%的蛋⽩被磷酸化修饰2.作⽤位点:丝氨酸、苏氨酸和酪氨酸是主要的磷酸化氨基酸,⼤多数磷酸化蛋⽩质都有多个磷酸化位点,并且其磷酸化位点是可变的。
3.实例(MAPK途径):分裂原活化的蛋⽩激酶(MAPK)、分裂原活化的蛋⽩激酶的激酶(MAPKK)、分裂原活化的蛋⽩激酶的激酶之激酶(MAPKKK)。
在真核细胞中,这3种类型的激酶构成⼀个MAPK级联系统(MAPK cascade),通过MAPKKK-MAPKK-MAPK逐级磷酸化,将外来信号级联放⼤并传递下去。
具体过程如下:MAPKKK位于级联系统的最上游,能够通过胁迫信号感受器或者信号分⼦的受体,或者其本⾝就直接感受胞外信号刺激⽽发⽣磷酸化?MAPKKK磷酸化后变为活化状态,可以使MAPKK磷酸化?MAPKK始终存在于细胞质中,MAPKK磷酸化以后通过双重磷酸化作⽤将MAPK激活MAPK被磷酸化后有3种可能的去向:(1)停留在细胞质中,激活⼀系列其它的蛋⽩激酶(2)在细胞质中使细胞⾻架成分磷酸化(3)进⼊细胞核,通过磷酸化转录因⼦,调控基因的表达4.功能和意义:⼀:调节酶蛋⽩及⽣理代谢①糖分解代谢中糖原磷酸化酶活性的调节,被磷酸化的酶具有活性,去磷酸化的酶⽆活性②磷酸化或去磷酸化使胞内已存在酶的活性被激活或失活,调节胞内活性酶的含量⼆:调节转录因⼦活性转录因⼦通常包含DNA结合结构域和转录激活结构域.转录因⼦在转录激活结构域或调控结构域发⽣磷酸化,直接影响其转录活性. c-Jun转录激活结构域的两个丝氨酸残基磷酸化,正调控c-Jun的转录活性.三:调节转录因⼦核转位TGF-b与其I型、II型受体结合,结合后的TGF-b I型受体识别R-Smad包括Smad2和Smad3,作⽤于C末端的丝氨酸使其磷酸化⽽被激活,激活后的R-Smad与Smad4结合转⼊细胞核内,发挥转录调节活性NF-kB与其抑制因⼦IkB形成复合体时存在于胞质。