积分中的对称性
- 格式:doc
- 大小:28.50 KB
- 文档页数:7
对称性在第一型曲线积分中的应用1对称性在第一型曲线积分中的应用对称性是几何学中重要的概念,也是微积分中重要的概念。
一般来说,利用对称性可以简化求解某些微积分问题的难度,特别是第一型曲线积分的求解,解决这种问题时特别利用对称性的优势,有效的完成求解。
1.1对称性的基本定义```对称性(Symmetry)指一个图形或系统能够通过某种转换(如旋转、镜像等)保持不变,换而言之,它指的是一种图形或系统的对称性。
```对称性存在于自然界的几何结构,特别是物理系统的结构。
它可在数学的曲线、抛物线、多面体等几何图形中观察到。
根据这些形状在不同的位置上可以表示出来,可以形成一个个带有对称性的图形。
1.2对称性的应用第一型曲线积分是利用曲线的对称性进行积分。
具体来说,如果一条曲线能够对折,则该曲线拥有对称性,即曲线两端所有特征都是对称的,存在自反特性。
例如,抛物线具有翻转对称性,可将其翻转180度;函数椭圆具有绕椭圆中心0度旋转后仍然保持不变的空间变换;函数双曲线具有绕双曲线中心旋转180度后仍然保持不变的变换。
从直观上看,这类曲线的总积分为0,因为其两端的面积是对称的,可以用一条曲线的积分为另一条曲线的积分的负值来表示,即可以用只进行一次实现曲线的积分。
1.3典型的第一型曲线积分的例子第一型曲线积分是求函数及其导函数存在对称性的情况下关于自变量的积分,比如抛物线,它是给定一条抛物线关于x轴正负相等的积分。
又例如,当函数y=sin(ax+b)有它的对称性时,积分可以转换成求零点来计算;此外,第一型曲线积分还可以用于求解月牙形的面积等问题。
1.4总结综上所述,对称性对于求解第一型曲线积分十分重要,它能够有效减少计算量,使求解问题更加简便,从而提高计算效率。
第一型曲面积分的对称性
一维、二维以及其它多维曲面积分,在积分学中占据重要的地位,是许多基础、重要的数学方法的基础。
而第一型曲面积分是其中一个特殊的实例,其具有独一无二的特性和对称性,有别于传统的积分方法。
第一型曲面积分即示意函数曲面积分,也称为花瓣积分,是一种以曲面的形式
把轴对称函数积分起来的方法。
其原理是用轴对称函数在曲面上的旋转形成的新的函数,然后用积分来计算这个函数的积分。
其对称性指的是,从某一点可以进行等距的旋转,从而得到此曲面积分的等效表示,而无论积分的方向如何变化,其结果都不会发生变化。
由于第一型曲面积分所具有的独有特性和对称性,广泛应用于不同领域。
例如
经典物理学中,经常用其来分析有关多轴对称物理系统的轨道运动;在量子力学领域,第一型曲面积分可以解决许多具有对称性的复杂量子力学问题;在工程应用中,由于其可以准确、快捷的计算带有多轴对称结构设计的一系列数值,因此被广泛采用。
从中可见,第一型曲面积分是一种重要的数学工具,广泛应用于各种不同领域,它具有特有的对称性和独有的优势。
在基础教育过程中,对于对其进行详细的研究将有助于提升我们在该领域的应用能力。
对称性在积分计算中的应用摘要:在积分计算中,运用积分区域的对称性和被积函数的奇偶性,以及轮换对称性可以简化计算.本文总结了对称性在定积分、重积分、曲线积分以及曲面积分计算中的应用.对于积分区域不具有对称性的情形,文中总结了几种方法来创造对称性,如平移变换、伸缩变换、区域划分等.关键词:对称性;奇偶性;积分计算;轮换对称引言数学是一个充满了美的世界,对称性不仅是数学美的重要特征,也是一个非常重要的艺术要素,因此很有必要去探讨一下对称性在解题这门艺术中的应用.在学习的过程中,常常发现自己在计算积分时,把简单的问题复杂化而增加了计算的难度,若在积分的计算中能充分利用积分区域的对称性和被积函数的奇偶性以及轮换对称性,就能简化计算.很多文献讨论了对称性在积分计算中的应用这个问题.如文献[3]和文献[4]主要讨论了二重积分的对称性定理及其应用,得出了当积分区域关于x轴(或y轴、或原点)对称且被积函数关于变量x(或y)为奇函数或偶函数时的对称性定理.文献[5]讨论了轮换对称性在各类积分计算中的应用.文献[6]讨论了对称性在三重积分计算中的应用,得出了当积分区域关于某个坐标面对称且被积函数是关于某变量的奇函数或偶函数时的对称性定理.文献[7]给出了积分区域关于变量x,y,z的轮换对称性定义.文献[13]将定积分、重积分、第一型曲线积分和第一型曲面积分的对称性定理写成统一的形式.当积分区域不具有对称性时,不能直接利用对称性来简化计算,但有时可以通过适当的变换化积分区域为对称区域.本文总结了几种创造对称性的方法,如伸缩变换、平移变换、区域划分等,有时候可以将两种变换结合起来使用.1.对称性在定积分计算中的应用在定积分的计算中,根据积分区间的对称性和被积函数的奇偶性,可以简化计算.定理1.1[1] 设f(x)在[?a,a]上连续,则当f(x)是奇函数时,?当f(x)是偶函数时,?a?aa?af(x)dx?0;f(x)dx?2?f(x)dx.a1周口师范本科毕业论文(设计)证明?a?af(x)dx??af(x)dx?0?a?0?af(x)dx.令x??t,有dx??dt.则?当f(x)为偶函数时,当f(x)为奇函数时,f(x)dx???f(?t)dt?a0f(?t)dt.a?a0f(?t)dt??a0f(t)dt,则?aa?aaf(x)dx?2?f(x)dx.?af(?t)dt???f(t)dt,则??af(x)dx?0.下面我们来看一个例题.例1?x3sin2x2?计算定积分I???6?x2?x???dx.2?2?x?3x?5? 2解3I??2?2xsinxx?3x?56232??2?2x(2?x)dx.2由于xsinxx?3x?5622是变量x的奇函数,由定理1.1知?2?2xsinxx?3x?56232由于x(2?x2)是变量x的偶函数,由定理1.1知?则I?0?16?16.2?2x(2?x)dx?2?x(2?x)dx?16,2202在定积分的计算中,当积分区间关于原点对称时,我们容易想到用对称性,而当积分区间为任意有限区间?a,b?时,我们往往想不到去利用对称性.实际上,积分区间?a,b?一定关于直线x?12bbaa(a?b)对称,由此我们可以得出如下定理.定理1.2[2]设f(x)在?a,b?上连续,则?f(x)dx??f(a?b?x)dx.只需令x?a?b?t即可证明此定理.这一公式对于积分的计算并没有多少的帮助,但从该公式易得如下推论.推论1设f(x)在?a,b?上连续,则? baf(x)dx??ba12[f(x)?f(a?b?x)]dx.对于有些计算起来非常困难甚至无法计算的积分,我们只需将被积函数换成[f(x)?f(a?b?x)]就能简化运算.21例2计算定积分?4ln(9?x)ln(9?x)?ln(3?x).22周口师范本科毕业论文(设计)解记f(x)?442,则f(6?x)?,由推论1知?f(x)dx??212f(x)?f(6?x)]dx?4212dx?1.我们已经总结了对称性在定积分计算中的应用,从上面的讨论中我们可以看出根据对称性确实可以简化计算,下面来讨论对称性在重积分计算中的应用.2.对称性在重积分计算中的应用2.1对称性在二重积分计算中的应用我们已经讨论了对称性在定积分计算中的应用,得出了相应的结论.对于二重积分,我们主要讨论积分区域关于x轴(或y轴)对称、关于原点对称以及轮换对称性.定理2.1.1[3]x设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于轴对称.如果函数f(x,y)是关于y的奇函数,即f(x,?y)??f(x,y),(x,y)?D,则??f(x,y)d??0;如果f(x,y)是关于y的偶函数,即f(x,?y)?f(x,y),D(x,y)?D,则??f(x,y)d??2??f(x,y)d?.DD1其中D1是D在x轴上方的平面区域.同理可写出积分区域关于y轴对称的情形.证明根据二重积分的性质得??Df(x,y)d????f(x,y)d??D1??D2f(x,y)d?,其中D1??(x,y)?D|y?0?,D2??(x,y)?D|y?0?.作变量替换x?x,y??t,(x,t)?D1.则J??(x,y)?(x,t)?100?1??1.若f(x,y)为关于y的奇函数,则??D2f(x,y)d????D1f(x,?t)J?????f(x,t)d?????f(x,y)d?D1D1,3周口师范本科毕业论文(设计)??Df(x,y)d????f(x,y)d??D1D1f(x,y)d??0,若f(x,y)为关于y的偶函数,则??D2f(x,y)d????f(x,?t)Jd??D1??D1f(x,t)d????D1f(x,y)d?,??Df(x,y)d????f(x,y)d??D1??D1f(x,y)d??2??f(x,y)d?D1.综合以上可知结论成立.例3计算二重积分??y3sin2xd?,其中D是由x?y?1,x?y?1和x?0围D成的平面闭区域.解由于区域D关于x轴对称,且f(x,y)?y3sin2x是关于变量y的奇函数,则由定理2.1.1知??y3sin2xd??0.D由定理2.1.1可得如下推论.推论2设函数f(x,y)在xoy平面上的有界区域D上连续,若积分区域D既关于x轴对称,又关于y轴对称,则⑴若函数f(x,y)关于变量x,y均为偶函数,则??f(x,y)d??4??f(x,y)d?.DD1其中D1是区域D在第一象限的部分,D1??(x,y)?D|x?0,y?0?.⑵若函数f(x,y)关于变量x或变量y为奇函数,则??f(x,y)d??0.D当积分区域关于原点对称时,我们可以得到如下的定理.定理2.1.2?4?设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于原点对称.如果f(?x,?y)??f(x,y),(x,y)?D,则??Df(x,y)d??0;如果f(?x,?y)?f(x,y),(x,y)?D,则??f(x,y)d??2??f(x,y)d??2??f(x,y)d?,DD1D2其中D1??(x,y)?D|x?0?,D2??(x,y)?D|y?0?.为了叙述的方便,我们给出区域关于x,y的轮换对称性的定义.定义2.1.1设D为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(x,y)?D,存在(y,x)?D,则称区域D(或光滑平面曲线段)关于x,y具4周口师范本科毕业论文(设计)有轮换对称性.关于区域的轮换对称性,有如下定理.定理2.1.3[5]x,y设函数f(x,y)在xoy平面上的有界区域D上连续,且D关于具有轮换对称性,则??f(x,y)d??D??Df(y,x)d?.上面所列推论及定理的证明方法均与定理2.1.1类似,此处不再赘述,下面给出相应的例题.例4解计算二重积分I?I???(xD2?5x?3y?2)d?,其中D:x2?y2?1.??(5x?3y)d??D??Dxd??2由于D关于原点对称,且5x?3y是??2d?,D(x,y)的奇函数,则由定理2.1.2知??(5x?3y)d??0.故D2?01I???Dxd??2??2d???Dd??(rcos?)rdr?2??2094?.例5计算二重积分I???其中f(x)是区间??1,1?上的?,正值连续函数,D??(x,y)|x2?y2?1,x?0,y?0?.解由于积极分区域D关于x,y具有轮换对称性,则由定理2.1.3得I?所以I???2D1??D?????D?,a?bd??2??d??D?2(a?b).2.2对称性在三重积分计算中的应用经过分析,我们可以很容易地看到对称性在三重积分计算中的应用与二重积分非常类似,根据对称性在二重积分计算中的结论可以得到下面的定理.定理2.2.1[6]设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于坐标平面x?0对称,则(1)若f(x,y,z)是关于变量x的奇函数,则???f(x,y,z)dV?0;?(2)若f(x,y,z)是关于变量x的偶函数,则?1是?的前半部分,?1??(x,y,z)??|x?0?.同理可写出?关于坐标平面y?0(或z?0)对称时的情形.证明由三重积分的性质得????f(x,y,z)dV?????1f(x,y,z)dV?????2f(x,y,z)dV,其中?1??(x,y,z)??|x?0?,?2??(x,y,z)??|x?0?.作变量替换x??t,y?y,z?z,(t,y,z)??1,则?(x,y,z)?(t,y,z)?1?0001000??1.1J?(1)当f(x,y,z)为关于变量x的奇函数时,有????2f(x,y,z)dV????f(?t,y,z)JdV?????f(t,y,z)dV?????f(x,y,z)dV?1?1?1????f(x,y,z)dV?????1f(x,y,z)dV?????1f(x,y,z)dV?0.(2)当f(x,y,z)为关于变量x的偶函数时,有????2f(x,y,z)dV????f(?t,y,z)JdV??1????1?1f(t,y,z)dV?????1f(x,y,z)dV,????f(x,y,z)dV?2???f(x,y,z)dV.综合(1)和(2)可知结论成立.例6z?计算三重积分I?????(x?z)dV,其中?是由曲面z?与.解I?????xdV?????zdV,由于?关于坐标面x?0对称,且x为关于变量x的奇函数,则由定理2.2.1知???xdV?0.则?I?????zdV??2?0?40d??d??rcos?rsin?dr?201?8.与二重积分类似,我们也可得到如下结论.6周口师范本科毕业论文(设计)定理2.2.2设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于原点对称,则(1)若f(?x,?y,?z)??f(x,y,z),(x,y,z)??,则???f(x,y,z)dV?0;?(2)若f(?x,?y,?z)?f(x,y,z),(x,y,z)??,则????f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV?2???f(x,y,z)dV?1?2?3.其中?1??(x,y,z)??|x?0?,?2??(x,y,z)??|y?0?,?3??(x,y,z)??|z?0?为了方便叙述,我们先给出一个空间几何体关于x,y,z的轮换对称性定义.定义2.2.1[7]设?是一有界可度量的集几何体(?可为空间区域、空间曲线或曲面块),且它的边界光滑,若对任意的(x,y,z)??,都存在(y,z,x)??,存在(z,x,y)??,则称?关于x,y,z具有轮换对称性.关于空间区域的轮换对称性,我们有如下的定理.定理2.2.3设函数f(x,y,z)是定义在空间有界区域?上的连续函数,且?关于x,y,z具有轮换对称性,则???f(x,y,z)dV????f(y,z,x)dV???????f(z,x,y)dV.例7解计算三重积分???xyzdV,其中?:x2?y2?z2?4.?由于?关于原点对称,且xyz是关于(x,y,z)奇函数,由定理2.2.2知???xyzdV??0.例8[8]解计算???(x?y?z)2d?.其中?为正方体0?x?1,0?y?1,0?z?1.<B< body>。
第二型曲线积分的对称性
第二型曲线积分的对称性
1. 什么是第二型曲线积分?
第二型曲线积分是一种常见的数学方法,用于计算函数曲线上某一段不断变化的值。
曲线积分又称为曲面积或曲线下积分,是数学积分的一种,它的原理是将一个范围内的曲面拆分成等份,然后进行积分计算,从而获得此区域的面积。
2. 第二型曲线积分的对称性
第二型曲线积分有很多特性,其中之一就是具有对称性。
当一个函数有某种特殊的对称特性时,即它可以被分解为两部分,这两部分完全相同或一致,那么我们就可以利用第二型曲线积分的对称性来计算函数曲线上某一段不断变化的值。
以给定函数y=x^2为例,在x区间为[a,b]时,对称公式为:
积分结果=[1/3(b^3-a^3)]/2
也就是说,在[a,b]范围内,只需要计算(b-a)的三次方,根据给定的常数1/3乘以结果,就可以得出曲面积的结果。
3. 第二型曲线积分的应用
第二型曲线积分可以让我们更快捷、更准确地计算函数曲线上某一段不断变化的值,它被广泛应用于物理,化学,数学等诸多领域当中,帮助我们更精准的计算空间曲面的曲线积分。
综上,第二型曲线积分具有对称性,可以帮助我们更精确地计算出某一段区域的曲面积,它在物理、化学和数学等领域的应用极为广泛。
曲线,曲面积分的对称性,奇偶性是什么?1、曲线的对称性,奇偶性是指根据对函数性质的分析,找出图像上控制形状的关键点,比较简便、迅速、准确地用描绘,熟练掌握函数奇偶性(曲线对称性)的判别:如果函数的定义域D是关于原点对称的,对任意的x∈D,若都有f(x)=-f(x),则为奇函数,图像关于坐标原点对称。
2、曲面积分的对称性,奇偶性:区域Q的对称性:(1)若(x,y,z)∈S则(x,y,一z)∈Q那么0关于xoy面对称。
8关于xox面yo面对称类似。
(2) 若(x.y,z)∈Q则(一x,一 y.z)∈Q那么2关于z轴对称。
Q关于x轴)轴对称类似。
(3)若(xy.2)∈则(x一)2)(y1一二)和(-.y2)均∈2那么O关于三个坐标面对称。
(4)若(x.y.2)∈Q则(一x-γ→∈Q那么0关于原点对称。
(5)若(x,y,z)∈Q则(,r.2)和(一x、z)∈2那么0关于x和y∞面对称。
1.2函数的奇偶性。
(6)若f(x,y,z)在2上满足f(-x,y.z)-干了(x,y.2),称f为o上关于x的奇、偶函数。
f关于y或2的奇偶性类似。
(7)若f(x.y.z)在2上满足f(一x,一y,z)=干f(x.y.c),称厂为关于:与y的奇偶函数。
」关于心与:或)与z的奇偶性类似。
(8)若f(x.y,z)在2上满足F(-x,2-2)元Ff(x.y.2).称厂为关于x和:的奇、偶函数。
扩展资料:学好积分的方法:首先仔仔细细的看一下那四类积分,把那些积分公式写下来,然后尽量直观的理解一下,比如对坐标的曲线积分以及对弧长的曲线积分,前者可以理解为力的做功,后者理解为已知曲线密度,求曲线质量,这样有了理解之后对公式的记忆会有帮助的,要不然会很乱。
理解了公式之后,就可以运用一些对称性了,那些对称性的公式也要理解,并不是硬背的,什么关于x是偶函数,关于y是奇函数,积分是两倍还是为0这点也很重要,陈文登的书上面好像都总结了。
然后理解公式以后就到教科书上找相应的例子巩固一下,同济第五版的高等数学,上面的例题很简单,并且也把知识点包含进去,所以是个很不错的教材。
利用对称性_奇偶性计算二重积分对称性和奇偶性在计算二重积分中是非常有用的工具。
它们可以帮助我们简化计算过程,减少工作量。
首先,让我们回顾一下对称性的概念。
在二维平面上,对称性指的是一个函数在平面上的镜像对称或旋转对称性。
对称性的存在可以帮助我们缩小计算的范围,从而简化问题。
现在我们考虑奇偶性。
在数学中,一个函数的奇偶性是指函数在自身的镜像中是否保持不变。
具体来说,如果对于函数f(x),我们有f(-x)=f(x),那么这个函数就是偶函数。
如果我们有f(-x)=-f(x),那么这个函数就是奇函数。
现在让我们进入实际的例子来说明如何使用对称性和奇偶性来计算二重积分。
假设我们要计算函数f(x,y)=x^2+y^2在特定区域D上的二重积分。
首先,我们可以观察到这个函数是一个关于x和y的二次多项式,它具有x和y的奇偶性。
因为平方项不受符号变换的影响,所以这个函数是一个偶函数。
这意味着如果我们把这个函数在x轴和y轴上镜像,结果是不变的。
当我们考虑计算二重积分时,我们通常可以通过对称性来简化问题。
在这个例子中,我们可以观察到函数f(x,y)在关于x轴和y轴的镜像平面上是对称的。
因此,我们可以将原始区域D沿着x轴或y轴折叠,得到两个对称的区域D1和D2、这样,我们只需要计算其中一个区域的积分,然后将结果乘以2即可。
假设我们选择将区域D沿着y轴折叠。
这样就得到了两个对称的区域D1和D2,其中D1的x坐标范围是[0,a],y坐标范围是[c,d],D2的x坐标范围是[0,a],y坐标范围是[-d,-c]。
现在我们可以编写二重积分的表达式。
根据对称性,我们可以将f(x,y)视为偶函数,并将y的范围限制在非负值上。
因此,我们可以将二重积分写为:∬D(x^2+y^2)dA=2∬D1(x^2+y^2)dA= 2∫[0,a] ∫[c,d] (x^2 + y^2) dy dx接下来,我们可以使用极坐标变换来进一步简化计算。
在极坐标下,一个点的坐标可以表示为(r,θ),其中r是点到原点的距离,θ是点与x 轴的夹角。
对面积的曲面积分的可代入性和对称性第十二章 曲面积分一、对面积的曲面积分的可代入性对面积的曲面积分中被积函数可代入性:是指可以将曲面的表达式代入被积函数。
所以x , y , z 满足曲面的方程.是定义在曲(,,)f x y z面 上的,也就是说以 f (x , y , z ) 的自变量x , y , z 为坐标的点P 就是曲面Σ上,比如:设 f (x , y , z )=xyz 是定义在曲面Σ:z = x 2 + y 2 上,从而 f (x ,y ,z ) 就可以写成 xy (x 2+y 2),即f (x ,y ,z ) = xy (x 2+y 2).因为 f 中的x , y , z 是约定在曲面之上的,所以 z 的取值为x 2 + y 2 , 而点的坐标必须满足曲面的方程,而二重积分计算时则不能把边界曲线的表达式代入被积函数,满足的关系式通过不等式描述,一般含有“≤”或“≥”。
因为被积函数中的x , y 是平面区域D 内部的点对应的x , y ,此时x , y +≤+⎰⎰22221()d ,x y x y x y σ比如:中的取值限定在圆内,满足的是x 2 + y 2 ≤ 1,所以22221()d x y x y σ+≤+⎰⎰+≤≠⎰⎰2211d .x y σ二、对面积的曲面积分的对称性定义1设曲面∑上任取一点P(x, y, z),若(x, y, – z)对应的点Q也在∑上,或者说:将∑的关系式中“z”换成“–z”,而关系式不变,则称曲面∑关于xOy面对称.【曲面还可以关于yOz面对称或zOx面对称。
】例如: Σ的关系式为:x2 + y2 + z2= a2 (z ≥ 0), 若将z改成-z,则关系式变成了: x2 + y2 +(-z)2= a2 (-z ≥0),即x2 + y2 + z2= a2 (z ≤ 0),关系式发生了变化,即曲面发生了变化,所以曲面不关于xOy面对称。
当然,如果大家把x改成-x,则关系式不变,所以曲面关于yOz面对称。
不定积分的对称性不定积分是微积分中的一个重要概念,它是函数积分的逆运算。
对于一个给定的函数,不定积分可以求解出该函数的原函数(即导数为该函数的函数),获得原函数后,我们可以对其进行微积分运算,进一步探索函数的性质和规律。
在不定积分的求解过程中,有一种非常重要的概念:对称性。
对称性是指某个对象在某种变换下的性质是不变的。
在数学领域中,对称性不仅仅只是一个概念,还有很强的应用价值。
在不定积分中,对称性可以帮助我们快速准确地求解不定积分,同时也可以从中发现一些有趣的规律和性质。
对称性可以分为几种类型,例如对称函数、周期函数、奇偶函数等。
在这里,我们主要介绍奇偶函数的对称性。
奇偶函数分为两种类型:奇函数和偶函数。
奇函数的定义是f(x)=-f(-x),即在函数y=f(x)的图像中,以原点为中心对称得到的图像和函数y=f(x)完全一样;而偶函数的定义是f(x)=f(-x),即在函数y=f(x)的图像中,以y轴为中心对称得到的图像和函数y=f(x)完全一样。
接下来我们将逐一探讨奇函数和偶函数的对称性在不定积分求解中的应用。
一、奇函数的对称性对于一个奇函数f(x),我们有以下重要结论:(1)当积分区间为[-a,a]时,有∫_-a^af(x)dx=0。
这个结论的证明比较简单,由于f(x)是奇函数,我们可以将积分区间[-a,a]拆分为[-a,0]和[0,a]两个区间,即∫_-a^af(x)dx = ∫_-a^0f(x)dx + ∫_0^af(x)dx。
代入奇函数的定义式f(x)=-f(-x),其中x属于[-a,0]时,有-f(x)=f(-x),而x属于[0,a]时,有f(x)=f(-x),于是我们可以将式子改写为∫_-a^af(x)dx = -∫_0^-af(x)dx + ∫_0^af(x)dx = 0。
(2)当积分区间为[-a,0](或[0,a])时,有∫_-a^0f(x)dx=-∫_0^af(x)dx。
同样可以通过奇函数的定义式来证明这个结论,但是为了简化计算,我们可以使用一个小技巧。
积分中的对称性
【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。
【关键词】积分;轮换对称性;奇对称;偶对称
在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。
这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。
设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi 1, … ,
xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。
在一元函数积分学中,我们有下面所熟悉结论:
若f(x)在闭区间[-a,a]上连续,则有
∫a-af(x)dx= 0, f(-x)=-f(x)
2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)
利用这一性质,可以简化较复杂的定积分的计算。
对重积分、曲线积分及曲面积分也有类似的结论。
下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。
1 对称性在重积分计算中的应用
对称性在计算二重积分Df(x,y)dσ方面的应用。
结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有
① Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数
② Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。
其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。
结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:
① Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;
② Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1 D2=0。
结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:
① Df(x,y)dσ=0,f(x,y)关于直线L奇对称;
② Df(x,y)dσ=2D1f(x,y)dσ,f(x,y) 关于偶对称。
其中D1为区域D被直线L所分割的两个对称区域之一。
说明:若对D内关于直线L对称的任意两点P、Q,都有f(P)=-f(Q),(f(P)=f(Q)),则称f(x,y)关于直线L奇(偶)对称。
特别地,若区域D关于直线y=x对称,则当点(x,y)∈D时,有(y,x)∈D,这时积分区域D关于x、y具有轮换对称性。
这时我们有:
Df(x,y)dσ=12D[f(x,y) f(y,x)]dσ
若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则Df(x,y)dσ=0;
若f(x,y)=f(y,x),即f(x,y)关于直线y=x偶对称,则Df(x,y)dσ=2D1f(x,y)d σ。
计算三重积分Ωf(x,y,z)dν时,也有类似的结论。
若积分区域Ω关于面xoy面(或yoz面或zox面)对称,记Ω1为区域Ω被坐标面所分割的两个对称区域之一。
则有:
① Ωf(x,y,z)dν=0,f(x,y,z)为关于z(或x或y)的奇函数;
② Ωf(x,y,z)dν=2Ω1f(x,y,z)dν,f(x,y,z)为关于z(或x或y)的偶函数。
若积分区域Ω关于x,y,z具有轮换对称性,即当(x,y,z)∈Ω时,
(y,z,x),(z,x,y)∈Ω,这时有Ωf(x,y,z)dν=Ωf(y,z,x)dν=Ωf(z,x,y)dν
=13Ω[f(x,y,z) f(y,z,x) f(z,x,y)]dν
2 对称性在曲线积分计算中的应用
2.1 对称性在第一类曲线积分计算中的应用
结论1 若积分曲线L关于x轴(或y轴)对称,记L1为曲线L被坐标轴所分割的两个对称区域之一,则有:
① ∫Lf(x,y)ds=0,f(x,y)为关于y(或x)的奇函数;
② ∫Lf(x,y)ds=2∫L1f(x,y)ds,f(x,y)为关于y(或x)的偶函数。
结论2 若积分曲线L关于直线y=x对称,则当点(x,y)∈L时,有(y,x)∈L,即L关于x,y具有轮换对称性,这时有:
∫Lf(x,y)ds=∫Lf(y,x)ds=12∫L[f(x,y) f(y,x)]ds
若f(x,y)=-f(y,x),即f(x,y)关于直线y=x奇对称,则∫Lf(x,y)ds=0;
若f(x,y)=(y,x),即f(x,y)关于直线y=x偶对称,则∫Lf(x,y)ds=2∫L1f(y,x)ds。
其中L1为曲线L被直线y=x所分割的两个对称区域之一。
2.2 对称性在第二类曲线积分计算中的应用
设有曲线积分I=∫L P(x,y)dx,其中L为光滑的有向曲线弧,如果L关于某条直线(包括坐标轴)对称,这时利用对称性计算上述曲线积分时,不仅要考虑P(x,y)的大小和符号,还要考虑投影元素dx的符号。
当积分方向和坐标轴正向之夹角小于π2时,投影元素为正,否则为负。
一般地,我们有:
结论若积分曲线L关于某直线对称,记L1为曲线L被这条直线所分割的两个对称区域之一,则有:
① ∫Lf(x,y)ds=0,P(x,y)dx在对称点上取相反的符号;
② ∫Lf(x,y)ds=2∫L1f(x,y)ds,P(x,y)dx 在对称点上取相同的符号。
对于积分∫L Q(x,y)dy也有类似地结论。
上述结论都可推广到空间曲线的情形。
3 对称性在曲面积分计算中的应用
3.1 对称性在第一类曲面积分计算中的应用
结论1 若积分曲面关于某平面(或某点)对称,记1为曲面被某平面(或某点)所分割的两个对称曲面之一,则有:
① f(x,y,z)dS=0,在对称点上f(x,y,z)取相反的符号;
② f(x,y,z)dS=21f(x,y,z)dS,在对称点上f(x,y,z)取相同的符号。
结论2 若积分曲面关于x,y,z具有轮换对称性,则有:
f(x,y,z)dS=f(y,z,x)dS=f(z,x,y)dS
=13[f(x,y,z) f(y,z,x) f(z,x,y)]dS
3.2 对称性在第二类曲面积分计算中的应用
利用对称性计算第二类曲面积分同样需要注意投影元素的符号。
现以曲面积分
f(x,y,z)dxdy为例来讨论。
当曲面指定侧上动点的法线方向与z轴正向成锐角时,面积元素dS在xoy面上的投影dxdy为正;成钝角时为负。
一般地,我们有:。