工业相机与镜头选型方法(含实例)
- 格式:docx
- 大小:37.27 KB
- 文档页数:3
机器视觉光学镜头的技术指标作者:Gregg Fales, Edmund Industrial Optics 机器视觉的集成和设计面临各种来自硬件、软件和电子方面问题的挑战,如果忽视光学性能规格,不了解如何评估光学器件,用户挑选合适的机器视觉镜头将会面临挑战。
通过了解10项镜头规格,可以帮助集成商和用户挑选镜头,来优化或评估各自系统的性能。
视觉系统光学性能的4项最基本参数是视野(field of view)、分辨率resolution、工作距离working distance 和景深depth of field(见图)。
需要考虑的更高级的集成规格参数包括焦距(f)、maximum chip format、失真(distortion)、变焦/聚焦特点(zoom/focus)、design conjugate、聚焦远心(telecentricity)。
四大参数视野简单而言,视野应该是你需要检查的物体的尺寸。
很多从事机器视觉系统规格的工程师是从放大倍数的角度来思考的。
然而,放大倍数是一种相对规格,依赖于图像传感器的尺寸和显示器件的尺寸。
从视野或分辨率的角度来说,它没有真正意义。
例如,一种具备50 倍放大倍数的系统可能具有5.3 毫米的视野(假如该系统使用的是1/2 英寸CCD 和13 英寸显示器)或15.2 毫米的视野(1 英寸CCD、19 英寸显示器)。
你必须规定视野,以确保视觉系统能够检验你感兴趣的整个区域。
分辨率只有规定视野而不是规定放大倍数,才能确保系统将具有合适的分辨率。
分辨率是系统可以测到的受检验物体上的最小可分辨特征尺寸。
在多数情况下,视野越小,分辨率越好。
系统的分辨率是由光学器件的调制传递函数(modulation transfer function, MTF)、摄像机、电缆和显示硬件等多个参数决定的。
MTF 限定了部件在分辨率和对比度方面的总体成像性能。
光学器件的MTF 常常被忽略,而仅仅根据基本放大倍数和摄像机像素数量来计算系统的分辨率是。
相机选型精度计算方法
在进行相机选型时,计算相机的精度是非常重要的一项任务。
相机的精度决定了它在特定应用中能够提供的准确性和可靠性。
下面将介绍一种常用的相机选型精度计算方法。
首先,我们需要确定相机的像素大小。
像素大小是指图像传感器中每个像素的物理尺寸。
可以通过相机规格或者厂家提供的信息来获得这个数值。
接下来,我们需要计算相机的空间分辨率。
空间分辨率是相机能够分辨的最小物体大小。
它通常以线对线距离来表示。
计算方法如下:
空间分辨率 = 像素大小 / 放大倍数
放大倍数是指相机图像在显示屏上的显示放大比例。
一般来说,放大倍数取1即可。
然后,我们可以计算相机的绝对精度。
绝对精度是指相机在给定条件下测量结果的误差范围。
计算方法如下:
绝对精度 = 空间分辨率 * 物体距离 / 1000
物体距离是指相机到物体的实际距离, 单位为毫米。
将结果除以1000是为了将单位转换为像素。
最后,我们可以计算相机的相对精度。
相对精度是指相机在连续测量中的稳定性和一致性。
计算方法如下:
相对精度 = 绝对精度 / 物体距离
相对精度的结果表示为一个小数,可以用百分比或者小数形式表示。
综上所述,相机选型精度可以通过计算像素大小、空间分辨率、绝对精度和相对精度来进行评估。
这些参数可以帮助我们选择适合特定应用的相机,以获得准确和可靠的成像结果。
工业相机方案在现代工业生产中,工业相机被广泛应用于各种生产环境中,用于进行自动化检测、质量控制和生产过程监控等工作。
工业相机的高分辨率、高速度和稳定性等特点,使其成为工业自动化的关键组成部分。
本文将介绍工业相机的基本原理、应用领域及如何选择合适的工业相机方案。
一、工业相机的基本原理工业相机是一种特殊的数字相机,它具有高速度、高分辨率和稳定性等特点。
与普通消费级相机相比,工业相机更注重图像的准确性和可靠性。
工业相机通常采用CCD或CMOS传感器来捕捉图像,并通过适当的图像处理算法来提高图像质量。
工业相机的基本原理是将光线传感器转换成电信号,然后通过图像处理器将电信号转化为数字图像。
工业相机通常具有以下特点:1. 高分辨率:工业相机可以捕捉高分辨率的图像,以便更准确地检测和识别物体。
2. 高速度:工业相机具有快速的图像捕捉和传输速度,以满足生产线上的高速运行需求。
3. 稳定性:工业相机具有抗干扰能力和长时间稳定工作的能力,可以在恶劣的环境条件下正常工作。
4. 多功能性:工业相机可以通过不同的光源、滤镜和镜头等配件进行灵活配置,以满足不同的应用需求。
二、工业相机的应用领域工业相机可以应用于多个领域,下面是一些常见的应用示例:1. 自动化检测:工业相机可以用于自动化检测和质量控制,例如在生产线上对产品进行缺陷检测、尺寸测量和颜色识别等。
2. 视觉引导系统:工业相机可以用于机器人和自动导航系统的视觉引导,帮助机器人和车辆进行精确定位和路径规划。
3. 制药和医疗行业:工业相机可以用于制药和医疗设备的检测和监控,例如药品包装检查和手术辅助等。
4. 汽车制造业:工业相机可以应用于汽车制造过程中的检测和质量控制,例如对汽车零部件的组装和表面检查等。
5. 食品加工行业:工业相机可以用于食品加工过程中的检测和质量控制,例如对食品包装的检查、异物检测和码垛等。
三、选择合适的工业相机方案选择合适的工业相机方案需要考虑多个因素,包括应用需求、环境条件和预算等。
工业镜头参数
工业镜头的参数包括:
1.焦距:工业镜头的焦距通常较短,一般在8mm-50mm之间,用于拍摄距离比较近的物体。
2.光圈:工业镜头的光圈一般较小,可以获得较大的景深,确保整个物体都清晰可见。
3.视场角度:视场角度越大,可以拍摄到的物体范围就越广,视场角度一般在80度到120度之间。
4.镜头结构:工业镜头常见的结构有固定焦镜头、变焦镜头、广角镜头、长焦镜头等。
5.透光率:工业镜头的透光率越高,影像质量就越好,通常采用多层涂膜技术提高透光率。
6.镜头口径:镜头口径越大,光线的入射量就越大,影像质量也更好,一般较大的工业摄像头镜头口径为1英寸或更大。
7.分辨率:工业镜头的分辨率越高,可以拍摄到更细节的物体信息,影像质量也更好,一般分辨率高达4000万像素以上。
1/2 〃: (6.4mm x 4.8mm);、机器视觉中工业镜头的计算方式1、 WD 物距工作距离(Work Distance , WD 。
2、 FOV 视场视野(Field of View ,FOV3、 DOV 景深(Depth of Field )。
4、 Ho:视野的高度5、 Hi:摄像机有效成像面的高度(Hi 来代表传感器像面的大小)6、 PMAG 镜头的放大倍数7、 f:镜头的焦距8、 LE:镜头像平面的扩充距离LE=Di-f=PMAG»f、相机和镜头选择技巧1、相机的主要参数:感光面积 SS (Sensor Size )2、 镜头的主要参数:焦距 FL (Focal Length )最小物距 Dmin ( minimum Focal Distance )3、 其他参数:视野 FOV( Field of View ) 像素pixelFOVmi n=SS(Dmi n/FL )工业相机传感器尺寸大小:(单位: mm2.4mm);6.6mm);1/3 ": (4.8mm X 3.6mm); T: (12.8mm X 9.6mm);2012年8月1日艾菲特光电I 配、DOV 4机器视觉工业镜头计算方法(一)3-X.Sonsor Site (m)Field of View (u)IWMAGf+FMAG女口: SS=6.4mm Dmin=8in , FL=12mm pixel=640*480 则:FOVmin=6.4 (8/12)=4.23mm 4.23/640=0.007mm 如果精度要求为 0.01mm 1pixels=0.007mm<0.01mm 结论:可以达到设想的精度FL 31 =1 总D n imm四、CCD相机元件的尺寸五、线阵传感器尺寸(单位:mm<820miX750hit/7uX5000bit <409M20.48x tow;| 10|j10.24六、公式:分辨率(卩m)=0.61 (固定值)X0.55 (设计波长)* NA有效F No=放大倍率/2NA景深(mm)=2(可接受的模糊圆直径x有效F No*放大倍率2)光通量直径(© )=2NAx物体的高度+视野尺寸(角度)七、显示器倍率及综合倍率的求法:显示器倍率=显示器英寸数X25.4 (1英寸)* CCD目机对角尺寸综合倍率=显示器倍率x光学倍率例:2x光学倍率镜头和1/2“ CCD相机的组合,在14“显示器上的影像综合倍率H 一on 14X23,4显不器倍率二——-——=004址45综合倍率=44.45x2=88.9八、光学放大率2009年3月25日艾菲特光电工业镜头相当于人眼的晶状体,如果没有晶状体,人眼看不到任何物体;如果没有镜头,那么摄像头所输出的图像;就是白茫茫的一片,没有清晰的图像输出,这与我们家用摄像机和照相机的原理是一致的。
工业镜头是专门用于工业视觉、机器视觉和其他工业应用的光学组件。
以下是一些与工业镜头相关的常见参数:1.焦距(Focal Length):a.焦距是从透镜的光学中心到焦点的距离。
较长的焦距通常意味着更大的放大倍数,而较短的焦距则意味着更广阔的视场。
2.光圈(Aperture):a.光圈是镜头的开口大小,通常用F数表示(如f/2.8)。
较小的F数表示更大的光圈,允许更多的光线进入,有助于在低光条件下获得更好的图像。
3.视场角(Field of View, FOV):a.视场角是指在镜头前方可见的水平和垂直角度范围。
视场角的大小取决于焦距和传感器尺寸。
4.最小工作距离(Minimum Working Distance):a.最小工作距离是指从镜头前端到目标的最短距离,可以获取清晰图像。
5.图像直径(Image Circle Diameter):a.图像直径是指在光学系统中形成的图像的直径。
它必须足够大,以覆盖整个图像传感器。
6.分辨率(Resolution):a.镜头的分辨率指的是它能够传递给相机传感器的图像细节水平。
高分辨率镜头有助于捕捉更清晰、更精细的图像。
7.畸变(Distortion):a.畸变是指由于光学系统引起的图像失真。
在工业应用中,需要尽量减小畸变,以确保测量和分析的准确性。
8.光学设计(Optical Design):a.包括透镜数量、透镜类型、镀膜等。
优秀的光学设计对于获取高质量的图像非常关键。
9.自动对焦(Auto Focus):a.一些工业镜头具备自动对焦功能,可以根据距离自动调整焦点,提高操作效率。
10.光学镜片材料:a.不同的应用可能需要不同类型的镜片材料,如玻璃或塑料,以满足特定的工业环境和要求。
11.机械结构:a.镜头的机械结构包括外部尺寸、重量、连接接口等,这些参数在工业环境中也是考虑的因素。
在选择工业镜头时,需根据具体应用的要求和环境条件综合考虑上述参数。
工业相机与镜头选型方法(含实例)
一、根据应用需求选型
工业相机与镜头的选型首先要根据实际应用需求来确定。
应该明确拍
摄的对象、需要的图像质量、成像速度等方面的要求。
例如,是否需要高
分辨率的图像、是否需要高速连续拍摄、是否需要逆光环境下的高动态范
围等等。
根据这些需求,可以确定所需要的传感器规格和镜头类型。
二、根据传感器规格选型
传感器规格是工业相机选型的重要依据之一、传感器的大小直接影响
到成像的角度、分辨率和噪声水平。
常见的传感器规格有1/2.3英寸、
1/1.8英寸、2/3英寸、1英寸以及APS-C和全画幅等。
一般而言,传感
器越大,成像角度越大,分辨率越高,噪声水平越低。
根据应用需求,选
择合适的传感器规格。
实例一:如果应用需求是需要拍摄大范围场景,例如工业检测、机器
视觉等,可以选择传感器规格较小的相机,例如1/2.3英寸传感器。
实例二:如果应用需求是需要高分辨率的图像,例如精细检测、高精
度测量等,可以选择传感器规格较大的相机,例如APS-C或全画幅传感器。
三、根据镜头类型选型
根据传感器规格确定之后,接下来要选择合适的镜头类型。
工业相机
通常有固定焦距镜头、变焦镜头和特殊用途镜头等类型。
固定焦距镜头一般适合需要固定场景的拍摄,一般具有较高的分辨率
和较低的畸变等特点。
变焦镜头适用于需要不同焦距的应用,具有变焦范围广、灵活性高的
特点。
特殊用途镜头适用于特殊的应用场景,例如近距离测量、显微镜观察等。
实例三:如果应用场景需要拍摄不同物体的细节,例如高精度检测、PCB检测等,可以选择具有高分辨率和低畸变的固定焦距镜头。
实例四:如果应用场景需要拍摄不同距离的对象,例如检测机器人、
机器视觉等,可以选择具有变焦范围广的变焦镜头。
四、根据镜头参数选型
在确定镜头类型之后,还需要根据具体应用的需求选择合适的镜头参数,包括焦距、光圈和视场角等。
焦距是指镜头的焦距长度,影响到成像的角度和视场大小。
一般而言,焦距较短的镜头可以拍摄宽广的场景,焦距较长的镜头可以拍摄较小的视场。
光圈是指镜头的最大光圈大小,影响到成像的亮度和景深。
一般而言,光圈越大,拍摄的图像越亮且景深越浅。
视场角是指镜头的视场大小,影响到拍摄的范围和景深。
一般而言,
视场角越大,拍摄的范围越广。
实例五:如果应用场景需要拍摄大范围的场景,可以选择具有较短焦
距和较大视场角的镜头。
实例六:如果应用场景需要拍摄光线较暗的场景,可以选择具有较大
光圈的镜头。
综上所述,工业相机与镜头的选型应根据应用需求、传感器规格、镜头类型和镜头参数等因素综合考虑。
根据实际应用的要求选择合适的相机和镜头能够提高成像效果和工作效率。