初一数学上册重点难点
- 格式:docx
- 大小:30.69 KB
- 文档页数:5
初一数学上册期末考试重点1.初一数学上册期末考试重点《正数和负数》1、正数:像小学学过的大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、正数负数的判断方法:⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。
4、0的含义:①0表示起点。
②0表示没有。
③0表示一种温度。
④0表示编号的位数。
⑤0表示精确度。
⑥0表示正负数的分界。
⑦0表示海拔平均高度。
5、具有相反意义的量;6、正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。
《有理数》1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧4、绝对值与相反数(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
最小的正整数是1,的负整数是-1。
5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
完整版)最新版浙教版数学七年级上册各章节重难点第一章有理数1.1 从自然数到有理数正数是指大于零的数,负数是指小于零的数,而零既不是正数也不是负数。
正整数、零和负整数统称为整数,而负分数和正分数则统称为分数。
整数和分数合在一起就是有理数。
1.2 数轴数轴是指规定了原点、单位长度和正方向的直线。
任何一个有理数都可以用数轴上的点来表示。
如果两个数符号不同,其中一个数称为另一个数的相反数。
在数轴上,互为相反数(零除外)的两个点位于原点的两侧,并且到原点的距离相等。
1.3 绝对值绝对值是指一个数在数轴上对应的点到原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,而零的绝对值是它本身。
互为相反数的两个绝对值相等。
需要注意的是,任何数的绝对值都大于或等于零(非负数)。
1.4 有理数的大小比较一般地,我们可以得出以下结论:在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
第二章有理数的运算2.1 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加等于零,一个数与零相加仍得这个数。
在有理数运算中,加法的交换律和结合律仍然成立。
2.2 有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。
2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与零相乘,积为零。
若两个有理数的乘积为1,就称这两个有理数互为倒数。
在有理数的乘法中,乘法交换律、分配律和结合律仍然成立。
2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数都等于零。
代数式的值有时需要用“整体”代入的技巧来求解,特别是当无法求出字母的值时。
高中数学作为初中数学的延伸,承上启下,在学习过程中往往会遇到一些易错点和困难点。
在人教版初一上册的数学教材中,也有一些常见的易错点和难点,下面将针对这些内容进行总结和回顾,帮助学生更好地理解和掌握这些知识。
一、整数在初一上册的数学教材中,整数是一个重要的内容。
易错点主要集中在整数的加减法、乘除法以及应用题中。
在加减法中,学生往往容易出现负数的运算错误,尤其是对负数的理解和运用不够熟练。
在乘除法中,学生常常出现忽略符号、计算错误的情况。
在应用题中,对于正负数的理解和运用也是一个困难点。
二、分数分数是初中数学中的一个基础知识点,但在实际运用中常常出现错误。
易错点主要包括分数的加减乘除、分数的化简和扩展、分数在应用题中的运用等。
学生往往在运算中出现符号忽略、计算错误,对于分数的化简和扩展也缺乏深入的理解。
三、代数方程在初一上册的数学教材中,代数方程也是一个难点内容。
易错点主要包括一元一次方程的解法、方程的应用题以及方程与图形的联系等。
学生往往对于方程的解法和应用题中的参数化不够熟练,对于方程与图形的联系也缺乏深入的理解。
四、几何几何是初中数学中的一个重要内容,但在初一上册的教材中,也存在一些易错点和难点。
主要包括角的性质、相似三角形、平行线和相交线等内容。
学生往往在运用角的性质和相似三角形的知识时出现错误,对于平行线和相交线的性质也理解不够深入。
初一上册数学教材中存在着一些易错点和难点,但只要学生能够认真总结和回顾这些知识,勤加练习,相信一定能够克服这些困难,更好地掌握数学知识。
希望同学们能够在学习中坚持不懈,勇敢面对困难,不断提高自己的数学水平。
高中数学作为初中数学的延伸,承上启下,是学生学习数学的关键阶段之一。
在学习高中数学的过程中,学生往往会遇到更加复杂的数学内容和问题,因此对初中数学知识的掌握和理解尤为重要。
在人教版初一上册的数学教材中,整数、分数、代数方程和几何是一些常见的易错点和难点。
一、整数在高中数学中,整数的运算不仅仅局限于加减乘除,还涉及到整数的乘方、开方、整数的分数指数和分数根等。
初一数学上册教案(优秀11篇)初一的数学上册教案篇一【教学目标】知识与技能理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。
过程与方法通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验。
情感、态度与价值观通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣。
【教学重难点】重点:合并同类项法则的探索及应用。
难点:合并同类项法则的理解和灵活运用。
【教学过程】一、温故知新师:你们知道等式的基本性质是什么吗?学生回答,教师点评。
师:利用等式的基本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3x.学生解答,然后集体订正。
问题展示:问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?师:设前年购买计算机x台,那么去年购买计算机多少台?生:2x台。
师:今年购买计算机多少台?生:4x台。
师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=140合并同类项7x=140系数化为1x=20二、例题讲解解下列方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-壹五×4-6×3.解:(1)合并同类项,得-x=-2,系数化为1,得x=4.(2)合并同类项,得6x=-78,系数化为1,得x=-一三.三、巩固练习解下列方程:1.3x+4x-2x=18-7.2.y-y+y=×6-1.四、课堂小结师:这节课你学习了哪些知识?获得了哪些经验?学生发言,教师予以补充。
初一数学上册教案篇二教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。
能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
初一上册数学《正数和负数》教案(精选10篇)初一上册数学《正数和负数》教案 1一、内容和内容解析1、内容正数和负数的意义。
2、内容解析引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。
本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量。
在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析1、教学目标(1)体会引入负数的必要性;(2)了解负数的意义,会用正数、负数表示具有相反意义的量。
2、目标解析(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。
在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。
在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。
这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。
突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计1、创设情境,引入新知教师展示教科书图1。
2024年北师大版初一数学上册知识点汇总2024年北师大版初一数学上册知识点汇总1整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
2024年北师大版初一数学上册知识点汇总2七年级上册数学知识点总结之有理数及其运算板块:1、整数包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
2、正整数、0、负整数、正分数、负分数这样的数称为有理数。
3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
七年级上册数学知识点总结之整式板块:1、单项式:由数与字母的乘积组成的式子叫做单项式。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、整式:单项式与多项式统称整式。
4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。
七年级上册数学知识点总结之一元一次方程。
1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。
2、移项:把等式一边的某项变号后移到另一边,叫做移项等。
其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。
大家平时要注意整理与积累。
配合多加练习。
一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。
一个个知识点去通过。
我相信只要做个有心人,就可以在数学考试中取得高分。
2024年北师大版初一数学上册知识点汇总31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的`运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.2024年北师大版初一数学上册知识点汇总4__内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级上册数学有理数重点难点题型全覆盖试卷附详细答案一、单选题(共9题;共18分)1.下列说法正确的是( )①有理数包括正有理数和负有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A. ②B. ①③C. ①②D. ②③④ 2.如果ab≠0,那么a|a |+b|b |的值不可能是( )A. 0B. 1C. 2D. -23.若a 、b 、c 、d 四个数满足 1a−2000=1b+2001=1c−2002=1d+2003 ,则a 、b 、c 、d 四个数的大小关系为( ) A. a >c >b >d B. b >d >a >c C. d >b >a >c D. c >a >b >d 4.代数式|x ﹣1|+|x+2|+|x ﹣3|的最小值为 ( )A. 2B. 3C. 5D. 65.第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为( )A. 69.9×105B. 0.699×107C. 6.99×106D. 6.99×1076.为求1+2+22+23+…+22008的值,可令S =1+2+22+23+…+22008 , 则2S =2+22+23+24+…+22009 , 因此2S -S =22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( )A. 32019-1B. 32018-1C.32019−12D.32018−127.若 | x | =- x ,则 x 一定是( )A. 非正数B. 正数C. 非负数D. 负数8.日常生活中我们使用的数是十进制数 . 而计算机使用的数是二进制数,即数的进位方法是“逢二进一” . 二进制数只使用数字0,1,如二进制数1101记为 11012 , 11012 通过式子 1×23+1×22+0×2+1 可以转换为十进制数13,仿照上面的转换方法,将二进制数 111012 转换为十进制数是( ) A. 4 B. 25 C. 29 D. 339.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A. (12)3 米 B. (12)5 米 C. (12)6 米 D. (12)12 米二、填空题(共7题;共11分)10.若a,b 是整数,且ab =12,|a |<|b | , 则a+b=________ .11.水果市场上鸭梨包装箱上印有字样:“15kg±0.2kg”,有一箱鸭梨的质量为14.92kg ,则这箱鸭梨 ________标准.(填“符合”或“不符合”)12.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,则在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣2|的几何意义是数轴上表示x的点与表示2的点之间的距离.借助于数轴回答下列问题:①数轴上表示2和5两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.②数轴上表示x和﹣2的两点之间的距离表示为________.③数轴上表示x的点到表示1的点的距离与它到表示﹣3的点的距离之和可表示为:|x﹣1|+|x+3|.则|x ﹣1|+|x+3|的最小值是________.④若|x﹣3|+|x+1|=8,则x=________13.p在数轴上的位置如图所示,化简:|p−1|+|p−2|=________;14.下列说法错误的是________ (只填序号).①有理数分为正数和负数;②所有的有理数都能用数轴上的点表示:③符号不同的两个数互为相反数;④两数相加,和一定大于任何一个加数;⑤两数相减,差一定小于被减数.15.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?________16.32016﹣22016的个位数字是________.三、计算题(共4题;共50分)17.计算:(1)(-2)2×(-1)3-3×[-1-(-2)];(2)23-32-(-4)×(-9)×0;(3)-27÷(-9)+(12−23)÷(−112)-(-3)2;(4)-12018+(-1)5×(13−12)÷13-|-2|;(5)0.23×35×(-1)3-19×23-13×19×(-1)4-0.23×25;(6)(-2)3-[(-4)2+5]÷(-134)-325÷(−225).18.计算|13−12|+|14−13|+|15−14|+⋯|12002−12001|.19.已知a、b、c为整数,且|a-b|99+|c-a|99=1,求|c-a|+|a-b|+|b-c|的值.20.阅读下面的文字,回答后面的问题:求5+52+53+⋯+5100的值.解:令S=5+52+53+⋯+5100①,将等式两边同时乘以5得到: 5S=52+53+54+⋯+5101②,②-①得: 4S=5101−5∴S=5101−54即5+52+53+⋯+5100=5101−54.问题:(1)求2+22+23+⋯+2100的值;(2)求2+22+23+⋯+2100的值;四、解答题(共20题;共143分)21.若a>0,b<0,且|x-a|+|x-b|=a-b,求x的取值范围.22.有理数a、b、c在数轴上的位置如图,化简:|b﹣c|+|a﹣b|﹣|a+c|23.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:14,﹣9,﹣18,﹣7,13,﹣6,10,﹣5(单位:千米).(1)B地在A地何位置?(2)若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油29升,求途中需补充多少升油?24.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是________;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是________.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为________(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为________.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.25.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.( 1 )非负数集合:{ …};( 2 )负数集合:{ …};( 3 )正整数集合:{ …};( 4 )负分数集合:{ …}.26.比-1小的整数如下列这样排列第一列第二列第三列第四列-2 -3 -4 -5-9 -8 -7 -6-10 -11 -12 -13-17 -16 -15 -14…………在上述的这些数中,观察它们的规律,回答数-100将在哪一列.27.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B 到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?28.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?29.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为________;(2)当t=1时,P、B两点之间的距离为________;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t的值;若没有,请说明理由.30.如图,点A.B和线段MN都在数轴上,点A.M、N、B对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为________.(2)当t=________秒时,AM+BN=11.(3)若点A.B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.31.点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO=|a-0|=|a|,类似地,点B与原点O两点之间的距离表示为BO,则BO=|b|,点A与点B两点之间的距离表示为AB=|a-b|.请结合数轴,思考并回答以下问题:(1)①数轴上表示1和-3的两点之间的距离是________;②数轴上表示m和-1的两点之间的距离是________;③数轴上表示m和-1的两点之间的距离是3,则有理数m是________;(2)若x表示一个有理数,并且x比-3大,x比1小,则|x-1|+|x+3|=________(3)求满足|x-2|+|x+4|=6的所有整数x的和________.32.小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?33.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到7条折痕,那么对折4次可以得到多少条折痕?如果对折n次呢?34.如图,小明在写作业时不慎将一滴墨水滴在数轴上,根据图中的数值,试确定墨迹盖住的整数共有哪几个?35.为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)36.2017年国庆节放假八日,高速公路免费通行,各地风景区游人如织.其中闻名于世的西湖风景区,在9月30日的游客人数为0.9 万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)10月3日的人数为________万人.(2)八天假期里,游客人数最多的是10月________日,达到________万人;游客人数最少的是10月________日,达到________万人.(3)请问西湖风景区在这八天内一共接待了多少游客?(结果精确到万位)(4)如果你也打算在下一个国庆节出游西湖,对出行的日期有何建议?37.你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?38.用四舍五入法,按括号中的要求对下列各数取近似值.(1)349995(精确到百位);(2)349995(精确到千位)(3)3.4995(精确到0.01);(4)0.003584(精确到千分位)39.下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)4.2万(2)130亿(3)34.10 (4)5.00×104(5)﹣0.0308040.若(2a+4)2+|4b﹣4|=0,求a+b的值?五、综合题(共10题;共110分)41.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.42.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.43.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
初一数学上册个人教案5篇教学目标1.了解代数和的概念,理解有理数加减法可以相互转化,会进展加减混合运算;2. 通过学习一切加减法运算,都可以统一成加法运算,连续渗透数学的转化思想;3.通过加法运算练习,培育学生的运算力量。
教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律精确快速地进展,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。
了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是由于有理数加、减混合算式都看成和式,就可敏捷运用加法运算律,简化计算.(二)学问构造(三)教法建议1.通过习题,复习、稳固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要仔细总结、分析学生在进展有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮忙学生改正.2.关于“去括号法则”,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。
这时,称这个和式为代数和。
再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。
代数和概念是把握有理数运算的一个重要概念,请教师务必赐予充分留意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
如12-5+7 应变成 12+7-5,而不能变成12-7+5。
#447226初一数学上册个人教案2教学目的借助“线段图”分析简单的行程问题中的数量关系,从而建立方程解决实际问题,进展分析问题,解决问题的力量,进一步体会方程模型的作用。
重点、难点1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程一、复习1.列一元一次方程解应用题的一般步骤和方法是什么?2.行程问题中的根本数量关系是什么?路程=速度×时间速度=路程 / 时间二、新授例 1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡探望爷爷,在行驶了三分之一路程后,估量连续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
初一数学上册教案初一数学上册教案「篇一」教学目标1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点:深化对正负数概念的理解知识重点:正确理解和表示向指定方向变化的量教学过程:(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。
这就是说:数的范围扩大了(数有正数和负数之分)。
那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。
(数0既不是正数又不是负数,是正数和负数的分界,是基准。
这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。
那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。
在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。
了解。
的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性。
“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。
这个问题只要初步认识即可,不必深究。
分析问题解决问题问题3:教科书第6页例题说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。
初一数学上册难点及解题技巧(一)初一数学上册难点及解题技巧1. 整式的加减法•将同类项合并,注意系数的运算法则。
•注意正负号的运算规则,正数加正数为正,正数加负数为减,负数加负数为负。
2. 简单的方程式•利用逆运算原则,将方程式变形,使得未知数单独在一边。
•确保方程式两边进行相同操作,保持等式成立。
•注意分母不为0的限制条件。
3. 基础函数的性质•理解函数的定义,即自变量与因变量的关系。
•学习各类函数的图像,了解函数曲线的特点。
•掌握函数的奇偶性、单调性、周期性等性质。
4. 图形的识别与计算面积•学习几何图形的定义与性质,如正方形、长方形、三角形等。
•熟练计算图形的周长和面积,掌握计算公式并灵活运用。
5. 小数的运算•对于小数的加减乘除,保持相同的小数位数,注意小数位的进位与舍位规则。
•对于长除法,注意整理和估算答案,将复杂计算转化为简单的近似计算。
6. 简单的几何变换•学习平移、旋转、翻折等基本的几何变换方法。
•理解几何变换的性质,如保持长度、角度、面积等不变。
7. 统计与概率•学习统计图表的绘制与分析,如柱状图、折线图、饼图等。
•理解事件的概率定义,学习简单的概率计算方法。
以上是初一数学上册中的难点内容及解题技巧,通过掌握这些技巧,可以更好地应对数学学习中的困难。
希望对大家的学习有所帮助!8. 分数的四则运算•掌握分数的基本概念,包括分子、分母、真分数和假分数等。
•加减法:将两个分数的分母取公倍数后,按照公共分母进行运算,并化简结果。
•乘法:将两个分数的分子与分母分别相乘,并化简结果。
•除法:将除数倒数乘以被除数,并化简结果。
9. 平面图形之间的关系•学习平行线与垂直线的定义,理解它们之间的性质与判定条件。
•掌握各类角的性质,如对顶角、同位角、内错角等。
•学习三角形与四边形的分类及各种形状的性质。
10. 比例与相似•学习比例的定义和运算规则,掌握比例的简化和扩展计算方法。
•理解相似图形的定义和性质,学习相似图形的判定方法。
第1页 共5页
初一数学上册重点难点
初中课堂与课后结合,老师指导与学生探求结合,建立犬牙
交错的学法指导网络,促进学生驾驭正确的学习方法。以下是我
整理的初一数学上册重点难点,盼望大家谨慎阅读!
代数
有理数
★重难点★ 有理数的有关概念及性质,数轴、肯定值和相反
数的全面驾驭,有理数的运算(加减乘除、乘方以及混合运算)
一、 重要概念
1.数的分类及概念
2.非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有: 0、1、2…
性质:假设干个非负数的和为0,那么每个非负担数均为0。
3.倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1时,
1/a 整式
★重难点★ 整式的有关概念及性质,整式的运算,去括号(代
数式运算中最常用、最根本的恒等变形),同类项、乘法公式、分
解因式
一、 重要概念
第2页 共5页
1.整式
用运算符号把数或表示数的字母连结而成的式子,叫做代数
式。单独
的一个数或字母也是代数式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式
叫做整式。
分类:单项式、多项式
3.单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单
独的一个数或字母)
几个单项式的和,叫做多项式。
4.系数与指数
区分与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母一样;②一样字母的指数一样
合并依据:乘法安排律
9.指数
⑴ ( —幂,乘方运算)
① a>0时,>0;②a0(n是偶数), 方程(组)
★重点★一元一次、二元一次方程组的解法;方程的有关应用
题(特殊是行程、工程问题)
第3页 共5页
一、 根本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
二、 解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类
项→
系数化成1→解。
2. 元一次方程组的解法:⑴根本思想:“消元”⑵方法:①
代入法
②加减法
六、 列方程(组)解应用题
(一)概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其详细步骤是:
⑴审题。理解题意。弄清问题中确定量是什么,未知量是什
么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①干脆未知数②间接未知数(往往二者兼
用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
第4页 共5页
⑷找寻相等关系(有的由题目给出,有的由该问题所涉及的等
量关系给出),列方程。一般地,未知数个数与方程个数是一样的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为
数学问题(设元、列方程),在由数学问题的解决而导致实际问题
的解决(列方程、写出答案)。在这个过程中,列方程起着承前启
后的作用。因此,列方程是解应用题的关键。
(二)常用的相等关系
1. 行程问题(匀速运动) 根本关系:s=vt
⑴相遇问题(同时启程): ⑵追及问题(同时启程): ⑶水中
航行: ;
2. 配料问题:溶质=溶液×浓度 溶液=溶质+溶剂
3.增长率问题:
4.工程问题:根本关系:工作量=工作效率×工作时间(常把
工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相
像形及有关比例性质等。
(三)留意语言与解析式的互化
如,“多”、“少”、“增加了”、“增加为(到)”、“同
时”、“扩大为(到)”、“扩大了”、……
第5页 共5页
又如,一个三位数,百位数字为a,十位数字为b,个位数字
为c,那么这个三位数为:101a+10b+c,而不是abc。
四留意从语言表达中写出相等关系。
如,x比y大3,那么x-y=3或x=y+3或x-3=y。又如,x与
y的差为3,那么x-y=3。五留意单位换算
如,“小时”“分钟”的换算;s、v、t单位的相同等。