6.5一次函数图像的应用(二)
- 格式:doc
- 大小:2.48 MB
- 文档页数:2
鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。
本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。
通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。
三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。
2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:一次函数在实际生活中的应用。
2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。
同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。
六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。
同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。
然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。
2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。
在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。
6.5一次函数的应用导学案2一、学习目标:1.使学生能够将实际问题转化为一次函数的问题.2.能够根据实际意义准确地列出解析式并画出函数图像.3.体验到数学与生活的联系,进一步发展学生解决问题的能力.二、自主学习、合作探究1.预习课本202-207页的内容,并解答202页的引例。
2.合作探究,分小组展示预习成果;3.独立完成引例。
例题探究:某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.四、课堂检测1.某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用的时间是( ) A.45.2分钟 B.48分钟 C.46分钟 D.33分钟2. (2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4h 时与甲地的距离.五、课后反思回顾本节课的内容,你有哪些收获?你还有哪些不明白的地方?。
课题:6.5一次函数图象的应用(2)【教学目标】 1、通过函数图象解决实际问题,进一步发展学生的数学应用能力。
2、从函数图象中正确读取信息,进一步发展学生的数形结合能力。
一、自主探究阅读课本202p 页,并完成相应的空格部分。
例1、如图,1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售的关系,根据图象填空.①当销售量为2t 时,销售收入= , 销售成本= .②当销售量为6t 时,销售收入= , 销售成本= . ③当销售量等于 时, 销售收入等于销售成本.④当销售量 时,该公司赢利, 当销售量 时,该公司亏损. ⑤1l 对应的函数解析式是 . 2l 对应的函数解析式是 .二、练习:1、如图分别是龟兔赛跑中路程与时间之间的函数图象。
根据图象可以知道:(1)这一次是 米赛跑(2)表示兔子的图象是(3)当兔子到达终点时,乌龟距终点还有 米 (4)乌龟要与兔子同时到达终点乌龟要先跑 米 (5)乌龟要先到达终点,至少要比兔子早跑 分钟三、自学课本P203-204页,并完成相应的问题。
例2、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶 (如图),下图中l 1,l 2分别表示两船相对于海岸 的距离s (海里)与追赶时间t (分)之间的关系.(1)哪条线表示B 到海岸的距离与时间之间的关系?t(2)A,B哪个速度快?(3)15分钟内B能否追上A?(4)如果一直追下去,那么B能否追上A(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?四、练习:1、一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2、如图:OA、BA分别表示甲乙两名学生跑步过程的一次函数的图象,图中s和t分别表示运动的路程和时间,根据图象请你判断: (1)甲乙谁的速度比较快?为什么?(2)快者的速度比慢者的速度每秒快多少米?3、一家小型放影厅盈利额y (元)同售票数x 之间的 关系如图2 所示,其中保险部门规定:超过150人时, 要缴纳公安消防保险费50元.试根据关系图回答下列问题: (1) 当售票数x 满足0<x ≤150时,求盈利额y (元)与x 之间的函数关系式?(2) 当售票数x 满足150<x ≤200时,求盈利额y (元)与x 之间的函数关系式?(3) 当售票数x 为__________时,不赔不赚;当售票数x 满足__________时,放影厅要赔本;若放影厅要 获得最大利润200元,此时售票数x 应为________.t(秒)。
浙教版八年级上册期末点对点攻关:一次函数应用(图像类)(二)1.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示,则乙比甲晚到小时.2.自行车运动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了,乙追上甲交接了训练用品(交接时间忽略不计),随后立即以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S (千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A地千米.3.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间(单价:min)之间的关系如图所示.在第分钟时该容器内的水恰好为10L.4.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分钟)之间的关系如图所示,则每分钟出水5.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.6.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.7.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.8.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.9.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑400米.当螃蟹领先乌龟225米时,螃蟹停下来休息并睡着了.当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹间的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离米.10.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了小时.11.甲、乙两人从距快递公司30千米的物流中心站同时出发,各自将货物运回公司,他们将货物运回公司立即卸货后,又各自以原速原路向中心站行驶,在整个过程中,甲、乙两个均保持各自的速度匀速行驶,且甲的速度比乙的速度快.甲、乙相距的路程y(千米)与甲离开中心站的时间x(分钟)之间的关系如图所示(卸货时间不计),则在甲返回到中心站时,乙距中心站的路程为千米.12.已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x(分钟)之间的关系如图所示,则A、C两地相距米.13.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过秒,小亮回到B端.14.一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A 地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶,若AB两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.15.小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后步行的时间x之间的函数关系如图所示,则妈妈从家出发分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟米,小芸家离学校的距离为米.16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为千米.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有米.18.A,B两地相距480km,C地在AB之间,现有甲、乙两辆货车分别从A,B两地匀速同时出发,乙车达到C地后停止.甲、乙两车之间的距离y(km)与甲车行驶时间x (h)之间的关系如图所示,则当乙车到达C地时,甲车与C的距离为km.19.如图,甲和乙同时从学校放学,两人以各自速度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做作业,打开书包时发现错拿了乙的练习册.于是立即跑步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距米.20.小颖和小明骑自行车从滨江路上相距9500米的A、B两地同时出发,相向而行,行驶一段时间后小颖的自行车坏了,立刻停车并马上打电话通知小明,小明接到电话后立刻提速至原来的倍,碰到小颖后用了5分钟修好了小颖的自行车,修好车后小明立刻骑车以提速后的速度继续向终点A地前行,小颖则留在原地整理工具,2分钟以后小颖以原速向B走了3分钟后,发现小明的包在自己身上,马上掉头以原速的倍的速度返回A地,在整个行驶过程中,小颖和小明均保持匀速行驶(小明停车和打电话的时间忽略不计),两人相距的路程S(米)与小颖出发的时间t(分钟)之间的关系如图所示,则小明到达A地时,小颖与A地的距离为米.参考答案1.解:由图象可得,甲的速度为:10÷1=10km/h,这次越野赛的全程长是:2×10=20km,设当0.5≤x≤1.5时,y与x的函数解析式为y=kx+b,,得,∴当0.5≤x≤1.5时,y与x的函数解析式为y=4x+6,当x=1.5时,y=12,∴乙跑完全程用的时间为:1.5+(20﹣12)÷10=2.3h,∴乙比甲晚到:2.3﹣2=0.3h,故答案为:0.3.2.解:设甲的速度为a千米/分,则乙的速度为(a+30)千米/小时.由题意,乙车修复故障时两人相距为:2a+a﹣(a+30)+=24∴a=24,乙修复车辆后速度为=36千米/小时∵乙修复摩托车时两人相距24千米∴乙追上甲用时为小时甲距离B为168﹣(3++2)×24=42千米甲到B时乙距离A为:千米故答案为:633.解:由图象0﹣4分钟,水量每分钟增加5升,则增加到10升需2分钟.在4﹣12分钟,水的体积增加10升,则每分钟增加升.∵此时,进水和出水管同时打开∴出水管的出水速度是每分钟5﹣=升∴水的体积从30升降到10升用时为=分此时时间为第12+=故答案为:2或174.解:根据图象知道:每分钟出水[(12﹣4)×5﹣(30﹣20)]÷(12﹣4)=升;故答案为:升5.解:根据图象可得,甲车的速度为120÷3=40(千米/时).由题意,得,解得60≤v≤80.故答案为60≤v≤80.6.解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.7.解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.8.解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5,故答案为:1.5.9.解:由图形可知:乌龟80分钟到达终点,∴乌龟的速度为:400÷80=5(米/秒),设螃蟹的速度为v米/秒,15v﹣15×5=225,v=20,螃蟹走完全程的时间:t==20,225÷5=45(分),∴点B(60,0),20+45=65,则螃蟹到达终点时,乌龟距终点的距离5(80﹣65)=75(米).故答案为:75.10.解:由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.5﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.5(小时),当乙车到达A地时,甲车已在C地休息了:6.5﹣4=2.5(小时),故答案为:2.5.11.解:甲的速度为30÷30=1(千米/分钟),乙的速度为30÷45=(千米/分钟),甲返回到中心站的时间为30×2÷1=60(分钟),在甲返回到中心站时,乙行驶的总路程为×60=40(千米),∴在甲返回到中心站时,乙距中心站的路程为30×2﹣40=20(千米).故答案为:20.12.解:甲乙两人的速度和为450÷3=150(米/分钟),甲的速度为450÷5=90(米/分钟),乙的速度为150﹣90=60(米/分钟).设A、C两地相距m米,则B、C两地相距(m+450)米,根据题意得:=,解得:m=450.故答案为:450.13.解:小明提速前,小亮和小明的速度和为360÷45=8m/s,小明提速后,小亮和小明的速度和为270÷(72﹣45)=10m/s,小明提速前的速度为(10﹣8)÷(﹣1)=3m/s,小明提速后的速度为3×=5m/s,小亮的速度为8﹣3=5m/s,小明到达B端的时间为72+(360﹣270)÷5=90s,小亮回到B端的时间为72×2=144s,∵144﹣90=54s.∴当小明到达B端后,经过54秒,小亮回到B端.故答案为:54.14.解:由题意可得,乙车的速度为:(200+400)÷(7﹣1)=100千米/时,甲乙两车的速度之比是:(200﹣120):200=2:5,∴甲车的速度是:100÷5×2=40千米/时,乙车从B地到A地的时间为:200÷100=2小时,∴两车相遇的时间是:2+1+(200﹣40×3)÷(100+40)=3小时,故答案为:3.15.解:当x=8时,y=0,故妈妈从家出发8分钟后与小芸相遇,当x=0时,y=1400,∴相遇后18﹣8=10分钟小芸和妈妈的距离为1600米,1600÷(18﹣8)﹣100=60(米/分),∴相遇后妈妈回家的平均速度是每分钟60米;1600+(23﹣18)×100=2100(米),∴小芸家离学校的距离为2100米.故答案为:8;60;2100.16.解:设甲车从A地到B地的速度为x千米/时,乙车从B地到A地的速度是y千米/时,,解得,,∴甲车从A地到B地用的时间为:900÷100=9小时,甲车从B地到A地的速度为:900÷(16.5﹣9)=120千米/时,乙车从B地到甲地的时间为:900÷80=11.25小时,∴当乙车到达A地的时候,甲车与A地的距离为:900﹣120×(11.25﹣9)=630(千米),故答案为:630.17.解:∵300秒时,乙到达目的地,∵乙的速度为:=4(米/秒).设甲的速度为x米/秒,∵50秒时,甲追上乙,∴50x﹣50×4=100,解得x=6,∴甲走完全程所需的时间为:=(秒),∴甲到达目的地时,乙距目的地还有:1300﹣100﹣×4=(米).故答案为.18.解:甲车的速度为480÷12=40km/h,甲、乙两车的速度和为480÷4.8=100km/h,乙车的速度为100﹣40=60km/h,A、C两地间的距离为480﹣360=120km,乙车到达C地的时间为360÷60=6h,乙车到达C地时,甲车与C的距离为40×6﹣120=120km.故答案为:120.19.解:设学校离甲的家距离为a米,则学校离乙的家距离为(a+3900)米,由图象可知,20分时甲到家,70分时乙到家,∴v甲=米/分,v乙=米/分,由题意得:40分时,甲追上乙,由BC段可知:70分时,乙到家时,甲到学校,即甲30分钟所走路程,乙走了40分,则40×=30×,解得:a=2400,∴甲家到乙家的距离为:2a+3900=2×2400+3900=8700,故答案为:8700.20.解:小颖和小明初始速度和为:(9500﹣1800)÷14=550米/分钟,小明提速后的速度为:800÷2=400米/分钟,小明的初始速度为:400÷=300米/分钟,小颖的速度为:550﹣300=250米/分钟,小颖坏车的地方离A地的距离为:250×14=3500米,修好车后小明到达A地所需时间为3500÷400=8.75(分钟),小明到达A地时,小颖与A地的距离为:3500+3×250﹣(8.75﹣2﹣3)×250×=2937.5米,故答案为:2937.5.。
人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。
本节课主要让学生掌握一次函数的应用,学会解决实际问题。
教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。
二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。
2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。
3.提高学生的数学应用能力,培养学生的逻辑思维能力。
四. 教学重难点1.一次函数的概念和性质。
2.如何将实际问题转化为一次函数问题。
3.运用一次函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。
2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。
3.采用小组合作学习,培养学生的团队协作能力。
4.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。
2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。
3.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
”引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。
通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。
让学生分享自己的解题过程和心得,加深对一次函数应用的理解。
6.5一次函数图像的应用(二) 主备人:张杨 审核人: 姓名 班级
学习目标:进一步锻炼学生的识图能力,能通过函数图象获取信息,解决简单的实际问题. 重点:一次函数图象的应用.
难点:从函数图象中正确读取信息.
学习过程:
一、自主预习:
1.阅读课本第202页内容,结合图像回答课本中的问题.
2.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一
些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数x
与他手中持有的钱数y(含备用零钱)的关系,如图所示,结合图象回答
下列问题.
(1)农民自带的零钱是 元;
(2)当售出30千克土豆时,他手中持有的钱为 元,新收入了 元钱;降价前每千克土豆的价钱是 元;降价前y 与x 之间的关系式是 ;
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
二、合作探究:
我边防局接到情报,近海处有一可疑船只A 正向公海方
向行驶.边防局迅速派出快艇B 追赶,下图中l 1,l 2分别表
示两船相对于海岸的距离s (海里)与追赶时间t (分)之
间的关系.
根据图象回答下列问题:
(1)哪条线表示B 到海岸的距离与时间之间的关系?
(2)A ,B 哪个速度快?
(3)15分钟内B 能否追上A ?
(4)如果一直追下去,那么B 能否追上A ?
(5)当A 逃到离海岸12海里的公海时,B 将无法对其进行检
查.照此速度,B 能否在A 逃到公海前将其拦截?
三、训练巩固:
1.观察甲、乙两图,解答下列问题:
①填空:两图中的 图比较符合传统寓言故事《龟免赛跑》中所描述的情节. ②根据1中所填答案的图象填写下表:
李,如果超过规定,则需要购买行李票,行李票费用y 元与行
李质量x 千克的关系如图:
①旅客最多可免费携带多少千克行李?
②超过30千克后,每千克需付多少元?
③写出行李票费用y 元与行李质量x 千克之间的函数关系式.
四、拓展延伸:
小明在电信局办理了某种电话话费套餐,该套餐要求按分钟计费且无论通话多长时间都需要交纳一定的费用作为月租费,办理后某月手机话费y 元和
通话时间x 的关系图如下:
观察图象形状,有何特点,你知道该电话套餐的内容吗?
⑴该话费套餐的月租费是多少元?
⑵每分钟通话需多少元?
五、课后练习:
A (必做):课本第207页习题:知识技能第1题;
B (选做):课本第207页,问题解决第2题 .。