A028=5.5 专题二 三角函数与平面向量的综合应用
- 格式:ppt
- 大小:687.50 KB
- 文档页数:15
专题能力训练8 平面向量及其综合应用(时间:60分钟满分:100分)一、选择题(本大题共7小题,每小题5分,共35分)1.(2015某某,文2)设向量a=(2,4)与向量b=(x,6)共线,则实数x=()A.2B.3C.4D.62.(2015某某某某鄞州5月模拟,文2)已知点A(-1,1),B(1,2),C(-3,2),则向量方向上的投影为()A.-B.C.-D.3.(2015某某某某三适,文6)已知向量|a|=|b|=|a-b|=1,则|2b-a|=()A.2B.C.3D.24.(2015某某某某期末考试,文8)已知a,b满足|a|=5,|b|≤1,且|a-4b|≤,则a·b的最小值为()A. B.-5C. D.-5.已知P是△ABC所在平面内一点,若,则△PBC与△ABC的面积的比为()A. B. C. D.6.已知a,b,c满足|a|=|b|=,a·b=,|c-a-b|=1,则|c|的最大值为()A.4B.+1C.3+D.27.(2015某某某某第三次教学质量调测,文8)已知向量a⊥b,|a-b|=2,定义:cλ=λa+(1-λ)b,其中0≤λ≤1.若cλ·,则|cλ|的最大值为()A. B. C.1 D.二、填空题(本大题共4小题,每小题5分,共20分)8.(2015某某某某教学测试(二),文10)若向量a与b满足|a|=,|b|=2,(a-b)⊥a,则向量a与b 的夹角等于;|a+b|=.9.(2015某某,文15)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论中正确的是.(写出所有正确结论的编号)①a为单位向量;②b为单位向量;③a⊥b;④b∥;⑤(4a+b)⊥.10.(2015某某某某鄞州5月模拟,文15)在△ABC中,AC=3,∠A=,点D满足=2,且AD=,则BC的长为.11.(2015某某第一次五校联考,文15)设a1,a2,…,a n,…是按先后顺序排列的一列向量,若a1=(-2 014,13),且a n-a n-1=(1,1),则其中模最小的一个向量的序号n=.三、解答题(本大题共3小题,共45分.解答应写出必要的文字说明、证明过程或演算步骤)12.(本小题满分14分)如图,已知在△OCB中,点C是以A为中点的点B的对称点,D是将分成2∶1的一个内分点,DC和OA交于点E,设=a,=b.(1)用a和b表示向量;(2)若=λ,某某数λ的值.13.(本小题满分15分)已知向量m=(1,3cos α),n=(1,4tan α),α∈,且m·n=5.(1)求|m+n|;(2)设向量m与n的夹角为β,求tan(α+β)的值.14.(本小题满分16分)(2015某某,文17)△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,b)与n=(cos A,sin B)平行.(1)求A;(2)若a=,b=2,求△ABC的面积.参考答案专题能力训练8平面向量及其综合应用1.B解析:由a=(2,4),b=(x,6)共线,可得4x=12,即x=3.2.C解析:由题意可知=(2,1),=(-2,1),所以向量方向上的投影为=-.故选C.3.B解析:因为|a|=|b|=|a-b|=1,所以|a-b|2=|a|2-2a·b+|b|2=1.所以a·b=.所以|2b-a|2=4|b|2-4a·b+|a|2=4-4×+1=3.所以|2b-a|=.故选B.4.A解析:因为|a-4b|≤,所以|a|-4|b|≤,即|b|≥.所以|b|2≥.因为|a-4b|2=(a-4b)2=a2-8a·b+16b2=|a|2-8a·b+16|b|2=25-8a·b+16|b|2≤21,所以a·b≥+2|b|2≥.所以a·b的最小值是.故选A.5.A解析:如图,以B为原点,BC所在直线为x轴,建立平面直角坐标系,设A(x A,y A),P(x P,y P),C(x C,0),则,即(x P-x A,y P-y A)=(x C,0)-(x A,y A),所以x P-x A=x C-x A,y P-y A=0-y A,y P=y A.故.6.A解析:∵|a|=|b|=,a·b=,∴a与b的夹角为60°.设=a,=b,=c,建立如图所示的坐标系,则a=(,0),b=.设c=(x,y),则c-a-b=.又|c-a-b|=1,∴=1,即点C的轨迹是以为圆心,1为半径的圆.∵|c|=表示点(x,y)到原点(0,0)的距离,∴|c|max=+1=4.故选A.7.C解析:由题意可设a=(a,0),b=(0,b),则由|a-b|=2可得a2+b2=4,由cλ·可得a2+b2=⇒λa2+(1-λ)b2=1.又|cλ|2=λ2a2+(1-λ)2b2,且λa2+(1-λ)b2-λ2a2-(1-λ)2b2=λ(1-λ)·(a2+b2)≥0,所以|cλ|2=λ2a2+(1-λ)2b2≤1.故选C.8.解析:∵(a-b)⊥a,∴(a-b)·a=0.∴a2=a·b=2.∴cos<a,b>=.∴<a,b>=,|a+b|=.9.①④⑤解析:在正三角形ABC中,=2a,||=2,所以|a|=1,①正确;由=2a+b,得=b,因此④正确,②不正确;由的夹角为120°,知a与b的夹角为120°,所以③不正确;因为=b,所以(4a+b)·=4a·b+b2=4×1×2×+22=0,所以(4a+b)⊥.故⑤正确.10.3解析:因为)=,所以|2+|·||cos 45°+|2,即13=|2+|·3··32,解得AB=3.又由余弦定理得BC2=AB2+AC2-2AB·AC·cos 45°=9,所以BC=3.11.1 001或1 002解析:设a n=(x n,y n),∵a1=(-2 014,13),且a n-a n-1=(1,1),∴数列{x n}是首项为-2 014,公差为1的等差数列,数列{y n}是首项为13,公差为1的等差数列.∴x n=n-2 015,y n=n+12.∴|a n|2=(n-2 015)2+(n+12)2=2n2-4 006n+2 0152+122.∴可知当n=1 001或1 002时,|a n|取到最小值.12.解:(1)由题意知,A是BC的中点,且,由平行四边形法则,得=2.故=2=2a-b,=(2a-b)-b=2a-b.(2)如题图,.又∵=(2a-b)-λa=(2-λ)a-b,=2a-b,∴,解得λ=.13.解:(1)由题意知m·n=1+12cos αtan α=1+12sin α=5,即sin α=.因为α∈,所以cos α=,tan α=.所以m=(1,2),n=(1,),m+n=(2,3).所以|m+n|=.(2)由(1)知m=(1,2),n=(1,),则cos β=,sin β=,所以tan β=.所以tan(α+β)=.14.解:(1)因为m∥n,所以a sin B-b cos A=0.由正弦定理,得sin A sin B-sin B cos A=0.又sin B≠0,从而tan A=.由于0<A<π,所以A=.(2)解法一:由余弦定理,得a2=b2+c2-2bc cos A,而a=,b=2,A=,得7=4+c2-2c,即c2-2c-3=0.因为c>0,所以c=3.故△ABC的面积为bc sin A=.解法二:由正弦定理,得,从而sin B=.又由a>b,知A>B,所以cos B=.故sin C=sin(A+B)=sin=sin B cos+cos B sin.所以△ABC的面积为ab sin C=.。
学 习 资 料 专 题课时跟踪训练(二十八) 平面向量的综合应用[基础巩固]一、选择题1.(2018·银川调研)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( )A .直角梯形B .矩形C .菱形D .正方形[解析] 由AB →+CD →=0得平面四边形ABCD 是平行四边形,由(AB →-AD →)·AC →=0得DB →·AC →=0,故平行四边形的对角线垂直,所以该四边形一定是菱形,故选C.[答案] C2.(2017·湖南省五市十校高三联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB →=2a ,AC →=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150° [解析] 解法一:设向量a ,b 的夹角为θ,BC →=AC →-AB →=2a +b -2a =b ,∴|BC →|=|b |=2,|AB →|=2|a |=2,∴|a |=1,AC →2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.解法二:BC →=AC →-AB →=2a +b -2a =b ,则向量a ,b 的夹角为向量AB →与BC →的夹角,故向量a ,b 的夹角为120°.[答案] C3.(2017·云南省高三统一检测)在▱ABCD 中,|AB →|=8,|AD →|=6,N 为DC 的中点,BM →=2MC →,则AM →·NM →=( )A .48B .36C .24D .12[解析] AM →·NM →=(AB →+BM →)·(NC →+CM →)=⎝⎛⎭⎪⎫AB →+23AD →·⎝ ⎛⎭⎪⎫12AB →-13AD →=12AB →2-29AD →2=12×82-29×62=24,故选C. [答案] C4.在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( ) A. 3 B.7 C .2 2D.23 [解析] 设角A ,B ,C 的对边分别为a ,b ,c .AB →·BC →=1,即ac cos B =-1.在△ABC 中,根据余弦定理b 2=a 2+c 2-2ac cos B 及AB =c =2,AC =b =3,可得a 2=3,即a = 3.[答案] A5.(2018·河南郑州七校联考)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5D .10[解析] 依题意得,AC →·BD →=1×(-4)+2×2=0.所以AC →⊥BD →,所以四边形ABCD 的面积为12|AC →|·|BD →|=12×5×20=5.[答案] C6.(2018·福建高三质检)△ABC 中,∠A =90°,AB =2,AC =1,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →.若BQ →·CP →=-2,则λ=( )A.13B.23C.43D .2[解析] 以点A 为坐标原点,以AB →的方向为x 轴的正方向,以AC →的方向为y 轴的正方向,建立如图平面直角坐标系,由题知B (2,0),C (0,1),P (2λ,0),Q (0,1-λ),BQ →=(-2,1-λ),CP →=(2λ,-1).∵BQ →·CP →=-2,∴1+3λ=2,解得λ=13,故选A.[答案] A 二、填空题7.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.[解析] 由题易知点O 为BC 的中点,即BC 为圆O 的直径,故在△ABC 中,BC 对应的角A 为直角,即AC →与AB →的夹角为90°.[答案] 90°8.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值与最小值的和为________.[解析] 由题意可得a ·b =3cos θ-sin θ=2cos ⎝⎛⎭⎪⎫θ+π6,则|2a -b |=a -b2=4|a |2+|b |2-4a ·b =8-8cos ⎝⎛⎭⎪⎫θ+π6∈[0,4],所以|2a -b |的最大值与最小值的和为4.[答案] 49.(2018·湖北襄阳优质高中联考)在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.[解析]如图,以A 为坐标原点,以AB 为x 轴,AD 为y 轴建立直角坐标系,则A (0,0),B (2,0),E (2,1).设F (m,2),0≤m ≤2,由AF →·AB →=(m,2)·(2,0)=2m =2,得m =1,则F (1,2),所以AE →·BF →=(2,1)·(1-2,2)= 2.[答案]2三、解答题10.已知四边形ABCD 为平行四边形,点A 的坐标为(-1,2),点C 在第二象限,AB →=(2,2),且AB →与AC →的夹角为π4,AB →·AC →=2.(1)求点D 的坐标;(2)当m 为何值时,AC →+mAB →与BC →垂直. [解] (1)设C (x ,y ),D (m ,n ),则AC →=(x +1,y -2). ∵AB →与AC →的夹角为π4,AB →·AC →=2.∴AB →·AC→|AB →||AC →|=222+22·x +2+y -2=22,化为(x +1)2+(y -2)2=1.① 又AB →·AC →=2(x +1)+2(y -2)=2,化为x +y =2.②联立①②解得⎩⎪⎨⎪⎧x =-1,y =3或⎩⎪⎨⎪⎧x =0,y =2.又点C 在第二象限,∴C (-1,3).又CD →=BA →,∴(m +1,n -3)=(-2,-2),解得m =-3,n =1.∴D (-3,1).(2)由(1)可知AC →=(0,1), ∴AC →+mAB →=(2m,2m +1),BC →=AC →-AB →=(-2,-1).∵AC →+mAB →与BC →垂直,∴(AC →+mAB →)·BC →=-4m -(2m +1)=0,解得m =-16.[能力提升]11.在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形[解析] 因为AB →|AB →|,AC →|AC →|分别为AB →,AC →方向上的单位向量,故由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0可得BC ⊥AM (M 是∠BAC 的平分线与BC 的交点),所以△ABC 是以BC 为底边的等腰三角形,又AB→|AB →|·AC→|AC →|=12,所以∠BAC =60°,所以△ABC 为等边三角形. [答案] A12.(2016·天津卷)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B.18C.14D.118[解析]建立如图所示的直角坐标系,则A ⎝ ⎛⎭⎪⎫0,32,B ⎝⎛⎭⎪⎫-12,0,C ⎝ ⎛⎭⎪⎫12,0,D ⎝ ⎛⎭⎪⎫-14,34.设F (x 0,y 0),则DE →=⎝ ⎛⎭⎪⎫14,-34,EF →=(x 0,y 0).∵DE →=2EF →,∴2x 0=14,2y 0=-34,即x 0=18,y 0=-38.∴F ⎝ ⎛⎭⎪⎫18,-38.∴AF →=⎝ ⎛⎭⎪⎫18,-538,BC →=(1,0),∴AF →·BC →=18.故选B.[答案] B13.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC →·EM →的最大值为________.[解析] 以点A 为坐标原点,AB ,AD 所在直线分别为x ,y 轴建立如图平面直角坐标系,则C (1,1),M ⎝ ⎛⎭⎪⎫1,12,设E (x,0),x ∈[0,1],则EC →·EM →=(1-x,1)·⎝⎛⎭⎪⎫1-x ,12=(1-x )2+12,x ∈[0,1]单调递减,当x =0时,EC →·EM →取得最大值32.[答案] 3214. (2018·广东湛江一中等四校联考)如图,已知△ABC 中,点M 在线段AC 上,点P在线段BM 上且满足AM MC =MPPB=2,若|AB →|=2,|AC →|=3,∠BAC =120°,则AP →·BC →的值为________.[解析] ∵|AB →|=2,|AC →|=3,∠BAC =120°,∴AB →·AC →=2×3×cos120°=-3. ∵MP →=23MB →,∴AP →-AM →=23(AB →-AM →),化为AP →=23AB →+13AM →=23AB →+13×23AC →=23AB →+29AC →.∴AP →·BC →=⎝ ⎛⎭⎪⎫23AB →+29AC →·(AC →-AB →)=49AB →·AC →+29AC →2-23AB →2=49×(-3)+29×32-23×22=-2.[答案] -215.(2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.[解] (1)∵m ⊥n ,∴m ·n =0. 故22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴cos 〈m ,n 〉=m ·n |m |·|n |=22sin x -22cos x 1×1=12,故sin ⎝⎛⎭⎪⎫x -π4=12.又x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,x -π4=π6,即x =5π12, 故x 的值为5π12.16.(2017·江西上饶调研)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c 边的长. [解] (1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ), 对于△ABC ,A +B =π-C,0<C <π, ∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin2C , ∴sin2C =sin C ,cos C =12,C =π3.(2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .∵CA →·(AB →-AC →)=18,∴CA →·CB →=18, 即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , ∴c 2=4c 2-3×36,c 2=36, ∴c =6.[延伸拓展](2017·陕师大附中四模)如图,已知四边形ABCD 是边长为4的正方形,动点P 在以AB为直径的圆弧APB 上,则PC →·PD →的取值范围是________.[解析] 设CD 的中点为M ,连接PM ,则PC →·PD →=⎝⎛⎭⎪⎫PM →-12CD →·⎝ ⎛⎭⎪⎫PM →+12CD →=|PM →|2-14|CD →|2=|PM →|2-4.易知|PM →|∈[2,25],故PC →·PD →的取值范围是[0,16].[答案] [0,16]。
平面向量的概念【教学过程】一、问题导入预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、新知探究 1.向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 教师小结(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可.(2)理解零向量和单位向量应注意的问题 ①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 2.向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.教师小结:用有向线段表示向量的步骤3.共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.互动探究:(1)变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. (2)变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →. 教师小结共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .注意:对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.【课堂总结】1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.【课堂检测】1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C .图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |.A .①③B .②③C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →. (2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA →共线的向量为AD →,BC →,CB →.平面向量的应用【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题?二、新知探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F与位移s的数量积,即W=F·s=|F||s|cos θ(θ为F与s的夹角).四、课堂检测1.河水的流速为2 m/s,一艘小船以垂直于河岸方向10 m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10 m/s B.226 m/sC.4 6 m/s D.12 m/s解析:选B.由题意知|v水|=2 m/s,|v船|=10 m/s,作出示意图如图.所以小船在静水中的速度大小|v|=102+22=226(m/s).2.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f4,则f4=()A.(-1,-2)B.(1,-2)C.(-1,2)D.(1,2)解析:选D.由物理知识知f1+f2+f3+f4=0,故f4=-(f1+f2+f3)=(1,2).3.设P,Q分别是梯形ABCD的对角线AC与BD的中点,AB∥DC,试用向量证明:PQ ∥AB.证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ→∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【教学过程】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值? 解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解.探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2.④若sin 2A =sin 2B ,则A =B 或A +B =π2. 三、课堂总结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、课堂检测1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C =60°,所以c 2=a 2+b 2-2ab cos 60°, 即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【教学过程】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 【解】因为A=45°,C =30°,所以B =180°-(A +C )=105°.由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角.(2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B, b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.(1)已知两边及其中一边的对角解三角形的思路①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径画弧,此弧与除去顶点a<b sin A无解判断三角形的形状:已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结■名师点拨对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【教学过程】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC 中,由AB sin ∠ACB =BCsin ∠BAC,得AB =BC sin ∠ACB sin ∠BAC =10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离.(2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、课堂检测1.若P在Q的北偏东44°50′方向上,则Q在P的()A.东偏北45°10′方向上B.东偏北45°50′方向上C.南偏西44°50′方向上D.西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD -BC =CD ,所以3x -x =200, 解得x =100(3+1).故选C .3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos (α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2 α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则? 2.向量加法的运算律有哪两个? 二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c)+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB→=b ; (2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.规律方法:(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合; ②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和. (2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解:(1)BC→+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 规律方法:向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.规律方法:应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题. 三、课堂总结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、课堂检测1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP→ B .OQ→ C .SP→ D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD 的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么? 2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →);(2)AB→-AD →-DC →. 解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.法二:原式=AB →+MB →+BO →+OM → =AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.规律方法:向量减法运算的常用方法探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .规律方法:求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可. (2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.。
6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型例题1向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型例题2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 典型例题3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型例题1向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型例题2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法. 典型例题3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________;(2)MN →=________.【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2. 【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型例题1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →. 【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型例题2向量模的有关计算(1)已知平面向量a与b的夹角为60°,|a|=2,|b|=1,则|a+2b|=()A.3B.23C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型例题3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.【解析】 (1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b-a·b=0.所以b⊥(a+t b).命题角度三:利用夹角和垂直求参数(1)已知a⊥b,|a|=2,|b|=3且向量3a+2b与k a-b互相垂直,则k 的值为()A.-32B.32C.±32D.1(2)已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3.1 平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型例题1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 典型例题2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a =a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型例题3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP→=45AM →,BP →=35BN →, 所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP→=25NB →,CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AP→=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型例题1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标. 典型例题2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2.所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型例题3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP→=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b . 典型例题1向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线.又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4) =⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型例题2三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC→=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤典型例题3向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC→=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标. 【解】 因为OC →=14OA →=14(0,5)=⎝ ⎛⎭⎪⎫0,54, 所以C ⎝ ⎛⎭⎪⎫0,54. 因为OD →=12OB →=12(4,3)=⎝ ⎛⎭⎪⎫2,32, 所以D ⎝ ⎛⎭⎪⎫2,32.设M (x ,y ),则AM→=(x ,y -5),AD →=⎝ ⎛⎭⎪⎫2-0,32-5=⎝ ⎛⎭⎪⎫2,-72.因为AM→∥AD →, 所以-72x -2(y -5)=0, 即7x +4y =20.①又CM →=⎝ ⎛⎭⎪⎫x ,y -54,CB →=⎝ ⎛⎭⎪⎫4,74,因为CM →∥CB →,所以74x -4⎝ ⎛⎭⎪⎫y -54=0,即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝ ⎛⎭⎪⎫127,2.应用向量共线的坐标表示求解几何问题的步骤1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是。
平面向量与解三角形(解答题)1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC 的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米); (2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE ,设3S 为图③中DEF 的面积,求3S 的取值范围.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若u v u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式;(2)求证:()()()22222a b c d ac bd +++;(3)+的最大值,并求其取得最大值时x 的值.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ;(),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围.11.对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n 维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅=12.已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQ Q 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由; (2)用n t 表示1.n t +13.射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CA CB x DADB=叫做这四个有序点的交比,记作().ABCD (1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A14.如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O (1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S的取值范围.15.如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy 中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值.16.法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形; (2)若123O O O ABCSmS= ,求m 的最小值.平面向量与解三角形1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.【答案】(1)因为8a =,3A π=,所以sin sin sin b c a B C A ===所以b B =,)8cos c C A B B B =+=,则216.cos c b B −== (2)由222222cos a b c bc A b c bc =+−=+−, 得2264.b c bc +=+因为222b c bc +,所以22642b c bc bc +=+, 所以64bc ,当且仅当8b c ==时,取等号, 2||()AB AC AB AC +=+222AB AC AB AC ++⋅22b c bc =++=,12AB AC bc ⋅=,令t 883t <,则21322bc t =−,则2211||16(2)1744AB AC AB AC t tt +−⋅=−+=−−+,因为883t <,所以2132(2)1784t −−−+<,所以||AB AC AB AC +−⋅的最小值为32.【解析】本题考查利用正弦定理解三角形,利用余弦定理解决范围问题.(1)先利用正弦定理分别求出b ,c ,再根据三角形内角和定理将C 用B 表示,再将所求化简即可得解;(2)利用余弦定理结合可得2264b c bc +=+,结合基本不等式求出bc的范围,计算可得1||64.2AB AC AB AC bc +−⋅=令t =.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围. 【答案】证明:(1)原式化简得:21sin cos sin sin sin cos cos 2cos 2sin cos A AB A B A B B B B+=⇔+=,即sin cos()B A B =+,cos()cos()2B A B π∴−=+,(0,)2A B π+∈,(0,)22B ππ−∈, 2B A B π∴−=+,即2.2A B π+=(2)由22222A B A B A B C C B ππππ⎧=−⎧⎪+=⎪⎪⇒⎨⎨⎪⎪++==+⎩⎪⎩且04B π<<,由余弦定理,2223a c b ac +−变为223cos 22a cb B ac+−=, 62B ππ∴<, 又04B π<<,;64B ππ∴<由正弦定理,sin sin sin sin sin a c A CB B b B++⋅=⋅ 2219sin sin cos 2cos 2cos cos 12(cos )48A C B B B B B =+=+==+−=+−,cos (2B ∈∴由二次函数值域,可得sina c B b+⋅的范围为【解析】本题考查利用正余弦定理解三角形,三角恒等变换的应用,余弦型函数的值域,二次函数的性质等知识点,属于较难题.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE,设3S 为图③中DEF 的面积,求3S 的取值范围.【答案】(1)解:因为点 P 是等腰三角形 PBC 的顶点,且 23CPB π∠= , 1BC = , 所以 6PCB π∠=,PC PB =,由余弦定理可得, 222cos C 2PB PC BC PB PB PC +−∠=⋅ ,解得PC = , 又因为 2ACB π∠=,故 3ACP π∠=, 在 Rt ACB 中, 2AB = , 1BC = ,所以AC == ,在 ACP 中,由余弦定理可得, 2222cos3AP AC PC AC PC π=+−⋅⋅ ,解得3AP =, 故AP PC PB ++=+=, 所以连廊 AP PC PB ++ 的长为百米. (2)解:设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<< ,则 sin CF a α= ,sin AF a α=− , 设 1EDB ∠=∠ , 则 213B DEB DEB ππ∠=−∠−∠=−∠ , 233DEB DEB ππαπ=−−∠=−∠ ,所以 2133ADF πππα∠=−−∠=− , 在 ADF 中,由正弦定理可得,sin sin DF AFA ADF=∠∠ ,即sin 2sinsin()63aa αππα−=− , 即21sin()sin 32a a παα−=−, 即32177a ===(其中 θ 为锐角,且tan θ= ,所以 222133sin 60247Sa =︒⨯=, 即 ()2min S = ; 图③中,设 BE x = , (0,1)x ∈ , 因为 //EF AB ,且 EF DE ⊥ ,所以 3FEC π∠= , 6DEB π∠= , 2EDB π∠= ,所以 cos 62DE x x π== ,222cos3CE EF CE xπ===− ,所以22111(22)))222DEFSEF DE x x x x =⋅⋅=⋅−=−+=−+, 所以当 12x = 时, DEF S 取得最大值8 ,无最小值,即DEF S ⎛∈ ⎝⎦, 故3.S ⎛∈ ⎝⎦【解析】本题考查利用正弦定理、余弦定理解决距离问题、利用正弦定理解决范围与最值问题,属于较难题.(1)先由 PBC 中的余弦定理求出 PC ,再由 APC 中的余弦定理求出 AP ,即可得到答案;(2)设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<<,图③中,设 BE x = , (0,1)x ∈ ,分别表示出方案②和方案③中的面积,利用三角函数的性质以及二次函数的性质求解最值即可.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠【答案】解:(1)由题意,不妨设BC 边上的中点为点D ,所以23AP AD =,又1()2AD AB AC =+,所以,11.33AP AB AC =+(2)证明:令A B C S S S S =++,则B CS S AP AD S +=||||||||C B B C B C S S DC DB AD AB AC AB AC S S S S BC BC =+=+++()()C B S SAP AP PB AP PC S S=+++,则0B C A S PB S PC S AP +−=,所以0A B C S PA S PB S PC ++=;(3)因为P 是ABC 的垂心,230PA PB PC ++=, 所以由(2)易知,::1:2:3.A B C S S S =记ABC 的三个内角分别为A ,B ,C ,则1tan 2:1tan 2A B FC PC BFBF A AF S S FC AF B PC AF BF⋅====⋅,同理:tan :tan B C S S B C =,所以,tan :tan :tan 1:2:3A B C =,又tan tan tan tan()1tan tan A B C A B A B −−=−+=−,所以,2tan 2tan 3tan 12tan A AA A−−=−, 即tan 1A =或1−,又tan A ,tan B ,tan C 同号,所以tan 1A =,所以tan 3C = 又四边形CDPE 中,因为P 是ABC 的垂心,所以90CDP CEP ∠=∠=︒, 所以,180DPE C ∠+∠=︒,又DPE APB ∠=∠,所以,180APB C ∠+∠=︒,所以,tan tan 3APB C ∠=−=−,即cos 10APB ∠=−【解析】本题考查向量的线性运算,向量的几何应用,属于难题. (1)根据向量的线性运算化简即可;(2)利用面积与边长的比例关系化简整理即可;(3)利用(2)的结论得出A ,B ,C 的关系,结合正切的和差角公式计算即可. 5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若uv u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式; (2)求证:()()()22222a b c d ac bd +++;(3)23x −的最大值,并求其取得最大值时x 的值. 【答案】解:(1)由向量(),u a b =,(),v c d =,得2222,,u v ac bd u a b v c d ⋅=+=+=+, 因为u v u v ⋅=,所以()()()22222ac bd a b c d +=++,即2222222222222a c abcd b d a c a d b c b d ++=+++,所以22222abcd a d b c =+,即()20ad bc −=, 所以0ad bc −=;(2)因为cos ,u v ac bd u v u v ⋅=+=, 而cos ,1u v,所以()222222,ac bd u v cos u vu v +=,当且仅当cos ,1u v =,即//u v 时取等号,所以()()()22222a b c d ac bd +++;(3)由413030x x +⎧⎨−⎩可得1334x −,当3x =5==,当134x =−5+==, 当1334x −<<时,由(2)可得,()11x=+=⎡⎣,,即18x =−时,取等号,+的最大值为1.8x =−【解析】本题考查向量数量积的坐标运算,向量模的坐标表示,利用向量的数量积证明等式. (1)根据数量积得坐标运算及平面向量的模的坐标公式计算即可得出结论; (2)根据cos ,u v ac bd u v u v ⋅=+=,结合余弦函数的值域即可得证;(3)利用(2)中的结论即可得出答案.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】解:(1)法一:在ABD 中,由余弦定理得222cos 2AD AB BD A AD AB+−=⋅,即222cosA =2168BD A −=①,同理,在BCD 中,22222cos 222BD C +−=⨯⨯,即28cos 8BD C −=②,①-cos 1A C −=,所以当BD cos A C −为定值,定值为1;法二:在ABD 中,由余弦定理得2222cos BD AD AB AD AB A =+−⋅即222222cos BD A =+−⨯⨯,即216BD A =−, 同理,在BCD 中,2222cos 88cos BD CD CB CD CB C C =+−⋅=−,所以1688cos A C −=−,1cos A C −=,即cos 1A C −=,所以当BD cos A C −为定值,定值为1;222222221211(2)44S S AB AD sin A BC CD sin C +=⋅⋅+⋅⋅ 22221241244sin A sin C sin A cos C =+=+−221241)sin A A =+−−22412cos A A =−++, 令)cos ,1,1A t t =∈−,所以2224122414y t t ⎛=−++=−+ ⎝⎭,所以6t =,即cos A =时,2212S S +有最大值为14.【解析】本题考查余弦定理,考查三角形面积公式,属于较难题.(1)法一:在ABD 2168BD A −=,在BCD 中由余弦定理得28cos 8BD C −=,两式相减可得答案;法二:在ABD 中由余弦定理得216BD A =−,在BCD 中由余弦定理得288cos BD C =−,两式相减可得答案;(2)由三角形面积公式可得222122412S S cos A A +=−++,令()cos ,1,1A t t =∈−转化为二次函数配方求最值即可.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ; (),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠ 【答案】解:(1)()i 设D 是BC 中点,则1()2AD a b =+,重心是中线靠近边的三等分点,21()33AG AD a b ∴==+;1111()3333ii AG AB AC AM AN m n=+=+,M ,G ,N 三点共线,G 在线段MN 上,则111(0,0)33m n m n+=>>, 1111414(4)()(5)(523333m n m n m n m n n m ∴+=++=+++=,当且仅当21n m ==时取等号,4m n ∴+的最小值为3; (2)由1143AO AB AC =+可知点O 在ABC 的内部,如图所示,取AB 的中点P ,AC 的中点Q ,由外心性质可知OP AB ⊥,OQ AC ⊥,从而212AO AB AP AB c ⋅=⋅=,即2111()432AB AC AB c +⋅=,所以22111cos 432c bc BAC c +⋅∠=,故11cos 34b BACc ⋅∠=, 同理,由212AO AC AQ AC b ⋅=⋅=可得11cos 46c BAC b ⋅∠=,联立11cos ,3411cos ,46b BAC c c BAC b ⎧⋅∠=⎪⎪⎨⎪⋅∠=⎪⎩得cos 2BAC ∠=【解析】本题考查了平面向量基本定理,余弦定理,基本不等式的应用,属于综合题. (1)()i 根据重心的定义以及平面向量基本定理可表示AG ;()ii 平面向量基本定理结合基本不等式可得结果;(2)由外心性质可得关于cos BAC ∠的方程,解方程可得cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.【答案】解:3(1)cos cos cos cos cos b c a aB C A B C+=+, ()()cos cos cos cos cos 3cos .b C c B A a B C A ∴+=+由正弦定理得(sin cos cos sin )cos sin (cos cos 3cos ).B C B C A A B C A +=+ ()()sin cos sin cos cos 3cos .B C A A B C A ∴+=+ 因为0A π<<,则sin 0A >,A B C π++=,()sin sin B C A ∴+=,则()cos cos sin sin cos cos A B C B C B C =−+=−,所以,cos cos cos 3cos A B C A =+,即2cos cos cos 0A B C +=, 所以,()2sin sin cos cos cos cos 0B C B C B C −+=,2sin sin cos cos B C B C ∴=,即1tan tan .2B C =(2)由(1)得1tan tan .2B C =若tan 0tan 0B C <⎧⎨<⎩,则B 、C 均为钝角,则B C π+>,矛盾, 所以,tan 0B >,tan 0C >,此时B 、C 均为锐角,合乎题意,tan tan tan tan ()2(tan tan )4tan tan tan1B CA B C B C B C +∴=−+==−+−−=−当且仅当tan tan 2B C ==时,等号成立,且A 为钝角. tan 22A −,则()tan 22A π−,且A π−为锐角,由()()()()()()()22sin tan 22cos 1cos 0sin 0A A A sin A cos A A A πππππππ−⎧−=⎪−⎪⎪−+−=⎨⎪−>⎪⎪−>⎩,解得()22sin 3A π−,即22sin 3A ,当且仅当tan tan 2B C ==时,等号成立, 3bc =,13322sin sin 2223S bc A A ∴==⨯=因此,ABC【解析】本题主要考查正弦定理,两角和与差的三角函数公式,三角形面积公式,属于较难题. (1)利用正弦定理结合两角和的余弦公式化简可得出2sin sin cos cos B C B C =,即可求得tan tan B C 的值;(2)分析可知B 、C 均为锐角,利用两角和的正切公式结合基本不等式可得出tan 22A −,求出sin A 的最小值,即可求得S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.【答案】解:(1)如图1,12BD BC CD BC BA =+=+1111111()()2525252BF BE EF BC EA BC EB BA BC BC BA =+=+=++=+−+2155BC BA =+25BF BD ∴=又点B 是公共点,B ∴,F ,D 三点共线.(2)如图1,2222211||()422cos601724BD BD BC BA BC BC BA BA ︒==+=+⋅+=+⨯⨯+= ||7BD ∴=12AE AB BE BC BA =+=− 2222211||()122cos604324AE AE BC BA BC BC BA BA ︒∴==−=−⋅+=−⨯⨯+=||3AE ∴=2211113()()22224AE BD BC BA BC BA BC BA BC BA ⋅=−⋅+=−−⋅11334422cos602242︒=⨯−⨯−⨯⨯⨯=− cos AE ∴<,3||||37AE BD BD AE BD −⋅>===⋅⨯(3)如图2,PA BA BP =−,PC BC BP =−2()()()PA PC BA BP BC BP BA BC BP BA BP BC BP ∴⋅=−⋅−=⋅+−⋅+⋅ 设ABP θ∠=,[0,]3πθ∈,则3CBPπθ∠=−,22cos 422cos 22cos()33PA PC ππθθ⋅=⨯⨯+−⨯⨯−⨯⨯− 64cos 4(coscos sinsin )6)333πππθθθθ=−−+=−+[0,]3πθ∈,∴当6πθ=时,min ()6PA PC ⋅=−【解析】本题考查平面向量和三角函数的综合应用,属于拔高题.(1)利用平面向量的线性运算求得25BF BD =,即可求证三点共线;(2)求出||BD 、||AE 和AE BD ⋅,由夹角公式即可求解;(3)设ABP θ∠=,[0,]3πθ∈,求出6)3PA PC πθ⋅=−+,利用三角函数的性质即可求解.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围. 【答案】解:(1)由22(1cos )(1cos )cos cos 222222C B b C c B b c b C c B bsincsin −−+++=+=− 22222212222222b c a b c a c b b c a b c aa a⎛⎫++−+−++−=−+=−= ⎪⎝⎭, 所以322()b c a bcb c a +−=++,可得22()3b c a bc +−=, 则222b c a bc +−=,由余弦定理得2221cos 222b c a bc A bc bc +−===,又(0,)A π∈,解得3A π=;(2)由正弦定理得21sin ()cos sin sin sin 23222sin sin sin C C C A B m C C Cπ+−+++===2cos )1111222sin 22222sin cos 2sin2tan 2222C C C C C C C C +=+=+=+=+,因为c a >,所以3C π>,又23B C π+=,所以233C ππ<<,所以623C ππ<<tan 2C<<1tan2C<<, 所以12m <<,则a bm c+=的取值范围为(1,2).【解析】本题,考查利用余弦定理解三角形,利用正弦定理解决范围问题,三角恒等变换,考查了运算能力,属于中档题.(1)利用降幂公式化简,再根据余弦定理即可求解;(2)根据正弦定理及三角恒等变换将a b m c +=可化为122tan 2m C =+,结合233C ππ<<即可求出m 的取值范围. 11.(本小题12分)对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅= 【答案】(Ⅰ)解:对于①,设120k k αβ+=,则可得1220k k +=,所以,αβ线性相关; 对于②,设1230k k k αβγ++=,则可得{12312312325020240k k k k k k k k k ++=++=++=,所以1220k k +=,30k =,所以,,αβγ线性相关;对于③,设12340k k k k αβγδ+++=,则可得{124134234000k k k k k k k k k ++=++=++=,解得123412k k k k ===−,所以,,,αβγδ线性相关;(Ⅱ)解:设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,因为向量α,β,γ线性无关,所以{131223000k k k k k k +=+=+=,解得1230k k k ===, 所以向量αβ+,βγ+,αγ+线性无关,(Ⅲ)证明:(ⅰ1122)0m m k k k ααα++⋅⋅⋅+=,如果某个0i k =,1i =,2,⋯,m ,则112211110i i i i m m k k k k k ααααα−−+++++++⋅⋅⋅+=,因为任意1m −个都线性无关,所以1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0, 所以这些系数1k ,2k ,⋅⋅⋅,m k 或者全为零,或者全不为零,(ⅱ)因为10l ≠,所以1l ,2l ,⋅⋅⋅,m l 全不为零,所以由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l l l l ααα=−−⋅⋅⋅−,代入11220m m k k k ααα++⋅⋅⋅+=可得2122211()0m m m m l l k k k l l αααα−−⋅⋅⋅−++⋅⋅⋅+=,所以2122111()()0m m m l l k k k k l l αα−++⋅⋅⋅+−+=, 所以21210l k k l −+=,⋯,110m m l k k l −+=,所以1212.m mk k k l l l ==⋅⋅⋅= 【解析】本题主要考查平面向量的综合运用,新定义概念的理解与应用等知识,属于较难题. (Ⅰ)根据定义逐一判断即可;(Ⅱ)设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,然后由条件得到1230k k k ===即可;(Ⅲ)(ⅰ)如果某个0i k =,1i =,2,⋯,m ,然后证明1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0即可;(ⅱ)由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l ll l ααα=−−⋅⋅⋅−,然后代入11220m m k k k ααα++⋅⋅⋅+=证明即可.12.(本小题12分)已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQQ 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由;(2)用n t 表示1.n t +【答案】解:(1)该同学的结论正确,证明如下:由已知,得||3AB =,||3OB =,||2OA =,由余弦定理知222||||||2cos 32||||2OB AB OA ABO OB AB+−∠===, 又111||||3AP t b a t =−=,则111||||||33BP AB AP t =−=−,11112||||cos )(1)||3BQ BP ABO t t b ∴=⋅∠=−=−, 即112(1)3BQ tb =−−⋅;(2)由已知1cos ||||2a b AOB a b ⋅∠===⋅⨯,||||3OB AB ==,cos BAO ∴∠=1||||cos (2||)n n nAP AR BAO OR +∴=⋅∠=−|cosn OQ AOB =⋅∠1||)6n BQ =−⋅1||cos 66n BP ABO =+⋅∠1||)69n AP =+⋅ 1||9n AP =⋅, 即151||3||189n n t b at b a +−=−−1n +=, 115.918n n t t +∴=−+【解析】本题考查了向量的数量积、向量的夹角,涉及余弦定理及数列的递推关系,属于较难题. (1)由余弦定理结合向量条件求出cos ABO ∠即可证得.(2)由向量的夹角先求出cos AOB ∠,再求出151||3||189n n AP AP +=−⋅,即可解答.13.(本小题12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CACB x DA DB=叫做这四个有序点的交比,记作().ABCD(1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD 的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A【答案】解:(1)由题意,在AOC ,AOD ,BOC ,BOD 中,1sin sin 21sin sin 2AOC BOC OA OC AOCS CA OA AOCCB S OB BOCOB OC BOC ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2AOD BOD OA OD AODS DA OA AODDB S OB BODOB OD BOD ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠,则sin sin sin sin ()sin sin sin sin OA AOC OB BOD AOC BODCB ABCD DA OB BOC OA AOD BOC AOD DB⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠①又,在EOG ,EOH ,FOG ,FOH 中,1sin sin 21sin sin 2EOG FOG OE OG EOGS GE OE EOGGF S OF FOGOF OG FOG ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2EOH FOH OE OH EOHS HE OE EOHHF S OF FOHOF OH FOH ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 则sin sin sin sin ()sin sin sin sin GEOE EOG OF FOH EOG FOHGF EFGH HE OF FOG OE EOH FOG EOH HF⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠②,又EOG AOC ∠=∠,FOH BOD ∠=∠,FOG BOC ∠=∠,EOH AOD ∠=∠,由①②可得,sin sin sin sin sin sin sin sin AOC BOD EOG FOHBOC AOD FOG EOH∠⋅∠∠⋅∠=∠⋅∠∠⋅∠,即()()EFGH ABCD =(2)由题意3()2EFGH =,由(1)可知,3()2ABCD =,则32CACB DA DB =,即3.2CA DB CB DA =,又点B 为线段AD 的中点,即12DB DA =, 故3CACB=,又3AC =,则2AB =,1BC =, 设OA x =,OC y =,且OB =,由ABO CBO π∠=−∠可知,coscos 0ABO CBO ∠+∠=, 2222220=,解得22215x y +=③,又在AOB 中,利用正弦定理可知,sin sin AB xAOB ABO =∠∠④,在BOC 中,利用正弦定理可知,sin sin OByBCO CBO=∠∠⑤,且sin sin ABO CBO ∠=∠,则④⑤可得,sin 3sin 2x AB BCOy AOB OB ∠=⋅==∠,即x =⑥, 由③⑥解得,3x=,y =,即3OA =,OC =,则222222325cos .22326OA AB OB A OA AB +−+−===⋅⨯⨯【解析】本题考查新定义问题,正,余弦定理的综合应用,三角形面积公式,属于较难题.(1)由题意,结合新定义可得sin sin ()sin sin CAAOC BODCB ABCD DA BOC AOD DB∠⋅∠==∠⋅∠①,同理sin sin ()sin sin EOG FOHGF EFGH HE FOG EOH HF∠⋅∠==∠⋅∠②,再利用角相等,即可证明;(2)结合(1)中的结论,利用正余弦定理,逐步分析求解即可. 14.(本小题12分)如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O(1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S 的取值范围. 【答案】解:(1)依题意,因为2BD DC =,所以1121()3333AD AB BD AB BC AB BA AC AB AC =+=+=++=+,因为G 、O 、C 三点共线所以存在实数m 使得GO mOC =,所以111m AO AC AG m m=+++, 因为32AG GB =,所以11211115m m AO AC AG AC AB m m m m =+=+⨯++++, 又因为AO t AD =,所以22135(1)31mt t m m ⎧==⎨++⎩,解得:12t =,15m =综上所述,1.2t =(2)证明:()i 根据题意(1)AB AE EB AE AE AE λλ=+=+=+,同理可得:(1)AC AF μ=+,由(1)可知,111236AO AD AB AC ==+,所以1136AO AE AF λμ++=+, 因为E ,O ,F 三点共线,所以存在实数n ,使得EO nEF =所以(1)AO n AE nAF =−+ 所以11136n n λμ++⎧−==⎨⎩, 化简得23λμ+=, 又因为0λ>,0μ>所以21129(2)()2228λμλμλμ+==,当且仅当322λμ==,即34λ=,32μ=时等号成立. ()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以2111(1)||(1)||sin ||||sin 22(1)(1)11||||sin 2AE AF BAC AE AF BAC S S AE AF BAC λμλμ++∠−∠==++−∠, 由()i 可知23λμ+=,则320μλ=−>,所以302λ<<,所以2221172232()22S S λλλ=−++=−−+,易知,当12λ=时,21S S 有最大值7.2则2137(,].22S S ∈ 【解析】本题主要考查平面向量的基本定理,考查三角形的面积,考查二次函数的最值,利用基本不等式求最值,属于较难题.(1)由题知2133AD AB AC =+,12115m AO AC AB m m =+⨯++,根据AO t AD =,化简即可;(2)()i 根据题意(1)AB AE λ=+,(1)AC AF μ=+,根据E ,O ,F 三点共线,存在实数n ,使得EO nEF =,有(1)AO n AE nAF =−+,化简可得23λμ+=,利用基本不等式即可得解;()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以221172()22S S λ=−−+,利用二次函数的最值即可得解. 15.(本小题12分)如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值. 【答案】解:(1)由题知,22OA e =,122OB e e =−,则22121222(2)424cos6020;OAOB e e e e e e ︒⋅=⋅−=⋅−=−=(2)①由题知,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,由(1)知OA OB ⊥,又||2OA =,212||(2)4OB e e =−==则ABC 面积为1322ABCS=⨯⨯=②由①知,2,1OC OA OB =−−=<−−>,则2,3BA OA OB =−=<−>,4,0BC OC OB =−=<−>,2,3AC OC OA =−=<−−>,则212||(23)4BA e e =−+==||4BC =,212||(23)4AC e e =−−=设AB c =,AC b =,BC a =, 则由11tan tan tan mA B C+=,结合正弦、余弦定理化简得: 11sin cos cos tan ()()tan tan cos sin sin C A Bm C A B C A B=+=+ sin cos sin cos sin sin sin()cos sin sin cos sin sin C A B B A C A B C A B C A B ++=⋅=⋅ 22222sin 12sin sin cos C c ab A B C ab a b c =⋅=⋅+− 22222271161972c a b c ⨯===+−+−, 故1.2m =【解析】本题考查了余弦定理、三角形面积公式和向量的数量积,属于较难题.(1)先得出OA =⟨0,2⟩22e =,OB =⟨2,1−⟩122e e =−,由向量的数量积计算可得结果;(2)①OA =⟨0,2⟩,OB =⟨2,1−⟩,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,计算面积即可;②易得11()tan tan tan m C A B=+⋅,由三角恒等变换和余弦定理化简可得结果. 16.(本小题12分)法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形;(2)若123O O O ABCSmS= ,求m 的最小值.【答案】解:(1)如图,连接 1AO , 3AO ,则13AO =,33AO =, 133O AO A π∠=+在 13O AO 中,由余弦定理得: 222131313132cos O O AO AO AO AO O AO =+−⋅⋅∠ , 即22222132cos 32cos 33333b c bc A b c bc O O A ππ⎛⎫+−+ ⎪⎛⎫⎝⎭=+−⋅⋅+= ⎪⎝⎭2212cos 23b c bc A A ⎛⎫+−⨯ ⎪ ⎪⎝⎭==22222222sin 2sin 363b c a b c Aa b c A+−+−+++==+ 同理可得222212sin 6a b c O O B ++= ,sin sin a bA B= , sin sin a B b A ∴= , 1213O O O O ∴= .同理: 1223O O O O = ,即 123O O O为等边三角形.12322213cos sin (2)sin 4432O O O b c bc A A m SO O bc A +−+=⨯=⨯=)()21sin cos sin b c m A A A c bϕ∴+−+=+,(其中sin ϕ=,cos ϕ=,22b c b c c b cb+⨯= , )max21sin cos m A A ⎤−+=⎦, 12 ,解得: 1m当且仅当 3A π=, b c = 时 m 取到最小值1.【解析】本题考查利用正弦定理、余弦定理判定三角形的形状,考查三角形的面积公式,属于难题.(1)连接 1AO , 3AO ,在 13O AO 中,由余弦定理可求出 13O O,同理可得 12O O ,再结合正弦定理即可证明 1213O O O O = ,同理可得 1223OO O O = ;(2)由 123O O O ABCSmS= 化简可得 ()sin b c A c b ϕ+=+ ,再由基本不等式求出 b c c b+ 的最小值,即可求出m 的最小值.。
(全国各地名校好题集锦)2018年高考二轮复习理科数学专题-----平面向量综合应用一、选择题1.【2018河北武邑中学调研二】已知向量()2,1a =-,()1,3b =- ,则( )A. a bB. a b ⊥C. ()a a b -D.()a ab ⊥- 【答案】D2.【2018河北武邑中学调研二】如图,在平行四边形ABCD 中, AC , BD 相交于点O , E 为线段AO 的中点.若BE BA BD λμ=+(R λμ∈,),则λμ+=( )A. 1B. 34C. 23D. 12【答案】B【解析】∵E 为线段AO 的中点,∴11111112222224BE BA BO BA BD BA BD BA BD λμ⎛⎫=+=+=+=+ ⎪⎝⎭∴113244λμ+=+= 故选:B3.(2018江西赣州红色七校联考】已知点M 是边长为2的正方形ABCD的内切圆内(含边界)一动点,则MA ·MB 的取值范围是( ) A. [-1,0] B. [-1,2] C. [-1,3] D. [-1,4] 【答案】C4.【2018吉林百校联盟联考】已知单位向量1e 与2e的夹角为3π,向量122e e + 与122e e λ+ 的夹角为23π,则λ=( ) A. 23-B. 3-C. 23-或3- D. 1- 【答案】B【解析】依题意可得:122e e +== ,同理:122e e λ+=而()()121252242e e e e λλ++=+ ,又向量122e e + 与122e e λ+ 的夹角为23π,可知:()()1212121254221222e e e e e e e e λλλ+++==-++,由此解得:23λ=-或3-,又5402λ+<,∴3λ=-. 故选:B5.【2018超级全能生全国联考】在ABC ∆中,4,6,,2AB BC ABC D π==∠=是AC的中点,E 在BC 上,且AE BD ⊥,则AE BC ⋅=( ) A. 16 B. 12 C. 8 D. 4- 【答案】A6.【2018辽宁省沈阳育才中学一模】已知平面向量()1,a m =, ()3,1b =- 且()2//a b b +,则实数m 的值为( )A.13 B. 13- C. 23 D. 23- 【答案】B【解析】()2//a b b + ()()1,21//3,1m ⇒-+-()132113m m ⇒-+=-⇒=-,选B.7.【2018贵州遵义航天高级中学一模】如图所示,向量OA a = ,OB b = ,OC c =,A ,B ,C 在一条直线上,且3AC CB =-则( )A. 13+22c a b =B. 3122c a b =-C. 2c a b =-+D. 2c a b =+【答案】B【解析】3AC CB =- ()31322OC OA OB OC OC OB OA ⇒-=--⇒=-,选A.二、填空题8.【2018湖南永州一模】已知a =(x ,1),b =(5,−3),a •b =7,则x =__________. 【答案】2【解析】由a =(x ,1),b =(5,−3),a •b =7得:5x +1× −3 =7,解得x =2,故答案为2.9.【2018广西柳州市一模】已知向量a = 1,2 ,b = x ,1 ,u =a +2b ,v =2a −b ,且u //v ,则实数x 的值是__________. 【答案】1210.【2018湖南两市九月调研】已知向量,a b满足()1,2,1,3a b a b ==+= ,记向量,a b的夹角为θ,则tan θ=__________. 【答案】【解析】因为(1,2,a b a b ==+=,所以()211514212cos 4cos ,44a bsin θθθ+=++⨯⨯=⇒=-=,所以tan 15θ=- ,故答案为15-.11.【2018广东珠海市摸底】设单位向量a ,b的夹角为θ,27a b += ,则θ=____________. 【答案】3π【解析】由2a b += 得,2214147a b +⨯+⋅= , 12a b ⋅= , 1cos ,2θ=3πθ=,故答案为3π. 12.【2018吉林长春市一模】已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=__________. 【答案】2【解析】因为平面内三个不共线向量a ,b ,c 两两夹角相等,所以由题意可知,a ,b ,c的夹角为120°,又知|a |=|b |=1,|c |=3,所以a .b =−12 ,a ⋅c =b ⋅c =−32,|a +b +c |= 1+1+9+2× −12 +2× −32 +2× −32 =2 故答案为2.13.【2018广东珠海市九月摸底】向量,a b的夹角为θ,2,2,a b a b =+=,则θ=____________【答案】3π 【解析】由223a b b += ,得: 2224412a a b b b ++=,又2a b =所以2a b b =, 1cos 2a b a b θ== ,即3πθ=故答案为:3π14.【2018贵州遵义航天高级中学一模】设向量()2,1a = ,()1,1b =- ,若a b-与ma b +垂直,则m 的值为_____【答案】14【解析】a b - 与ma b +垂直()()()()101,221,10212204a b ma b m m m m m ⇒-⋅+=⇒⋅+-=⇒++-=⇒=15.【2018宁夏石嘴山三中三模】已知向量,b 满足2a =, ()•3a b a-=- ,则向量b在方向上的投影为__________.【答案】12【解析】()243a b a a b a a b -=⋅-=⋅-=- , 1a b ⋅=, 则向量b 在方向上的投影为1cos ,2a b a b b a b b a a b⋅⋅〈〉===⋅.16.【2018黑龙江省哈尔滨九中二模】已知向量()()1,2,4,3a b ==,且()a t ab ⊥+ ,则实数t =__________. 【答案】-2【解析】()()051002a ta b a ta b t t ⊥+∴⋅+=⇒+=⇒=-17.【2018四川成都龙泉中学一模】若两个非零向量a ,b 满足 a +b = a −b =2 a ,则向量a +b 与b −a 的夹角为,____. 【答案】π318.【2018四川成都七中一模】已知向量()()3,0,2,1,==-⊥a b b c ,且t =+a b c ,则t =_________. 【答案】2-。