z反变换
- 格式:ppt
- 大小:310.00 KB
- 文档页数:6
《数字信号处理》(一) 实验目的使用ztrans,iztrans 函数分别求出离散时间信号的Z 变换和Z 反变换的结果,并用pretty 函数进行结果美化。
编写函数时养成良好的注释习惯,有利于对函数的理解。
复习MATLAB 的基本应用,如:help,可以帮助查询相关的函数的使用方法,巩固理论知识中的离散时间信号的传递函数与二次项式之间的转换,以及使用zplane 函数画出相关系统的零极点分布图,根据零极点的分布情况估计系统的滤波特性。
(二) 程序的运行与截图实验项目一Z 变换(1)求)(])31()21[()(n u n x nn += Z 变换clear all;close all;clc;syms nf=0.5^n+(1/3)^n; %定义离散信号F=ztrans(f) %z 变换pretty(F); 运算结果F(2)4)(n n x = Z 变换clear all ;close all ;clc;syms nf=n^4; %定义离散信号F=ztrans(f) %Z 变换 pretty(F)运算结果(3))sin()(b an n x += Z 变换clear all;close all;clc;syms a b nf = sin(a*n+b) %定义离散信号F=ztrans(f) %Z 变换pretty(F)运算结果实验项目二Z 反变换(1)2)2(2)(-=z z z X Z 反变换 clear all;close all;clc;syms k zFz=2*z/(z-2)^2; %定义Z 反变换表达式fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果(2)12)1()(2++-=z z z z z X Z 反变换 clear all;close all;clc;syms k zFz=z*(z-1)/(z^2+2*z+1); %定义Z 反变换表达式fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果f(3) 211cos 211)(---+-+=zz z z X ω Z 反变换 clear all;close all;clc;syms k z wFz=(1+z^(-1))/(1-2*z^-1*cos(w)+z^-2); %定义Z 反变换表达式 fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果实验项目三各种模型之间的变换2)2)(1(10)(--=z z z z H =4851023-+-z z z z (1)clear all;close all;clc;b=[0 0 10 0];%分子的系数数组a=[1 -5 8 -4]; %分母的系数数组zplane(b,a)% 使用zplane 函数绘制如下系统的零极点分布图 运算结果(2)clear all ;close all ;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[r,p,c]=residuez(b,a) %使用matlab 中的residuez 函数,将)(z H 分解成为多个简单有理分式之和运算结果r =-15.00005.000010.0000p =2.00002.00001.0000c =(3)clear all;close all;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2zp求出系统函数的零、极点和增益运算结果z =p =2.00002.00001.0000k =10(4)clear all;close all;clc;z=[1;-3];%零点,列向量p=[2; -4];%极点,列向量k=5; %增益[b,a] = zp2tf(z,p,k) %根据求出的零、极点和增益,然后自学使用zp2tf还原出分子和分母的系数运算结果(5)clear all ;close all ;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[sos,g]=tf2sos(b,a) %使用tf2sos 将系统函数分解成一系列二阶子系统的级联形式运算结果sos =0 1.0000 0 1.0000 -2.0000 0 0 1.0000 0 1.0000 -3.0000 2.0000g =10(6)clear all ;close all ;clc;sos=[0 1.0000 0 1.0000 -2.0000 0; 0 1.0000 0 1.0000 -3.0000 2.0000];g=10;%增益[b,a]=sos2tf(sos,g) %根据求出的一系列二阶子系统,使用sos2tf 还原出)(z H 分子和分母的系数运算结果b =0 0 10 0a =1 -5 8 -4(7)clear all;close all;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplot(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel(‘幅度’);subplot(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel(‘相位’);xlabel(‘以pi为单位的频率’);运行结果2221)(232+++++=z z z z z z H (1)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组 a=[1 2 2 2]; %分母的系数数组 zplane(b,a)% 使用zplane 函数绘制如下系统的零极点分布图 运行结果(2)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组 a=[1 2 2 2]; %分母的系数数组[r,p,k]=residuez(b,a) %使用matlab 中的residuez 函数,将)(z H 分解成为多个简单有理分式之和 运行结果r =-0.4006 -0.0497 - 0.1609i -0.0497 + 0.1609ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =0.5000(3)clear all;close all;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2zp求出系统函数的零、极点和增益运行结果z =-0.5000 + 0.8660i-0.5000 - 0.8660ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =1(4)clear all ;close all ;clc;z=[-0.5000 + 0.8660i-0.5000 - 0.8660i ];p=[-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151i ];k=1;[b,a]=zp2tf(z,p,k) %根据求出的零、极点和增益,使用zp2tf 还原出)(z H 分子和分母的系数运行结果b =0 1.0000 1.0000 1.0000a =1.00002.0001 2.0001 1.9999(5)clear all;close all;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[sos,g]=tf2sos(b,a) %使用tf2sos将系统函数分解成一系列二阶子系统的级联形式运行结果sos =0 1.0000 0 1.0000 1.5437 01.0000 1.0000 1.0000 1.0000 0.4563 1.2956g =1(6)clear all;close all;clc;sos=[ 0 1.0000 0 1.0000 1.5437 0;1.0000 1.0000 1.0000 1.0000 0.4563 1.2956];g=1;[b,a]=sos2tf(sos,g) %根据求出的一系列二阶子系统,自学使用sos2tf还原出(zH分子和分母的系数)运行结果b =0 1 1 1a =1.00002.0000 2.0000 2.0000(7)clear all;close all;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplot(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel('幅度');subplot(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel('相位');xlabel('以pi为单位的频率');运行结果实验项目四根据零极点分布图估计系统的滤波特性。
《数字信号处理》(一) 实验目的(二)使用ztr a n s,iztra n s 函数分别求出离散时间信号的Z 变换和Z 反变换的结果,并用pre t ty 函数进行结果美化。
编写函数时养成良好的注释习惯,有利于对函数的理解。
复习MA T L AB 的基本应用,如:help,可以帮助查询相关的函数的使用方法,巩固理论知识中的离散时间信号的传递函数与二次项式之间的转换,以及使用z p lane 函数画出相关系统的零极点分布图,根据零极点的分布情况估计系统的滤波特性。
(三) 程序的运行与截图实验项目一Z 变换(1)求)(])31()21[()(n u n x nn += Z 变换clear all;close all;clc;syms nf=0.5^n+(1/3)^n; %定义离散信号F=ztran s (f) %z 变换prett y (F); 运算结果F(2)4)(n n x = Z 变换clear all ;close all ;clc;syms nf=n^4; %定义离散信号F=ztran s (f) %Z 变换prett y (F)运算结果(3))sin()(b an n x += Z 变换clear all;close all;clc;syms a b nf = sin(a*n+b) %定义离散信号F=ztran s (f) %Z 变换prett y (F)运算结果实验项目二Z 反变换(1)2)2(2)(-=z z z X Z 反变换 clear all;close all;clc;syms k zFz=2*z/(z-2)^2; %定义Z 反变换表达式fk=iztra n s(Fz,k) %Z 反变换prett y (fk);运算结果(2)12)1()(2++-=z z z z z X Z 反变换 clear all;close all;clc;syms k zFz=z*(z-1)/(z^2+2*z+1); %定义Z 反变换表达式fk=iztra n s(Fz,k) %Z 反变换prett y (fk);运算结果f(3) 211cos 211)(---+-+=z z z z X ω Z 反变换 clear all;close all;clc;syms k z wFz=(1+z^(-1))/(1-2*z^-1*cos(w)+z^-2); %定义Z 反变换表达式 fk=iztra n s(Fz,k) %Z 反变换prett y (fk);运算结果实验项目三各种模型之间的变换2)2)(1(10)(--=z z z z H =4851023-+-z z z z (1)clear all;close all;clc;b=[0 0 10 0];%分子的系数数组a=[1 -5 8 -4]; %分母的系数数组zplan e (b,a)% 使用zpl ane 函数绘制如下系统的零极点分布图 运算结果(2)clear all ;close all ;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[r,p,c]=resid u ez(b,a) %使用mat l ab 中的r esid u ez 函数,将分解成为)(z H 多个简单有理分式之和运算结果r =-15.00005.000010.0000p =2.00002.00001.0000c =(3)clearall;closeall;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2z p求出系统函数的零、极点和增益运算结果z =p =2.00002.00001.0000k =10(4)clearall;closeall;clc;z=[1;-3];%零点,列向量p=[2; -4];%极点,列向量k=5; %增益[b,a] = zp2tf(z,p,k) %根据求出的零、极点和增益,然后自学使用zp2tf还原出分子和分母的系数运算结果(5)clearall;closeall;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[sos,g]=tf2sos(b,a) %使用tf2s os将系统函数分解成一系列二阶子系统的级联形式运算结果sos =0 1.0000 0 1.0000 -2.0000 00 1.0000 0 1.0000 -3.0000 2.0000g =10(6)clearall;closeall;clc;sos=[0 1.0000 0 1.0000 -2.0000 0;0 1.0000 0 1.0000 -3.0000 2.0000];g=10;%增益[b,a]=sos2tf(sos,g) %根据求出的一系列二阶子系统,使用sos2tf还原出分子和分)H母的系数(z运算结果b =0 0 10 0a =1 -5 8 -4(7)clearall;closeall;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplo t(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel(‘幅度’);subplo t(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel(‘相位’);xlabel(‘以pi为单位的频率’);运行结果2221)(232+++++=z z z z z z H (1)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组zplan e (b,a)% 使用zpl a ne 函数绘制如下系统的零极点分布图 运行结果(2)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[r,p,k]=resid u ez(b,a) %使用mat l ab 中的r esid u ez 函数,将分解成为)(z H 多个简单有理分式之和运行结果r =-0.4006-0.0497 - 0.1609i-0.0497 + 0.1609ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =0.5000(3)clearall;closeall;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2z p求出系统函数的零、极点和增益运行结果z =-0.5000 + 0.8660i-0.5000 - 0.8660ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =1(4)clearall;closeall;clc;z=[-0.5000 + 0.8660i-0.5000 - 0.8660i];p=[-1.5437-0.2282 + 1.1151i -0.2282 - 1.1151i ];k=1;[b,a]=zp2tf (z,p,k) %根据求出的零、极点和增益,使用zp2t f 还原出)(z H 分子和分母的系数运行结果b =0 1.0000 1.0000 1.0000a =1.00002.0001 2.0001 1.9999(5)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[sos,g]=tf2so s (b,a) %使用tf2s os 将系统函数分解成一系列二阶子系统的级联形式运行结果sos =0 1.0000 0 1.0000 1.5437 01.0000 1.0000 1.0000 1.0000 0.4563 1.2956g =1(6)clear all ;close all ;clc;sos=[ 0 1.0000 0 1.0000 1.5437 0;1.0000 1.0000 1.0000 1.0000 0.4563 1.2956];g=1;[b,a]=sos2t f (sos,g) %根据求出的一系列二阶子系统,自学使用s o s2tf 还原出分子)(z H 和分母的系数运行结果b =0 1 1 1a =1.00002.0000 2.0000 2.0000(7)clearall;closeall;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplo t(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel('幅度');subplo t(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel('相位');xlabel('以pi为单位的频率');运行结果实验项目四根据零极点分布图估计系统的滤波特性。
《数字信号处理》(一) 实验目的使用ztrans,iztrans 函数分别求出离散时间信号的Z 变换和Z 反变换的结果,并用pretty 函数进行结果美化。
编写函数时养成良好的注释习惯,有利于对函数的理解。
复习MATLAB 的基本应用,如:help,可以帮助查询相关的函数的使用方法,巩固理论知识中的离散时间信号的传递函数与二次项式之间的转换,以及使用zplane 函数画出相关系统的零极点分布图,根据零极点的分布情况估计系统的滤波特性。
(二) 程序的运行与截图实验项目一Z 变换(1)求)(])31()21[()(n u n x nn += Z 变换clear all;close all;clc;syms nf=0.5^n+(1/3)^n; %定义离散信号F=ztrans(f) %z 变换pretty(F); 运算结果F(2)4)(n n x = Z 变换clear all ;close all ;clc;syms nf=n^4; %定义离散信号F=ztrans(f) %Z 变换pretty(F)运算结果(3))sin()(b an n x += Z 变换clear all;close all;clc;syms a b nf = sin(a*n+b) %定义离散信号F=ztrans(f) %Z 变换pretty(F)运算结果实验项目二Z 反变换(1)2)2(2)(-=z z z X Z 反变换 clear all;close all;clc;syms k zFz=2*z/(z-2)^2; %定义Z 反变换表达式fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果(2)12)1()(2++-=z z z z z X Z 反变换 clear all;close all;clc;syms k zFz=z*(z-1)/(z^2+2*z+1); %定义Z 反变换表达式fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果f(3) 211cos 211)(---+-+=zz z z X ω Z 反变换 clear all;close all;clc;syms k z wFz=(1+z^(-1))/(1-2*z^-1*cos(w)+z^-2); %定义Z 反变换表达式fk=iztrans(Fz,k) %Z 反变换pretty(fk);运算结果实验项目三各种模型之间的变换2)2)(1(10)(--=z z z z H =4851023-+-z z z z (1)clear all;close all;clc;b=[0 0 10 0];%分子的系数数组a=[1 -5 8 -4]; %分母的系数数组zplane(b,a)% 使用zplane 函数绘制如下系统的零极点分布图运算结果(2)clear all ;close all ;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[r,p,c]=residuez(b,a) %使用matlab 中的residuez 函数,将)(z H 分解成为多个简单有理分式之和运算结果r =-15.00005.000010.0000p =2.00002.00001.0000c =(3)clear all;close all;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2zp求出系统函数的零、极点和增益运算结果z =p =2.00002.00001.0000k =10(4)clear all;close all;clc;z=[1;-3];%零点,列向量p=[2; -4];%极点,列向量k=5; %增益[b,a] = zp2tf(z,p,k) %根据求出的零、极点和增益,然后自学使用zp2tf还原出分子和分母的系数运算结果(5)clear all;close all;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组[sos,g]=tf2sos(b,a) %使用tf2sos将系统函数分解成一系列二阶子系统的级联形式运算结果sos =0 1.0000 0 1.0000 -2.0000 00 1.0000 0 1.0000 -3.0000 2.0000g =10(6)clear all;close all;clc;sos=[0 1.0000 0 1.0000 -2.0000 0;0 1.0000 0 1.0000 -3.0000 2.0000];g=10;%增益[b,a]=sos2tf(sos,g) %根据求出的一系列二阶子系统,使用sos2tf还原出H分子和分母的系数)(z运算结果b =0 0 10 0a =1 -5 8 -4(7)clear all;close all;clc;b=[0 0 10 0]; %分子的系数数组a=[1 -5 8 -4]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplot(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel(‘幅度’);subplot(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel(‘相位’);xlabel(‘以pi为单位的频率’);运行结果2221)(232+++++=z z z z z z H (1)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组zplane(b,a)% 使用zplane 函数绘制如下系统的零极点分布图运行结果(2)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[r,p,k]=residuez(b,a) %使用matlab 中的residuez 函数,将)(z H 分解成为多个简单有理分式之和运行结果r =-0.4006-0.0497 - 0.1609i-0.0497 + 0.1609ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =0.5000(3)clear all;close all;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[z,p,k]=tf2zp(b,a) %使用tf2zp求出系统函数的零、极点和增益运行结果z =-0.5000 + 0.8660i-0.5000 - 0.8660ip =-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151ik =1(4)clear all;close all;clc;z=[-0.5000 + 0.8660i-0.5000 - 0.8660i];p=[-1.5437-0.2282 + 1.1151i-0.2282 - 1.1151i ];k=1;[b,a]=zp2tf(z,p,k) %根据求出的零、极点和增益,使用zp2tf 还原出)(z H 分子和分母的系数运行结果b =0 1.0000 1.0000 1.0000a =1.00002.0001 2.0001 1.9999(5)clear all ;close all ;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组[sos,g]=tf2sos(b,a) %使用tf2sos 将系统函数分解成一系列二阶子系统的级联形式运行结果sos =0 1.0000 0 1.0000 1.5437 01.0000 1.0000 1.0000 1.0000 0.4563 1.2956g =1(6)clear all ;close all ;clc;sos=[ 0 1.0000 0 1.0000 1.5437 0;1.0000 1.0000 1.0000 1.0000 0.4563 1.2956];g=1;[b,a]=sos2tf(sos,g) %根据求出的一系列二阶子系统,自学使用sos2tf 还原出)(z H 分子和分母的系数运行结果b =0 1 1 1a =1.00002.0000 2.0000 2.0000(7)clear all;close all;clc;b=[0 1 1 1]; %分子的系数数组a=[1 2 2 2]; %分母的系数数组n=(0:500)*pi/500; %在pi范围内取501个采样点[h,w]=freqz(b,a,n);%求系统的频率响应subplot(2,1,1),plot(n/pi,abs(h));grid %作系统的幅度频响图axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);ylabel('幅度');subplot(2,1,2),plot(n/pi,angle(h));grid %作系统的相位频响图axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);ylabel('相位');xlabel('以pi为单位的频率');运行结果实验项目四根据零极点分布图估计系统的滤波特性。