试验五Z变换
- 格式:ppt
- 大小:553.00 KB
- 文档页数:39
心得体会今天我们做的实验是离散信号与系统的Z 变换分析, Z 变换分析法是分析离散时间信号与系统的重要手段, 实验前我书上和资料上了解到Z 变换它是由拉氏变换而来的, 属于一种线性坐标变换, 它将差分方程化为代数方程, 是分析采样系统的主要数学工具。
在离散系统分析中为简化运算而建立的对函数序列的数学变换, 其作用与拉普拉斯变换在连续系统分析中的作用很相似。
在采样控制理论中,Z 变换是主要的数学工具。
Z 变换还在时间序列分析、数据平滑、数字滤波等领域有广泛的应用。
在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 和itrans( )。
离散信号f(k)的Z 变换定义为:()()k k F z f k z ∞-=-∞=∑反Z 变换的定义为:11()()2k f k F z z dz j π-=⎰(1)求离散序列的Z 变换:1122()()cos()()k k f k k πε=程序:syms k zf=0.5^k*cos(k*pi./2);Fz=ztrans(f)运行结果: Fz =4*z^2/(4*z^2+1)(2)离散序列:3()()(5)f k k k εε=--程序: syms k z f=('Heaviside(k)-Heaviside(k-5)')Fz=ztrans(f)运行结果:f =Heaviside(k)-Heaviside(k-5)(3)但在离散序列:[]4()(1)()(5)f k k k k k εε=---程序: syms k z f=k*(k-1)*('Heaviside(k)-Heaviside(k-5)')Fz=ztrans(f)运行结果: Fz =2/z^4*(z^2+3*z+6)在两个离散序列出现了不同的结果, 前者直接输出原来的函数, 猜想是不是因为后者系数K (K-1)有关。
执行下列程序: syms k zf=k*(k-1)Fz=ztrans(f)运行结果: Fz =z*(1+z)/(z-1)^3-z/(z-1)^2(4)而3()()(5)f k k k εε=--的z 变换为: Fz=(z/z-1)-(z^(-5)*z/z-1)=(z-z^(-4))/z-1 和用MATLAB 仿真的f =Heaviside(k)-Heaviside(k-5)显然不符。
南昌大学实验报告(信号与系统)学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/6/1 实验成绩:Z变换、离散时间系统的Z域分析一、实验目的1、学会用matlab求解z变换与逆z变换。
2、学会离散系统零极点分布图的绘制,理解离散系统零极点分布图的含义。
3、求解离散系统的频率响应特性。
二、实验说明1、一离散系统的差分方程为y(n)-by(n-1)=x(n),若激励为x(n)=a n u(n),起始值y(-1)=0,求响应y(n)。
2、当H(s)极点位于z平面中各方框附近的位置,画出对应的h(n)波形填入方框中。
3、求系统差分方程为y(n)-1.1y(n-1)+0.7y(n-2)=x(n-1),的系统的频率响应特性。
三、实验内容1、syms n a b z%定义符号n a b zx=a^n; %定义激励信号X=ztrans(x); %计算激励信号的变换H=1/(1-b*z^(-1)); %写出系统z变换式Y=H*X; %计算输出的变换式y1=iztrans(Y); %计算输出时域表达式y=simplify(y1) %化简表达式2、pos=[26,19,18,17,24,27,13,11,9,23,28,7,4,1,22];figure,id=1; %生成新图框,子图id初始化为1for r=0.8:0.2:1.2 %极点的幅度依次为0.8,1.0,1.2for theta=0:pi/4:pi %极点的弧度依次为0,Π/4,Π/2,3Π/4,Πp=r*exp(j*theta);if theta~=0&theta~=pip=[p;p']; %如果极点不在实轴上添加一个共轭极点end[b a]=zp2tf([],p,1); %由零极点得到传递函数subplot(4,7,pos(id));[h,t]=impz(b,a,20); %计算20个点的单位样值响应stem(t,h,'k-','MarkerSize',5);%绘制单位样值响应id=id+1; %子图序号加1end%退出弧角循环end%退出幅度循环3、a=[1,-1.1,0.7];b=[0,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a) %绘制频率特性4、a=[1,-1.1,0.6];b=[0.6,-1.1,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a); %绘制频率响应n=[0:40]'; %生成时间点x1=sin(0.1*pi*n); %生成单频信号x2=0*n; %准备方波信号x2(mod(n,10)<5)=1; %生成周期为10的方波信号y1=filter(b,a,x1); %分别对两个信号滤波y2=filter(b,a,x2);figuresubplot(2,1,1),stem(n,x1); %绘制单频信号及其输出波形subplot(2,1,2),stem(n,y1);figuresubplot(2,1,1),stem(n,x2); %绘制方波信号及其输出波形subplot(2,1,2),stem(n,y2);四、实验结果1、y =(a^(1+n)-b^(1+n))/(a-b)2、输出波形如下3、输出波形如下:4、输出波形如下:五、实验总结通过本次实验的学习,对离散系统有了更多的了解,通过用matlab画出离散系统的零极点分布图,使我对离散系统的零极点分布与其对用的频响特性有了深刻的了解;同时对全通网络的相频失真有了进一步了解,幅度没有失真,但对不同的频率信号的相移不同,因此单频信号输入时,其输出信号的波形没有失真,只是整个波形发生了移位,但对于方波信号,由于其中包含了各种频率的信号,因此不同频率的信号相频失真不同,因此输出波形不再是方波。
Z变换知识点咱今儿就来好好唠唠 Z 变换这个听起来有点玄乎的玩意儿。
先来说说啥是 Z 变换。
你就想象啊,有一堆数字信号,就像一群调皮的小精灵,在时间轴上蹦跶来蹦跶去。
Z 变换呢,就是给这些小精灵穿上一件神奇的魔法袍,让我们能更清楚地看清它们的规律和特点。
比如说,有个简单的序列 x(n) ={1, 2, 3, 4, 5} ,通过 Z 变换,就能把它变成一个数学表达式,方便我们去分析和处理。
那 Z 变换咋算呢?这就像是解一道有点复杂的数学谜题。
咱得先找到一个公式,就像找到了一把神奇的钥匙。
常见的 Z 变换公式就像一个万能的解题模板,把序列往里一套,就能得出结果。
我记得有一次,我给学生讲 Z 变换的时候,有个学生一脸懵地问我:“老师,这 Z 变换到底有啥用啊?”我就跟他说:“你想想,你要预测未来几天的气温变化,是不是得先找到气温变化的规律?Z 变换就是帮我们找到数字信号里的规律,这样就能做出更准确的预测啦!”那孩子听了,眼睛一下子亮了起来。
再来说说 Z 变换的性质。
这就好比是小精灵们的各种特殊技能。
比如线性性质,就像是把几个小精灵的力量加起来,变得更强大;位移性质呢,就像是让小精灵们集体向前或者向后移动一步,看看有啥变化。
还有 Z 变换的逆变换。
这就像是把穿上魔法袍的小精灵再变回原来的样子。
通过一些特定的方法和技巧,我们就能把经过 Z 变换后的表达式,变回原来的数字序列。
在实际应用中,Z 变换可是大有用处。
比如说在通信系统里,它能帮助我们优化信号的传输,让信息传递得更清晰、更准确;在控制系统中,它能让我们更好地设计控制器,让系统运行得更稳定、更高效。
总之啊,Z 变换虽然听起来有点复杂,但只要咱静下心来,一步一步去理解,就会发现它其实就像我们身边的好朋友,能帮我们解决好多数字信号处理的难题。
希望大家都能跟 Z 变换成为好朋友,让它为我们的学习和工作助力!。
z变换基本知识1z变换定义连续系统一般使用微分方程、拉普拉斯变换的传递函数和频率特性等概念进行研究。
一个连续信号f(t)的拉普拉斯变换F(s)是复变量s的有理分式函数;而微分方程通过拉普拉斯变换后也可以转换为s的代数方程,从而可以大大简化微分方程的求解;从传递函数可以很容易地得到系统的频率特征。
因此,拉普拉斯变换作为基本工具将连续系统研究中的各种方法联系在一起。
计算机控制系统中的采样信号也可以进行拉普拉斯变换,从中找到了简化运算的方法,引入了z变换。
连续信号f(t)通过采样周期为T的理想采样开关采样后,采样信号f*(t)的表达式为OOf*(t)=1,f(kT)、(t-kT)=f(0)、(t)f(T)、(t-T)•f(2T)、(t-2T)k Of(3T)5(t-3T)+|||(1)对式(1)作拉普拉斯变换F*(s)=L[f*(t)]=f(0)f(T)e^f(2T)e'sT f(3T)e4T lMod=£f(kT)e3r(2)k0从式(2)可以看出,F*(s)是s的超越函数,含有较为复杂的非线性关系,因此仅用拉普拉斯变换这一数学工具,无法使问题简化。
为此,引入了另一个复变量“z”,令z=e sT(3)代入式(2)并令F*(x)i=F(z),得s平lnzF(z)=F(0)+f(T)z,+f(2T)zN+|||=:ff(kT)z-(4)k 0式(4)定义为采样信号£*("的2变换,它是变量z 的幕级数形式,从而有利于问题的简化求解。
通常以F(z)=L[f*(t)]表示。
由以上推导可知,z 变换实际上是拉普拉斯变换的特殊形式,它是对采样信 号作z=e sT 的变量置换。
f*(t)的z 变换的符号写法有多种,如Z[f*(t)],Z[f(t)],Z[f(k)],Z[F*(s)],F(z)等,不管括号内写的是连续信号、离散信号还是拉普拉斯变换式,具概念都应该理解为对采样脉冲序列进行z 变 换。
z变换知识点总结一、引言在信号处理领域中,z变换(Z-transform)是一种重要的数学工具,用于分析和处理离散时间信号。
与连续时间信号相对应的拉普拉斯变换用于处理连续时间信号,而z变换则用于处理离散时间信号。
z变换可以将离散时间信号转换为复变量域中的复数函数,从而更容易地进行信号分析和处理。
本文将对z变换的基本概念、性质、逆z变换、收敛域、z变换与拉普拉斯变换的关系以及在数字滤波器设计中的应用等知识点进行总结和讨论。
二、z变换的基本概念1. 离散时间信号的z变换对于一个离散时间信号x[n],其z变换定义如下:X(z) = Z{x[n]} = ∑(n=-∞ to ∞) x[n] z^(-n)其中,z是一个复数变量,n为离散时间序列,x[n]是每个时间点上的信号值。
2. z变换的双边z变换和单边z变换双边z变换定义在整个序列上,包括负无穷到正无穷的所有时间点。
而单边z变换定义在0和正无穷之间的时间点上,通常用于信号的因果系统的分析。
3. z域表示z变换把离散时间信号的时域表示转换为z域表示。
z域是复平面上的一种表示,其中z = a + jb,其中a为实部,b为虚部。
z域表示包含了离散时间信号的频率、相位和幅值信息。
三、z变换的性质1. 线性性质类似于连续时间信号的拉普拉斯变换,z变换也具有线性性质,即对于任意常数a和b,有Z{a x1[n] + b x2[n]} = a X1(z) + b X2(z)。
这意味着z变换对于信号的线性组合保持封闭性。
2. 移位性质类似于连续时间信号的移位特性,z变换也具有移位性质,即Z{x[n-k]} = z^(-k) X(z),其中k是任意常数。
这意味着z变换对于离散时间信号的时移操作具有相应的变换规律。
3. 初值定理和终值定理z变换有类似于连续时间信号的初值定理和终值定理。
初值定理表示当n趋向负无穷时,z变换为Z{x[0]}。
终值定理表示当n趋向正无穷时,z变换为Z{x[∞]}。