2019年初一数学下期末考试试卷分析
- 格式:doc
- 大小:26.50 KB
- 文档页数:5
七年级数学试卷分析本次数学试卷紧扣新教材,考查了双基,突出了教材的重难点,难度适中,分数的分配合理。
通过考试学生既能树立自信又能找到不足。
试卷比较成功,师生的教与学顺利地完成了新课标的要求。
下面结合我校阅卷的情况作如下的试卷分析:一、基本情况学生答题的基本情况:3个教学班,共120人,96分以上的有18人,及格人数62人。
低分人数29人。
二、试卷特点本套试卷从整体上来看偏简单,但知识覆盖面比较全面,几乎包括所有的内容,每章的重点内容特别突出。
本次试卷题型多种多样,灵活多变。
总的来说,本次试卷出的很成功。
下面做具体分析:三、试题分析和学生做题情况分析:1、填空:共10小题,较全面的概括了全册内容,尤其是第8、9、10小题,充分的开发学生思维能力的培养,有能运用所学知识解答,很好。
2、单项选择题:共10小题,出的相当不错,看似简单的问题,特别是第18小题,要求学生要看清题意,要做对却需要足够的细心,主要考察了学生对基础知识的运用,但很多学生都掌握不好,在做题时没有把握住题意,粗心大意,导致得分较低,以后要注意基础知识的教学和掌握。
3、解答题:21、22、23题是基本解法。
虽然这样的题型学生们都练习过,但也有出现错误的,24、25、26题有点坡度,但平时也训练较多,成绩较好的同学还是能完成,只是因为粗心,或知识不够灵活运用导致部分地方失分。
但题目出得相当好。
总的来说,本次试卷题型灵活多样,题量适中,难度适宜,紧紧联系课本内容,重点考察学生的基础知识掌握的情况,学生之所以做的不好只怪我们平时要求的不严,讲解的不透彻,虽然少数题较难,但在课本上都能见到原型或原题,只怪我们老师平时讲解的不到位。
只是学生做的不好。
四:对这次试卷的建议:1、难题不要出现两道以上。
2、不等式的分值应该为22分左右。
3、题量可适当减少点,坡度题可适当加点难度。
以上关于本次考试的理解、分析,如有不当望领导谅解,谢谢!。
2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a02.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或248.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.99.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣310.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°二.填空题(共7小题)11.将0.000705用科学记数法表示为.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=度.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.14.若x2+y2=8,xy=2,则(x﹣y)2=.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为cm.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=°.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=,y=,z=.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为km;点M表示的实际意义是;(2)小张开车的速度是km/h;小李骑摩托车的速度是km/h.(3)试求出发多长时间后,两人相距60km.2019-2020学年广东省佛山市南海区七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.计算a3•a3的结果等于()A.a9B.a6C.a27D.a0【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选:B.2.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.3.下列事件中,随机事件是()A.水中捞月B.明天太阳从西方升起C.抛一枚硬币,落地后硬币的正面朝上D.三角形的内角和是180°【分析】直接利用随机事件的定义结合三角形内角和定理分别分析得出答案.【解答】解:A、水中捞月,是不可能事件,不合题意;B、明天太阳从西方升起,是不可能事件,不合题意;C、抛一枚硬币,落地后硬币的正面朝上,是随机事件,符合题意;D、三角形的内角和是180°,是必然事件,不合题意.故选:C.4.如图,小华同学的家在点P处,他想尽快到达公路边去接从外地回来的外婆,他选择沿线段PC去公路边,他的这一选择用到的数学知识是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】根据垂线段的性质解答即可.【解答】解:某同学的家在P处,他想尽快到达公路边去接从外地回来的外婆,他选择P→C路线,是因为垂直线段最短,故选:D.5.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.AM=CN B.AB=CD C.AM∥CN D.∠M=∠N【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;故选:A.6.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s【分析】根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【解答】解:∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;∵根据数据表,可得温度越高,声速越快,∴选项B正确;∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选:C.7.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18B.22C.24D.18或24【分析】根据等腰三角形的两边长分别为4和10,分两种情况讨论:4为腰时;10为腰时;再由三角形的三边关系定理得出结论.【解答】解:∵一个等腰三角形的两边长分别为4和10,∴当4为腰时,三边长分别为4,4,10,∵4+4=8<10,∴不成立;当10为腰时,三边长分别为4,10,10,∴三角形的周长为24cm.故选:C.8.已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为18,则△ABE的面积为()A.5B.4.5C.4D.9【分析】根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵AD是△ABC的中线,∴S△ABD=S△ABC=×18=9,∵BE是△ABD的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.9.若3x=5,3y=2,则3x﹣y的值为()A.B.C.3D.﹣3【分析】根据同底数幂的运算法则即可求出答案.【解答】解:原式=3x÷3y=5÷2=,故选:A.10.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°【分析】直接利用长方形的性质结合平行线的性质得出∠3=∠6=∠4,再利用四边形内角和定理得出答案.【解答】解:如图所示:∵四边形ABCD是长方形,∴AD∥BC,∴∠3=∠6,∵把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,∴∠3=∠4=∠6,∵∠1=48°,∴∠5=132°,∴∠6=∠4==69°,∴∠2=180°﹣69°=111°.故选:D.二.填空题(共7小题)11.将0.000705用科学记数法表示为7.05×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000705用科学记数法表示为7.05×10﹣4.故答案为:7.05×10﹣4.12.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=35°,则∠AOD=125度.【分析】根据图形求得∠COB=∠COE+∠BOE=125°;然后由对顶角相等的性质来求∠AOD的度数.【解答】解:∵EO⊥AB,∴∠EOB=90°.又∵∠COE=35°,∴∠COB=∠COE+∠BOE=125°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=125°,故答案为:125.13.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是15.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=15.故估计n大约有15个.故答案为:15.14.若x2+y2=8,xy=2,则(x﹣y)2=4.【分析】直接利用完全平方公式去括号,再将已知代入求出答案.【解答】解:∵x2+y2=8,xy=2,∴(x﹣y)2=x2+y2﹣2xy=8﹣4=4.故答案为:4.15.如图,△ABC中,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9cm,△BCE 的周长为15cm,则BC的长为6cm.【分析】根据线段垂直平分线的性质得出AE=BE,求出AC+BC=15cm,再代入求出即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵△BCE的周长为15cm,∴BC+CE+BE=15cm,∴BC+CE+BE=BC+CE+AE=BC+AC=15cm,∵AC=9cm,∴BC=6cm,故答案为:6.16.用七巧板摆成如图所示图形,一只蚂蚁在此图形上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在阴影部分的概率是.【分析】根据七巧板对应图形的面积,结合概率公式即可得到结论.【解答】解:设正方形的边长为a,则阴影部分的为×a×a++a2=a2,∴它停在阴影部分的概率==,故答案为:.17.如图,△ABC中,∠BDC=90°,BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,若∠A=40°,则∠F=52.5°.【分析】想办法求出∠FBC+∠FCB即可解决问题.【解答】解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=140°﹣90°=50°,∵BE、CE分别平分∠ABD和∠ACD,BF、CF分别平分∠ABE和∠ACE,∴∠FBD+∠FCD=×50°=37.5°,∴∠FBC+∠FCB=37.5°+90°=127.5°,∴∠F=180°﹣127.5°=52.5°,故答案为52.5.三.解答题18.计算:(π﹣3)0﹣|﹣2|+()﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】511:实数;66:运算能力.【分析】原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1﹣2+9=8.19.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.【考点】KB:全等三角形的判定;N3:作图—复杂作图.【专题】13:作图题.【分析】先作一个∠D=∠A,然后在∠D的两边分别截取ED=BA,DF=AC,连接EF 即可得到△DEF;【解答】解:如图,△DEF即为所求.20.如图所示转盘平均分成10份,分别标有1,2,…,10这10个数字,转盘上有固定的指针,转动转盘,当转盘停止转动时,指针指向的区域对应的数字即为转出的数字(若指针指向分界处要重新转动,直至指到非分界处).(1)转出的数字为奇数的概率是多少?(2)转出的数字是3的倍数的概率是多少?【考点】X4:概率公式.【分析】(1)由转盘平均分成10份,分别标有1,2,…,10这10个数字,且转出的数字为奇数的有5种情况,直接利用概率公式求解即可求得答案;(2)由转出的数字是3的倍数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)∵转盘平均分成10份,分别标有1,2,…,10这10个数字,转出的数字为奇数的有5种情况,∴转出的数字为奇数的概率是:=;(2)∵转出的数字是3的倍数的有3种情况,∴转出的数字是3的倍数的概率是:.21.先化简,再求值:[(x+2y)(x﹣2y)+(x﹣y)2﹣2x2]÷4y,其中x=﹣1,y=2.【考点】4J:整式的混合运算—化简求值.【专题】512:整式;66:运算能力.【分析】原式中括号中利用平方差公式,完全平方公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣4y2+x2﹣2xy+y2﹣2x2)÷4y=(﹣3y2﹣2xy)÷4y=﹣y﹣x,当x=﹣1,y=2时,原式=﹣+=﹣1.22.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.(1)试证明∠ABC=∠ADC;(2)若∠ADC=58°,求∠AEC的度数.【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】(1)根据平行线的性质即可得到答案(2)根据平行线的性质定理和角平分线的性质定理解答即可.【解答】(1)证明:∵AB∥CD,∴∠ABC=∠DCE,∵AD∥BC,∴∠ADC=∠DCE,∴∠ABC=∠ADC,(2)解:∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣58°=122°,∵AE平分∠BAD,∴,∵AD∥BC,∴∠AEC=∠DAE=61°.23.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.现有如图1所示边长为a的正方形纸片,边长为b的正方形纸片,长宽分别为a、b的长方形纸片若干,取部分纸片摆成如图2所示的一个长方形,根据这个长方形的面积可以得到的等式是:(a+b)(a+2b)=a2+3ab+2b2;(1)请利用若干图1所示纸片,摆出图形来说明:当a,b都不为0时,(a+b)2≠a2+b2(画图并写出过程).(2)小明同学用图1中边长为a的正方形纸片x张,边长为b的正方形纸片y张,长宽分别为a、b的长方形纸片z张,拼出一个面积为(2a+b)(a+3b)的长方形,则x=2,y=3,z=7.【考点】4B:多项式乘多项式;4D:完全平方公式的几何背景.【专题】511:实数;512:整式;64:几何直观;68:模型思想;69:应用意识.【分析】(1)画出面积拼图,说明(a+b)2=a2+2ab+b2,进而得出(a+b)2≠a2+b2;(2)利用多项式乘以多项式,根据结果得出答案.【解答】解:(1)如图,根据面积可得(a+b)2=a2+2ab+b2;因此有(a+b)2≠a2+b2;(2)∵(2a+b)(a+3b)=2a2+7ab+3b2,∴x=2,y=3,z=7.故答案为:2,3,7.24.△ABC和△DBC中,∠BAC=∠BDC=90°,延长CD、BA交于点E.(1)如图1,若AB=AC,试说明BO=EC;(2)如图2,∠MON为直角,它的两边OM、ON分别与AB、EC所在直线交于点M、N,如果OM=ON,那么BM与CO是否相等?请说明理由.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】553:图形的全等;554:等腰三角形与直角三角形;67:推理能力.【分析】(1)证明△BAO≌△CAE便可得结论;(2)证明△BOM≌△CNO便可得BM=CO.【解答】解:(1)∵∠BAC=∠BDC=90°,∴∠ABO+∠AOB=∠DCO+∠DOC=90°,∵∠AOB=∠DOC,∴∠ABO=∠DCO,∵∠EAC=180°﹣∠BAC=90°,∴∠BAO=∠EAC,在△BAO和△CAE中,,∴△BAO≌△CAE(ASA),∴BO=CE;(2)相等.理由如下:∵∠MON=∠BAC=90°,∴∠AMO+∠AOM=∠AOM+∠AON=90°,∴∠AMO=∠AON,∴∠BMO=∠NOC,由(1)知∠ABO=∠DCO,在△BOM和△CNO中,,∴△BOM≌△CNO(AAS),∴BM=CO.25.在抗击新冠肺炎疫情期间,司机小张开车免费将志愿者从A市送到B市,到达B市放下志愿者后立即按原路原速返回A市(志愿者下车时间忽略不计),而快递员小李则骑摩托车从B市向A市运送快递,他们出发时间相同,均沿两市间同一条公路匀速行驶,设两人行驶的时间为x(h),两人相距y(km),如图表示y随x变化而变化的情况,根据图象解决以下问题:(1)A、B两市之间的路程为240km;点M表示的实际意义是出发2小时小张与小李相遇;(2)小张开车的速度是80km/h;小李骑摩托车的速度是40km/h.(3)试求出发多长时间后,两人相距60km.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用;68:模型思想;69:应用意识.【分析】(1)根据题意和函数图象中的数据解答即可;(2)根据题意和函数图象中的数据可以求得小张开车的速度和小李骑摩托车的速度;(3)由(2)的结论分情况列方程解答即可.【解答】解:(1)根据函数图象中的数据可得A、B两市之间的路程为240km,M表示的实际意义是出发2小时小张与小李相遇;故答案为:240;出发2小时小张与小李相遇;(2)小张开车的速度为:240÷3=80(km/h),小李骑摩托车的速度为:240÷2﹣80=40(km/h).故答案为:80;40;(3)设出发x小时两人相距60km.由三种情况:相遇前:80x+40x+60=240,解得x=1.5;相遇后小张未到达B市前:80x+40x﹣60=240,解得x=2.5;小张返回途中:40x﹣80(x﹣3)=60,解得x=4.5;答:出发1.5,2.5,4.5小时,两人相距60km.。
2019-2020学年江苏省扬州市宝应县七年级(下)期末数学试卷一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列运算中,正确的是()A.(a2)3=a5B.(a+2b)2=a2+2ab+4b2C.a5÷a2=a3(a≠0)D.a(a+1)=a2+12.(3分)如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°3.(3分)在△ABC中,若一个内角等于另两个内角的差,则这个三角形必定是()A.锐角三角形B.直角三角形C.钝角三角形D.以上三个都是4.(3分)若a>b.则依据不等式的基本性质下列变形不正确的是()A.3﹣2a>3﹣2b B.4+a>4+bC.ac2>bc2(c≠0)D.﹣a<﹣b5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4 6.(3分)判断命题“如果n<1,那么n2﹣2<0”是假命题,只需举出一个反例.反例中的n可以为()A.B.0C.﹣1D.﹣27.(3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=25°,则∠1的度数为()A.45°B.55°C.65°D.75°8.(3分)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x(元)所在的范围为()A.8<x<10B.9<x<11C.8<x<12D.10<x<12二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位t上)9.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为.10.(3分)一个多边形的每一个内角为150°,那么这个多边形是边形.11.(3分)命题:“如果|a|=|b|,那么a=b”的逆命题是:(填“真命题”或“假命题”).12.(3分)一个等腰三角形的两边长分别是2cm和3cm,则它的周长是cm.13.(3分)如图,公园管理处在一块长是40m,宽是20m的草坪绿地中间修一条宽度均为2m的弯道便捷通道,则剩余草坪绿地的面积是m2.14.(3分)如图,在五边形ABCDE中,AE∥BC,则∠C+∠D+∠E=.15.(3分)若3m=2,9n=10,则3m﹣2n=.16.(3分)不等式组的解集为x>2,则a的取值范围是.17.(3分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.18.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=.三、解答题(本大题共有9小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算::(1)(m2)4﹣4m6•m2+(3m4)2;(2)(x﹣3)2﹣x(x﹣6).20.(8分)因式分解:(1)m2(x+y)﹣n2(x+y);(2)x4﹣2x2+1.21.(8分)(1)解方程组:;(2)解不等式﹣4<﹣,并把它的解集在数轴上表示出来.22.(8分)先化简,再求值:(x﹣y)2﹣(﹣x+2y)(﹣x﹣2y),其中x,y满足方程组.23.(10分)如图,在△ABC中,点D、E分别在BC、AB上,且EF∥AD,∠1+∠2=180°.(1)试猜想∠2与∠BAD的关系,并说明理由;(2)若DG平分∠ADC,求证:DG∥AB.24.(10分)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.25.(10分)对于任意的有理数a、b、c、d,我们规定=ad﹣bc,例如:=(﹣2)×5﹣(﹣4)×3=2.据这一规定,解下列问题:(1)化简;(2)若x同时满足≤1,<3x,求x的取值范围.26.(10分)在数学学习里,我们常常用作差法比较两个数(或代数式)的大小.具体地说:若a﹣b>0,则a>b;若a﹣b=0,则a=b:若a﹣b<0,则a<b.(1)已知a=n2,b=2n﹣1,n是不等于1的任意有理数,试运用作差法比较a、b的大小;(2)若M=(2a+b)(a﹣2b),N=(a+3b)(a﹣2b),试运用作差法比较M、N的大小.27.(12分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?28.(12分)(1)如图1,AD平分∠BAC,AE⊥BC,∠B=30°,∠C=70°.①∠BAC=°,∠DAE=°;②如图2.若把“AE⊥BC”变成“点F在AD的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(2)如图3,AD平分∠BAC,AE平分∠BEC,∠C﹣∠B=40°,求∠DAE的度数.2019-2020学年江苏省扬州市宝应县七年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列运算中,正确的是()A.(a2)3=a5B.(a+2b)2=a2+2ab+4b2C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【分析】直接利用整式的混合运算进而结合完全平方公式计算得出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故此选项错误;故选:C.2.(3分)如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=110°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=70°,故选:C.3.(3分)在△ABC中,若一个内角等于另两个内角的差,则这个三角形必定是()A.锐角三角形B.直角三角形C.钝角三角形D.以上三个都是【分析】根据三角形的内角和可求解△ABC的一内角为90°,进而可判断三角形的形状.【解答】解:设∠A=∠B﹣∠C,则∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC为直角三角形,故选:B.4.(3分)若a>b.则依据不等式的基本性质下列变形不正确的是()A.3﹣2a>3﹣2b B.4+a>4+bC.ac2>bc2(c≠0)D.﹣a<﹣b【分析】利用不等式的性质对各选项进行判断.【解答】解:∵a>b,∴3﹣2a<3﹣2b,4+a>4+b,ac2>bc2(c≠0),﹣a<﹣b.故选:A.5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4【分析】将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.6.(3分)判断命题“如果n<1,那么n2﹣2<0”是假命题,只需举出一个反例.反例中的n可以为()A.B.0C.﹣1D.﹣2【分析】根据实数的大小比较法则、乘方法则解答.【解答】解:﹣2<1,(﹣2)2﹣2>0,∴当n=﹣2时,“如果n<1,那么n2﹣2<0”是假命题,故选:D.7.(3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=25°,则∠1的度数为()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和直角三角形的性质,可以得到∠1的度数,本题得以解决.【解答】解:过直角顶点作长边的平行线,如右图所示,则∠2=∠3,∠1=∠4,∵∠2=25°,∴∠3=25°,∵∠3+∠4=90°,∴∠4=65°,∴∠1=65°,故选:C.8.(3分)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x(元)所在的范围为()A.8<x<10B.9<x<11C.8<x<12D.10<x<12【分析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:,∵三个人都说错了,∴这本书的价格x(元)所在的范围为10<x<12.故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位t上)9.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为 4.6×10﹣6.【分析】利用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故答案为:4.6×10﹣6.10.(3分)一个多边形的每一个内角为150°,那么这个多边形是十二边形.【分析】设多边形的边数为n,根据多边形的内角和定理:180°•(n﹣2)可得180°•(n ﹣2)=150°•n,再解方程求解即可.【解答】解:设多边形的边数为n,由题意可得:180•(n﹣2)=150•n,解得n=12.故答案为:十二.11.(3分)命题:“如果|a|=|b|,那么a=b”的逆命题是:真命题(填“真命题”或“假命题”).【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案.【解答】解:“如果|a|=|b|,那么a=b”的逆命题是“如果a=b,那么|a|=|b|”,为真命题,故答案为:真命题.12.(3分)一个等腰三角形的两边长分别是2cm和3cm,则它的周长是8或7cm.【分析】题目给出等腰三角形有两条边长为2cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是2,3,3时,能构成三角形,则周长是8;当三边是2,2,3时,能构成三角形,则周长是7.所以等腰三角形的周长为8cm或7cm.故答案为8cm或7cm.13.(3分)如图,公园管理处在一块长是40m,宽是20m的草坪绿地中间修一条宽度均为2m的弯道便捷通道,则剩余草坪绿地的面积是760m2.【分析】利用总面积减去便捷通道的面积即可.【解答】解:剩余草坪绿地的面积是:40×20﹣20×2=760(m2),故答案为:760.14.(3分)如图,在五边形ABCDE中,AE∥BC,则∠C+∠D+∠E=360°.【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【解答】过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故答案为360°.15.(3分)若3m=2,9n=10,则3m﹣2n=.【分析】直接利用同底数幂的除法运算法则、幂的乘方运算法则将原式变形得出答案.【解答】解:∵3m=2,9n=10=32n,∴3m﹣2n=3m÷32n=2÷10=.故答案为:.16.(3分)不等式组的解集为x>2,则a的取值范围是a≤2.【分析】根据不等式组的公共解集即可确定a的取值范围.【解答】解:由不等式组的解集为x>2,可得a≤2.故答案为:a≤217.(3分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.【分析】根据已知得出关于a,b的方程组进而得出答案.【解答】解:∵关于x、y的二元一次方程组,的解是,∴方程组中,解得:.故答案为:.18.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=7﹣7i.【分析】直接利用已知结合多项式乘多项式以及完全平方公式化简,进而得出答案.【解答】解:(2+i)(1﹣2i)+(2﹣i)2=2﹣4i+i﹣2i2+4+i2﹣4i=6﹣i2﹣7i=6﹣(﹣1)﹣7i=7﹣7i.故答案为:7﹣7i.三、解答题(本大题共有9小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算::(1)(m2)4﹣4m6•m2+(3m4)2;(2)(x﹣3)2﹣x(x﹣6).【分析】(1)首先利用幂的乘方、积的乘方的性质、单项式乘以单项式计算法则进行计算,然后再算加减即可;(2)先利用完全平方公式和单项式乘以多项式计算法则进行计算,然后再合并同类项即可.【解答】解:(1)原式=m8﹣4m8+9m8=6m8;(2)原式=x2﹣6x+9﹣x2+6x=9.20.(8分)因式分解:(1)m2(x+y)﹣n2(x+y);(2)x4﹣2x2+1.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=(x+y)(m2﹣n2)=(x+y)(m+n)(m﹣n);(2)原式=(x2﹣1)2=(x+1)2(x﹣1)2.21.(8分)(1)解方程组:;(2)解不等式﹣4<﹣,并把它的解集在数轴上表示出来.【分析】(1)方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项,合并同类项,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1),②﹣①×2得:x=6,把x=6代入①得:y=﹣3,则方程组的解为;(2)去分母得:2(2x﹣1)﹣24<﹣3(x+4),去括号得:4x﹣2﹣24<﹣3x﹣12,移项得:4x+3x<2+24﹣12,合并得:7x<14,解得:x<2,表示在数轴上,如图所示:22.(8分)先化简,再求值:(x﹣y)2﹣(﹣x+2y)(﹣x﹣2y),其中x,y满足方程组.【分析】先算乘法,再合并同类项,最后求出方程组的解代入,即可求出答案.【解答】解:原式=x2﹣2xy+y2﹣(x2﹣4y2)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2.解方程组得:,当x=﹣1,y=时,原式=﹣2xy+5y2=﹣2×(﹣1)×+5×()2=.23.(10分)如图,在△ABC中,点D、E分别在BC、AB上,且EF∥AD,∠1+∠2=180°.(1)试猜想∠2与∠BAD的关系,并说明理由;(2)若DG平分∠ADC,求证:DG∥AB.【分析】(1)由平行线的性质和∠1+∠2=180°,可推出∠2与∠BAD的关系;(2)由(1)的结论和DG平分∠ADC,可得∠ADG与∠BAD的关系,利用平行线的判定得结论.【解答】证明:(1)∠2与∠BAD相等.理由:∵EF∥AD,∴∠1+∠BAD=180°.∵∠1+∠2=180°.∴∠2=∠BAD.(2)∵DG平分∠ADC,∴∠2=∠ADG.由(1)知∠2=∠BAD,∴∠ADG=∠BAD.∴DG∥AB.24.(10分)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.【分析】(1)把x与y的值代入已知方程求出k的值,进而求出方程组的解即可;(2)表示出方程组的解,根据x>y,求出k的范围即可.【解答】解:(1)把代入x﹣2y=k得:k=3+4=7,方程组为,①﹣②×2得:y=﹣9,把y=﹣9代入①得:x=﹣11,则方程组的解为;(2),①﹣②得:x﹣y=5﹣k,∵x>y,即x﹣y>0,∴5﹣k>0,解得:k<5.25.(10分)对于任意的有理数a、b、c、d,我们规定=ad﹣bc,例如:=(﹣2)×5﹣(﹣4)×3=2.据这一规定,解下列问题:(1)化简;(2)若x同时满足≤1,<3x,求x的取值范围.【分析】(1)根据题意列式,然后再计算乘法,后算加减即可;(2)根据题意列出不等式组,再解不等式组确定解集即可.【解答】解:(1)原式=(x+2y)(x﹣2y)﹣(2x+y)2=x2﹣4y2﹣(4x2+4xy+y2)=x2﹣4y2﹣4x2﹣4xy﹣y2=﹣3x2﹣5y2﹣4xy;(2)∵≤1,<3x,∴,解不等式①得:x≤2,解不等式②得:x>,∴<x≤2.26.(10分)在数学学习里,我们常常用作差法比较两个数(或代数式)的大小.具体地说:若a﹣b>0,则a>b;若a﹣b=0,则a=b:若a﹣b<0,则a<b.(1)已知a=n2,b=2n﹣1,n是不等于1的任意有理数,试运用作差法比较a、b的大小;(2)若M=(2a+b)(a﹣2b),N=(a+3b)(a﹣2b),试运用作差法比较M、N的大小.【分析】(1)根据偶次方的非负性得到(n﹣1)2>0,根据不等式的性质解答;(2)根据偶次方的非负性得到(a﹣2b)2≥0,根据不等式的性质解答.【解答】解:(1)∵a=n2,b=2n﹣1,∴a﹣b=n2﹣(2n﹣1)=n2﹣2n+1=(n﹣1)2,∵n是不等于1的任意有理数,∴(n﹣1)2>0,∴a>b;(2)∵M=(2a+b)(a﹣2b),N=(a+3b)(a﹣2b),∴M﹣N=(2a+b)(a﹣2b)﹣(a+3b)(a﹣2b)=2a2﹣4ab+ab﹣2b2﹣a2+2ab﹣3ab+6b2=a2﹣4ab+4b2=(a﹣2b)2,∵(a﹣2b)2≥0,∴M≥N.27.(12分)为响应国家“足球进校园”的号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元.(1)求购买一个A类足球和一个B类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?【分析】(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,根据“购买50个A类足球和25个B类足球共花费7500元,购买一个B类足球比购买一个A类足球多花30元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个A类足球,则购买(50﹣m)个B类足球,根据总价=单价×数量结合总费用不超过4800元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一个A类足球需要x元,购买一个B类足球需要y元,依题意,得:,解得:.答:购买一个A类足球需要90元,购买一个B类足球需要120元.(2)设购买m个A类足球,则购买(50﹣m)个B类足球,依题意,得:90m+120(50﹣m)≤4800,解得:m≥40.答:本次至少可以购买40个A类足球.28.(12分)(1)如图1,AD平分∠BAC,AE⊥BC,∠B=30°,∠C=70°.①∠BAC=80°,∠DAE=20°;②如图2.若把“AE⊥BC”变成“点F在AD的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(2)如图3,AD平分∠BAC,AE平分∠BEC,∠C﹣∠B=40°,求∠DAE的度数.【分析】(1)①利用三角形内角和定理求出∠BAC,再求出∠CAD,∠CAE即可解决问题.②想办法求出∠ADC即可解决问题.(2)利用三角形内角和定理以及角平分线的定义构建关系式解决问题即可.【解答】解:(1)①∵∠B=30°,∠C=70°,∴∠BAC=180°﹣(30°+70°)=80°,∵AD平分∠ABC,∴∠CAD=∠BAC=40°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣70°=20°,∴∠DAE=∠CAD﹣∠CAD=20°.故答案为80,20.②∵∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣70°=70°,∴∠FDE=∠ADC=70°,∵FE⊥BC,∴∠FED=90°,∴∠DFE=90°﹣∠FDE=20°.(3)∵AD平分∠ABC,∴∠BAD=∠CAD,∵AE平分∠BEC,∴∠AEB=∠AEC,∵∠C+∠CAE+∠AEC=180°,∠B+∠BAE+∠AEB=180°,∴∠C+∠CAE=∠B+∠BAE,∵∠CAE=∠CAD﹣∠DAE,∠BAE=∠BAD+∠DAE,∴∠C+∠CAD﹣∠DAE=∠B+∠BAD+∠DAE,∴2∠DAE=∠C﹣∠B=40°,∴∠DAE=20°.。
七年级第二学期数学期末试卷分析
2019年七年级第二学期数学期末试卷分析
尽快地掌握科学知识,迅速提高学习能力,由查字典数学网为您提供的七年级第二学期数学期末试卷分析,希望给您带来启发!
(1)从内容上看,所检测的都是课本上所教的,都是要求学生掌握的没有一项内容偏离课本,从形式上来看,每个大项的试题都是课本中出现过的,都是学生熟悉的。
整个卷面,有最基本的基础题,也有锻炼学生解决问题的及综合能力的应用题,所考内容基本上覆盖了所教内容。
(2) 贴近生活实际,体现应用价值。
本次试题依据新课标的要求,从学生熟悉的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。
(3)重视各种能力的考查。
本次试题通过不同的数学知识载体,全面考查了学生的计算能力,观察能力和判断能力以及综合运用知识解决生活问题的能力。
二、学生的答题情况;
本次考试学生答题情况不是很理想,有2个不及格,都集中在79班。
高分的学生也不是很多,最高分才98分,没有一个百分的。
这是本次考试很不理想的一个方面。
也是从教他。
人教版七年级下册期末考试分析期末考试已经过去,我对学生的成绩已经认真分析,期望对今后的教学能够有所帮助。
接下来,我从试卷分析、试题分析、反应出的问题、今后的努力方向四个方面进行分析:一、试卷分析本套试卷共25道题,总分150分。
整张试卷的结构合理,分值分配恰当,试题内容覆盖面广,难度居中,渗透了过程与方法。
试题重在考查学生对基础知识的掌握,此外,5题、22题、24(2)(3)题、25(2)题注重考查学生综合应用能力,难易结合,对学生本学期的数学有了全面的考察。
以课本为本,注重基础,有适当的拔高题,有两个点超纲,但通过排除和转化也能用旧知识解决新问题。
二、试题分析对于几道得分率比较低的题目,我分别从选择题、填空题、解答题三个方面做了如下分析:(一)选择题1题错选C项,审题方面存在缺失,抓不准问题的核心点,与阅读能力相关,不能及时得将冗杂条件进行转化。
虽然考前,已经练习过多个类似的问题,但是错误率达20%,有些高,学习浮于表面,知识未能下沉,略显浮躁。
类似的错误还有14、16、17题。
5题错选D项,该题属于新定义题目,另外又考察了原命题和逆命题的相关概念,学生读题能力跟不上,做出判断时,不能兼顾原命题为真,逆命题为假,导致最终判断失误。
再加上全等三角形的概念对初一来讲显得生疏。
112题也练习过在平面直角坐标系中的规律题,但该题加入了新定义伴随点的元素,使得题目难度上了一个档次,学社狗的得分率低至百分之32点多。
(二)填空题14题有学生写出来所有的非负整数解,但是没有求和。
15题学生出现了理解性错误,不是四舍五入,也非简单的取整问题。
17题很多学生只写了一个答案,没有分析两种情况。
18题是之前经常练习的规律题,但是考前复习的少了一些。
(三)解答题19(3)考察计算能力,在不等式组的第一个式子,计算失误偏多。
20题,得分率低的原因在于,过程不规范,学生把握不住哪个环节该多写,哪些部分该省略着写。
22题,该题模拟了抽样调查的全过程,有学生只会计算,不会合理安排数据,体现出思维定式的弊端。
初一下学期数学期末试卷分析一、试卷结构本次考试采取闭卷形式进行,由四种题型构成。
第一题选择题,7个题目,共计21分;第二题为填空题,8个题目,共计24分;第三题为解答题,三个题目,共计37分;第四题为综合题,2个题目,共计18分。
本套试卷没有偏题、怪题,只是有些题目比较灵活,总体来讲整个试卷难易适中,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,符合初一学生的实际。
二、试卷的评价1、试卷的基本情况:数学考试时间为100分钟,卷面总分为100分。
数学学科的题型包括单项选择题、填空题、解答题、综合题。
2、试卷所涉及的教材内容:试卷考查的数学知识点,分布于初一下学年教科书中三、试卷成绩情况四、试卷分析得分率较高的题目有:一:1、2、3、4、6、7;二:11、12、13、14;三:16、17(1)、18、19;第四大题得分两级分化。
得分率较低的题目有:5、8、9、10、15、17(2)。
下面就得分率较低的题目简单分析如下:一、5,此题是关于等式的性质的题目,很多同学对不等式的性质理解还不到位,不懂得变通,还没有建立分类讨论的数学思想,建议在数学思想上多下功夫。
二、8,这题考查点的坐标平移问题,很多同学丢分主要粗枝大叶,审题不清,答案写反了,建议平时培养学生答题认真仔细的好习惯;9、15,这两题学生丢分主要是考虑问题不够全面,两种情况只想到了期中一种;10,这题是考查不等式组解的情况,无解的条件,很多同学把相等的情况落下了。
三、17(2),这题主要是看学生的运算能力,包括方程组和不等式组的解,而且答案为分式运算,很多同学运算过程出错而失分。
第四大题的得分走两个极端,特别是最后21题,有些同学时间不够乱写一通。
五、存在问题1、两极分化严重2、基础知识较差。
我在阅卷中发现,部分学生基础知识之差让人不可思议.3、概念理解没有到位4、缺乏应变能力5、审题能力不强,错误理解题意六、今后工作思路1、强化纲本意识,注重“三基”教学我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法.在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识.教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质.2、强化全面意识,加强补差工重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.3、强化过程意识,暴露思维过程数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.4、教学中要重在凸现学生的学习过程,培养学生的分析能力。
2019-2020学年江苏省南通市如东县七年级(下)期末数学试卷一.选择题(共10小题)1.在实数3.1415,,,中,是无理数的是()A.3.1415B.C.D.2.在平面直角坐标系中,点P(﹣5,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,两条直线被第三条直线所截,在所标识的角中,下列说法不正确的是()A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角4.下列长度的三条线段,能组成三角形的是()A.5,6,10B.5,6,11C.5,7,2D.3,4,85.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.6.下列调查中,调查方式选择合理的是()A.为了了解一批袋装食品是否含有防腐剂,选择全面调查B.为了了解某电视节目的收视率,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解某批次汽车的抗撞击能力,选择全面调查7.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的例子是()A.∠A=40°,∠B=20°B.∠A=40°,∠B=60°C.∠A=40°,∠B=90°D.∠A=40°,∠B=120°8.已知|2x+4|+(5﹣y﹣m)2=0,且y>0,则m的取值范围是()A.m>﹣5B.m<﹣5C.m>5D.m<59.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.10.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β二.填空题(共8小题)11.实数9的算术平方根等于.12.语句“x的4倍与3的和不大于6”用不等式可表示为.13.某正n边形的一个内角为108°,则n=.14.已知a,b满足方程组,则a+b=.15.如图,直线AB∥DE,AC⊥BC,若∠1=139°,则∠CAB=度.16.若点M(x,x+2)在第二象限,则整数x的值是.17.△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有个.18.在平面直角坐标系xOy中,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+2|y1﹣y2|.若A(2,1),B(﹣1,m),且d(A,B)≤5,则实数m的取值范围是.三.解答题19.(1)计算:+|﹣2|﹣;(2)解不等式组.20.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?请列方程组求解.21.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(5,2),B(2,﹣1),过点A画AC⊥x轴,垂足为C.(1)按照要求画出平面直角坐标系xOy;(2)写出点C的坐标;(3)△ABC的面积为.22.如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.23.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.24.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是;频数分布表中a=;b=;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.25.在平面直角坐标系xOy中,将△ABC进行平移,使点A,B,C分别移到点A′,B′,C′.已知A(0,t),B(0,n),A′(t,t),B′(m﹣n,t+4).(1)试用含t的式子表示m和n;(2)若C(﹣2t,m+1),其中t>0,求证:B′C∥x轴;(3)在(2)的条件下,若S△BCB′=3,求点C′的坐标.26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=36°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.2019-2020学年江苏省南通市如东县七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.在实数3.1415,,,中,是无理数的是()A.3.1415B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3.1415是有限小数,是有理数,故此选项不符合题意;B、=2是整数,是有理数,故此选项不符合题意;C、是分数,是有理数,故此选项不符合题意;D、是无理数,故此选项符合题意.故选:D.2.在平面直角坐标系中,点P(﹣5,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣5,4)位于第二象限.故选:B.3.如图,两条直线被第三条直线所截,在所标识的角中,下列说法不正确的是()A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角【分析】依据同旁内角、邻补角、内错角以及对顶角的概念,即可得出结论.【解答】解:A.∠1与∠5是同旁内角,说法正确;B.∠1与∠2是邻补角,说法正确;C.∠3与∠5不是内错角,∠4与∠5是内错角,故说法错误;D.∠2与∠4是对顶角,说法正确;故选:C.4.下列长度的三条线段,能组成三角形的是()A.5,6,10B.5,6,11C.5,7,2D.3,4,8【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、5+6>10,能构成三角形;B、5+6=11,不能构成三角形;C、5+2=7,不能构成三角形;D、3+4<8,不能构成三角形.故选:A.5.不等式2x+3>1的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:2x>1﹣3,2x>﹣2,x>﹣1,故选:D.6.下列调查中,调查方式选择合理的是()A.为了了解一批袋装食品是否含有防腐剂,选择全面调查B.为了了解某电视节目的收视率,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解某批次汽车的抗撞击能力,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解一批袋装食品是否含有防腐剂,具有破环性,应采用抽样调查,故此选项不合题意;B、为了了解某电视节目的收视率,应选择抽样调查,故此选项符合题意;C、为了了解神舟飞船的设备零件的质量情况,意义重大,应采用全面调查,故此选项不合题意;D、为了了解某批次汽车的抗撞击能力,具有破环性,应采用抽样调查,故此选项不合题意;故选:B.7.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的例子是()A.∠A=40°,∠B=20°B.∠A=40°,∠B=60°C.∠A=40°,∠B=90°D.∠A=40°,∠B=120°【分析】说明命题“两个锐角的和是钝角”是假命题的反例为两个锐角的和小于90°即可.【解答】解:利用∠A=40°,∠B=20°可判断“两个锐角的和是钝角”是假命题.故选:A.8.已知|2x+4|+(5﹣y﹣m)2=0,且y>0,则m的取值范围是()A.m>﹣5B.m<﹣5C.m>5D.m<5【分析】根据非负数的性质列出方程组用m表示出y的值,再根据y<0求出m的取值范围即可.【解答】解:∵|2x+4|+(5﹣y﹣m)2=0,∴5﹣y﹣m=0,y=5﹣m.∵y>0,∴5﹣m>0,解得m<5.故选:D.9.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【解答】解:设该店有客房x间,房客y人;根据题意得:,故选:A.10.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β【分析】根据三角形的内角和,四边形的内角和定理,以及三角形的外角的意义,得出∠ADC与α、β的关系.【解答】解:在四边形ABCD中,∠ADC=360°﹣α﹣(∠DCB+∠DAB)=360°﹣α﹣(360°﹣2∠PCD﹣2∠P AD)=2(∠PCD+∠P AD)﹣α=2(∠ADC﹣β)﹣α,∴∠ADC=α+2β,故选:C.二.填空题(共8小题)11.实数9的算术平方根等于3.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:实数9的算术平方根是:=3.故答案为:3.12.语句“x的4倍与3的和不大于6”用不等式可表示为4x+3≤6.【分析】“x的4倍”即4x,“与3的和”即“+3”,根据“不大于6”即≤6可得答案.【解答】解:“x的4倍与3的和不大于6”用不等式可表示为4x+3≤6,故答案为:4x+3≤6.13.某正n边形的一个内角为108°,则n=5.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.14.已知a,b满足方程组,则a+b=﹣2.【分析】直接将两方程相加进而得出a+b的值.【解答】解:∵a,b满足方程组,∴4a+4b=﹣8,则a+b=﹣2.故答案为:﹣2.15.如图,直线AB∥DE,AC⊥BC,若∠1=139°,则∠CAB=49度.【分析】先根据三角形外角与内角的关系,求出∠2,再利用平行线的性质求出∠CAB.【解答】解:∵AC⊥BC,∴∠C=90°.∵∠1=∠C+∠2,∴∠2=∠1﹣∠C=139°﹣90°=49°.∵AB∥DE,∴∠CAB=∠2=49°.故答案为:49.16.若点M(x,x+2)在第二象限,则整数x的值是﹣1.【分析】根据点M在第二象限列出关于x的不等式组,解之可得答案.【解答】解:∵点M(x,x+2)在第二象限,∴,解得﹣2<x<0,∴整数x的值为﹣1,故答案为:﹣1.17.△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有9个.【分析】结合三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”和已知条件,进行分析.【解答】解:根据已知条件和三角形的三边关系,得当a=8,b=7时,则c=6或5或4或3或2;当a=8,b=6时,则c=5或4或3;当a=8,b=5时,则c=4.则满足条件的三角形共有9个.故答案为:9.18.在平面直角坐标系xOy中,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+2|y1﹣y2|.若A(2,1),B(﹣1,m),且d(A,B)≤5,则实数m的取值范围是0≤m≤2.【分析】根据题意给出的公式列出不等式后即可求出a的取值范围.【解答】解:∵A(2,1),B(﹣1,m),且d(A,B)≤5,∴d(A,B)=3+2|1﹣m|≤5,∴|1﹣m|≤1,∴﹣1≤1﹣m≤1,∴0≤m≤2,故答案为0≤m≤2.三.解答题19.(1)计算:+|﹣2|﹣;(2)解不等式组.【考点】2C:实数的运算;CB:解一元一次不等式组.【专题】511:实数;524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)利用绝对值和立方根的性质进行计算,然后再算加减即可;(2)首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:(1)原式=+2﹣﹣3=﹣1;(2),由不等式①得x≤1,由不等式②得x<4,∴不等式组的解集为x≤1.20.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?请列方程组求解.【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【专题】124:销售问题;69:应用意识.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张,则,解得.答:甲种票买了20张,乙种票买了15张.21.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(5,2),B(2,﹣1),过点A画AC⊥x轴,垂足为C.(1)按照要求画出平面直角坐标系xOy;(2)写出点C的坐标;(3)△ABC的面积为3.【考点】D5:坐标与图形性质;K3:三角形的面积.【专题】552:三角形;64:几何直观;66:运算能力.【分析】(1)直接利用已知点画出平面直角坐标系即可;(2)根据坐标系得出答案;(3)利用所在三角形面积减去一个三角形面积进而得出答案.【解答】解:(1)如图所示:(2)点C的坐标为:(5,0);故答案为:(1,0);(3)△ABC的面积为:3×3﹣×1×3=3;故答案为:3.22.如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.【考点】K3:三角形的面积.【专题】552:三角形;67:推理能力.【分析】(1)根据三角形的中线将三角形分成面积相等的两部分,列出方程可求解;(2)求得P A=8,即可求得PB=12,根据三角形面积公式即可求得.【解答】解:(1)∵当点P是AB中点时,CP把△ABC的面积分成相等的两部分;∴3t=16+,解得t=;(2)∵3×8=24,∴AC+AP=24,∴AP=8,BP=12,∵△APC和△BPC同高,∴S△APC:S△BPD=2:3.23.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【考点】II:度分秒的换算.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.24.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 8683 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:成绩(分)频数78≤x<82582≤x<86a86≤x<901190≤x<94b94≤x<982回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【专题】11:计算题;541:数据的收集与整理.【分析】(1)将各数按照从小到大顺序排列,找出中位数,根据统计图与表格确定出a 与b的值即可;(2)补全直方图即可;(3)求出样本中游戏学生的百分比,乘以300即可得到结果.【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.25.在平面直角坐标系xOy中,将△ABC进行平移,使点A,B,C分别移到点A′,B′,C′.已知A(0,t),B(0,n),A′(t,t),B′(m﹣n,t+4).(1)试用含t的式子表示m和n;(2)若C(﹣2t,m+1),其中t>0,求证:B′C∥x轴;(3)在(2)的条件下,若S△BCB′=3,求点C′的坐标.【考点】RB:几何变换综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)根据平移变换坐标之间的关系构建方程组求解即可.(2)利用(1)中结论证明点B′,点C的纵坐标相等即可.(3)利用三角形的面积公式求出t的值,再利用平移变换的规律解决问题即可.【解答】解:(1)由题意,,解得.(2)∵C(﹣2t,m+1),m=2t+4,∴C(﹣2t,t+4),∵B′(t,t+4),且t>0,∴B′C∥x轴.(3)∵B(0,t+4),B′(t,t+4),C(﹣2t,t+4)∴S△BCB′=(t+2t)()=3,解得t=2(负值已舍去),∴A(0,2),A′(2,3),C(﹣4,7),∵点A向右平移2个单位,再向上平移1个单位得到A′,∴C(﹣4,7)向右平移2个单位,再向上平移1个单位得到C′,∴C′(﹣2,8).26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=36°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.【考点】38:规律型:图形的变化类;K7:三角形内角和定理.【专题】552:三角形;69:应用意识.【分析】(1)结论:∠BDC=∠A+∠B+∠C.连结AD并延长到点E,利用三角形的外角的性质求解即可.(2)①利用(1)中结论计算即可.②图3中,设∠ADC=∠CDB=x,∠AEC=∠CEB=y,构建方程组解决问题即可.③设∠ABD=x°,∠ACD=y°,构建方程组解决问题即可.【解答】解:(1)∠BDC=∠A+∠B+∠C.理由:连结AD并延长到点E.∵∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,∴∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠B,∴∠BDC=∠BAC+∠B+∠C.(2)①∵∠BXC=∠ABX+∠ACX+∠A=90°,∠A=54°,∴∠ABX+∠ACX=36°.故答案为36.②如图3中,设∠ADC=∠CDB=x,∠AEC=∠CEB=y,则有∠DCE=x+y+α,β=2x+2y+α,∴∠DCE=.故答案为.③设∠ABD=x°,∠ACD=y°.由题意可得,解得∠A=55°.。
2019-2020学年安徽省芜湖市七年级(下)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共30分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.(4分)下列计算正确的是()A.﹣22=4B.=±4C.=D.=22.(4分)下列调查工作适合采用普查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.质检部门对各厂家生产的电池使用寿命的调查C.电视台对正在播出的某电视节目收视率的调查D.环保部门对某段水域的水污染情况的调查3.(4分)已知点A(a,b)在第四象限,那么点B(b,﹣a﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°5.(4分)在下列实数,3.14159265,,﹣8,,,中无理数有()A.3个B.4个C.5个D.6个6.(4分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE7.(4分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.8.(4分)下列说法正确的是()A.x=3.14是不等式2x﹣5>0的一个解B.+5<2x是一元一次不等式C.不等式组有一个正整数解D.不等式:﹣2x+3>0的解集是:x>9.(4分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)10.(4分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个A.1B.2C.3D.4二、填空题:(本大题5个小题,每小题4分,共20分)11.(4分)求实数的整数部分数字是.12.(4分)如图,直线a和b被直线c所截,∠1=110°,当∠2=时,直线a∥b成立.13.(4分)关于x的不等式(3﹣2a)x<1的解集是x>,则a的取值范围是.14.(4分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.15.(4分)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C的坐标为.三、简答题:(本大题6个小题、共50分,解答时每小题必须给出必要的演算过程或推理步骤.)16.(1)解方程组;(2)解不等式组并将解集在数轴上表示.17.(7分)如图,BC∥AD,∠1=∠E,求证:∠A=∠C.18.(8分)如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(﹣2,5)、B(﹣4,1)、C(2,3),将△ABC平移得到A'B'C',点A(a,b)对应点A'(a+3,b﹣4)(1)画出△A'B'C'并写出点B'、C'的坐标.(2)试求△A'B'C'的面积.(3)在x轴上存在一点P,使得S△ABP=7,则点P的坐标是.19.(6分)某中学有学生2400名,为了响应市“科学应对、群防群控、增强体质、战胜疫情”的号召,学校决定利用课外活动时间举行体育锻炼,为了让学生在篮球、足球、排球和乒乓球这四项球类运动中选择一项球类进行锻炼,对学生开展了随机调查,并将结果绘制成如图所示不完整的统计图.请根据以上信息,完成下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱乒乓球的人数,并补全条形统计图;(3)请你估计该阳光中学的学生中最喜爱篮球运动的学生人数约有多少名?20.(9分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.2019-2020学年安徽省芜湖市七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共30分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.(4分)下列计算正确的是()A.﹣22=4B.=±4C.=D.=2【分析】直接利用二次根式、立方根的性质分别化简得出答案.【解答】解:A、﹣22=﹣4,故此选项错误;B、=4,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.【点评】此题主要考查了立方根以及算术平方根,正确化简各数是解题关键.2.(4分)下列调查工作适合采用普查方式的是()A.学校在给学生订做校服前进行的尺寸大小的调查B.质检部门对各厂家生产的电池使用寿命的调查C.电视台对正在播出的某电视节目收视率的调查D.环保部门对某段水域的水污染情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、学校在给学生订做校服前进行的尺寸大小的调查,人数较少,应采用全面调查,故此选项符合题意;B、质检部门对各厂家生产的电池使用寿命的调查,调查具有破坏性,应采用抽样调查,故此选项不合题意;C、电视台对正在播出的某电视节目收视率的调查,范围较广,意义不大,应采用抽样调查,故此选项不合题意;D、环保部门对某段水域的水污染情况的调查,不可能全面调查,应采用抽样调查,故此选项不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(4分)已知点A(a,b)在第四象限,那么点B(b,﹣a﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:∵点A(a,b)在第四象限,∴a>0,b<0,∴﹣a﹣1<0,∴点B(b,﹣a﹣1)在第三象限.故选:C.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.4.(4分)如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C 两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.5.(4分)在下列实数,3.14159265,,﹣8,,,中无理数有()A.3个B.4个C.5个D.6个【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:,,∴,3.14159265,﹣8,是有理数,无理数有:,,共3个.故选:A.【点评】本题主要考查的是无理数的概念,熟练掌握无理数的概念是解题的关键.6.(4分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿BC的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=3,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,不符合题意;C错误,符合题意,故选:C.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.7.(4分)《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程.8.(4分)下列说法正确的是()A.x=3.14是不等式2x﹣5>0的一个解B.+5<2x是一元一次不等式C.不等式组有一个正整数解D.不等式:﹣2x+3>0的解集是:x>【分析】解出不等式(组)的解集,根据不等式的解的定义,就是能使不等式成立的未知数的值,就可以作出判断.【解答】解:A、由于不等式2x﹣5>0的解集为x>2.5,所以x=3.14是不等式2x﹣5>0的一个解,正确,符合题意;B、+5<2x表示是一元一次不等式,故错误,不符合题意.C、解不等式x+3<5得x<2,解不等式3x﹣1>8得x>3,所以不等式组无解,错误,不符合题意;D、不等式x﹣3>2的解集是x<,故错误,不符合题意;故选:A.【点评】本题考查了不等式(组)的解集,解答此题关键是掌握解不等式的方法.9.(4分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)【分析】根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.【解答】解:依题意可得:∵AC∥x轴,A(﹣3,2)∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选:D.【点评】本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.10.(4分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有()个A.1B.2C.3D.4【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④∵∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=∠ABC,∠DCB=∠ACB,∴∠DFB=∠EBC+∠DCB=(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=∠CGE,故④正确.故选:C.【点评】本题主要考查的是三角形内角和定理、平行线的性质,熟知直角三角形的两锐角互余是解答此题的关键.二、填空题:(本大题5个小题,每小题4分,共20分)11.(4分)求实数的整数部分数字是35.【分析】直接估算无理数的大小进而得出整数部分.【解答】解:∵352=1225,∴35<<36,∴实数的整数部分数字是:35.故答案为:35.【点评】此题主要考查了估算无理数的大小,正确估算无理数的范围是解题关键.12.(4分)如图,直线a和b被直线c所截,∠1=110°,当∠2=70°时,直线a∥b成立.【分析】根据平行线的判定定理即可得到结论.【解答】解:当∠2=70°时,直线a∥b,∵∠1=110°,∴∠3=70°,∵∠2=70°,∴∠3=∠2,∴直线a∥b.故答案为:70°.【点评】本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.13.(4分)关于x的不等式(3﹣2a)x<1的解集是x>,则a的取值范围是a>.【分析】根据解一元一次不等式的依据可得关于a的不等式,解之可得.【解答】解:∵(3﹣2a)x<1的解集是x>,∴3﹣2a<0,解得a>,故答案为:a>.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.(4分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是44cm2.【分析】设小长方形的长、宽分别为xcm,ycm,根据图示可以列出方程组,然后解这个方程组即可求出小长方形的面积,接着就可以求出图中阴影部分的面积.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解之得,∴小长方形的长、宽分别为8cm,2cm,∴S阴影部分=S四边形ABCD﹣6×S小长方形=14×10﹣6×2×8=44cm2.【点评】此题是一个信息题目,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.15.(4分)已知点A(﹣4,0),B(2,0),点C在y轴上,且△ABC的面积等于12,则点C的坐标为(0,4)或(0,﹣4).【分析】先设C点的坐标是(0,x),根据图可知×AB×OC=×6•|x|=12,解即可求x,进而可求C 点坐标.【解答】解:如右图所示,设C点的坐标是(0,x),∵S△ABC=12,∴×AB×OC=×6•|x|=12,∴|x|=4,故点C的坐标是(0,4)或(0,﹣4).故答案为(0,4)或(0,﹣4).【点评】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是不要漏解.三、简答题:(本大题6个小题、共50分,解答时每小题必须给出必要的演算过程或推理步骤.)16.(1)解方程组;(2)解不等式组并将解集在数轴上表示.【分析】(1)方程组利用加减消元法求出解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1),①×2﹣②得:﹣11y=﹣22,解得:y=2,把y=2代入①得:x=1,∴方程组的解为;(2)解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(7分)如图,BC∥AD,∠1=∠E,求证:∠A=∠C.【分析】由∠1=∠E,可判定AB∥EC,根据平行线的性质,可得∠ADE=∠A,又由BC∥AD,可得∠C =∠ADE,即可求解.【解答】证明:∵∠1=∠E,∴AB∥EC,∴∠ADE=∠A,∵BC∥AD,∴∠C=∠ADE,∴∠A=∠C.【点评】此题考查了平行线的判定与性质.此题难度不大,注意掌握数形结合思想的应用.18.(8分)如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(﹣2,5)、B(﹣4,1)、C(2,3),将△ABC平移得到A'B'C',点A(a,b)对应点A'(a+3,b﹣4)(1)画出△A'B'C'并写出点B'、C'的坐标B′(﹣1,﹣3),C′(5,﹣1).(2)试求△A'B'C'的面积10.(3)在x轴上存在一点P,使得S△ABP=7,则点P的坐标是(﹣8,0)或(﹣1,0).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题.(2)利用分割法求三角形的面积即可.(3)分两种情形,分别构建方程解决问题即可.【解答】解:(1)如图,△A'B'C'即为所求,B′(﹣1,﹣3),C′(5,﹣1).故答案为B′(﹣1,﹣3),C′(5,﹣1).(2)S△A′B′C′=4×6﹣×2×4﹣×2×4﹣×2×6=10.故答案为10.(3)设P(m,0),当点P在直线AB的右侧时,×2×1+×(m+4)×5﹣×1×(m+4)=7,解得m=﹣1,当点P在直线AB的左侧时,×5×(﹣4﹣m)+×(﹣2﹣m)×4﹣×5×(﹣2﹣m)=7,解得m=﹣8,∴满足条件的点P的坐标为(﹣8,0)或(﹣1,0).故答案为(﹣8,0)或(﹣1,0).【点评】本题考查作图﹣平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数构建方程解决问题.19.(6分)某中学有学生2400名,为了响应市“科学应对、群防群控、增强体质、战胜疫情”的号召,学校决定利用课外活动时间举行体育锻炼,为了让学生在篮球、足球、排球和乒乓球这四项球类运动中选择一项球类进行锻炼,对学生开展了随机调查,并将结果绘制成如图所示不完整的统计图.请根据以上信息,完成下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱乒乓球的人数,并补全条形统计图;(3)请你估计该阳光中学的学生中最喜爱篮球运动的学生人数约有多少名?【分析】(1)用篮球的人数除以篮球的人数所占的百分比,即可解答;(2)用总人数乘以最喜爱乒乓球的人数所占的百分比,即可补全统计图;(3)用阳光中学的总人数乘以最喜爱篮球运动的学生人数所占的百分比即可.【解答】解:(1)本次调查共抽取的学生数是:160÷40%=400(人);(2)喜爱乒乓球的人数有:400×30%=120(人),补全统计图如下:(3)根据题意得:2400×40%=960(名),答:阳光中学的学生中最喜爱篮球运动的学生人数约有960名.【点评】本题主要考查了条形统计图和扇形统计图的识别,观察条形统计图、扇形统计图获得有效信息是解题关键.20.(9分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台,根据金额不多余7500元,列不等式求解;(3)根据A种型号电风扇的进价和售价、B种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a的值,再根据a为整数,即可得出答案.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点评】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为∠PFD+∠AEM=90°.请说明理由作PG∥AB,如图①所示则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为∠PFD﹣∠AEM=90°.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【分析】(1)由平行线的性质得出∠PFD=∠1,∠2=∠AEM,即可得出结果;(2)由平行线的性质得出∠PFD+∠1=180°,再由角的互余关系即可得出结果;(3)由角的互余关系求出∠PHE,再由平行线的性质得出∠PFC的度数,然后由三角形的外角性质即可得出结论.【解答】解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.【点评】本题考查了平行线的性质、角的互余关系;熟练掌握平行线的性质,弄清角之间的数量关系是解决问题的关键.。
2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b34.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.()∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.()∵∠AME=∠CNE,∴∠1=∠2.()∵∠1=∠2,∴MP∥NQ.()18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了分钟;上述过程中,小明所走的路程为米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.2019-2020学年四川省成都市郫都区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)下列图形是公共设施标志,其中是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠COM的大小为()A.70°B.60°C.50°D.40°【分析】利用对顶角的定义得出∠AOC=80°,进而利用角平分线的性质得出∠COM的度数.【解答】解:∵∠BOD=∠AOC(对顶角相等),∠BOD=80°,∴∠AOC=80°,∵射线OM是∠AOC的平分线,∴∠COM=×∠AOC=×80°=40°.故选:D.3.(3分)下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.4.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.5.(3分)如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B'度数为()A.110°B.70°C.90°D.30°【分析】利用三角形内角和定理求出∠B,再利用轴对称的性质解决问题即可.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠B′=∠B,∵∠B=180°﹣∠A﹣∠C=180°﹣50°﹣20°=110°,∴∠B′=110°,故选:A.6.(3分)一个不透明的盒子中装有9个白球和1个黑球,它们除了颜色外都相同.从中任意摸出一球,则下列叙述正确的是()A.摸到白球是必然事件B.摸到黑球是必然事件C.摸到白球是随机事件D.摸到黑球是不可能事件【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵摸到白球是随机事件,不是必然事件,∴选项A不符合题意,选项C符合题意;∵摸到黑球是随机事件,∴选项B、D不符合题意;故选:C.7.(3分)地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是()A.地表B.岩层的温度C.所处深度D.时间【分析】地表以下岩层的温度随着所处深度的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是深度,因变量是岩层的温度.【解答】解:∵地表以下岩层的温度随着所处深度的变化而变化,∴自变量是深度,因变量是岩层的温度.故选:B.8.(3分)如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是()A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短【分析】根据三角形具有稳定性解答即可.【解答】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性,故选:A.9.(3分)若要植一块三角形草坪,两边长分别是20米和50米,则这块草坪第三边长不能为()A.60米B.50米C.40米D.30米【分析】根据三角形的三边关系定理可得50﹣20<x<50+20,再解即可.【解答】解:由题意得:50﹣20<x<50+20,即30<x<70,观察选项,D选项符合题意.故选:D.10.(3分)如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF【分析】由平行可得到∠B=∠DEF,又BE=CF推知BC=EF,结合全等三角形的判定方法可得出答案.【解答】解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BC=EF.A、当AB=DE时,可用SAS证明△ABC≌△DEF,故本选项错误;B、当∠A=∠D时,可用AAS证明△ABC≌△DEF,故本选项错误;C、当AC=DF时,根据SSA不能判定△ABC≌△DEF,故本选项正确;D、当AC∥DF时,可知∠ACB=∠F,可用ASA证明△ABC≌△DEF,故本选项错误;故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)若二次三项式x2+2mx+81是完全平方式,则常数m的值为9或﹣9.【分析】根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可.【解答】解:∵x2+2mx+81是一个完全平方式,∴2mx=±2•x•9,解得:m=±9.故答案为:9或﹣9.12.(4分)如图,在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,且AD=5cm,则△ABC的面积为15cm2.【分析】根据三角形的面积公式解答即可.【解答】解:∵在△ABC中,AB=AC,BC=6cm,AD是△ABC的中线,∴AD⊥BC,∴△ABC的面积=,故答案为:15cm2.13.(4分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是55°.【分析】先根据平角的定义求出∠3,再利用平行线的性质求出∠2=∠3即可.【解答】解:∵∠1+∠3=180°﹣90°=90°,∠1=35°,∴∠3=55°,∵AB∥CD,∴∠2=∠3=55°,故答案为:55°.14.(4分)某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为31元.【分析】根据图表中数据可得出,y与x的函数关系进而得出答案.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)计算:(1)25×(﹣)2﹣4×(﹣)0+()﹣2;(2)2a(5a﹣4)+(5a+3)(4a﹣2).【分析】(1)根据零指数次幂,负指数次幂的性质,有理数的乘方进行计算,再乘除,后加减即可求解;(2)根据整式乘法的法则计算,再合并同类项即可求解.【解答】解:(1)原式==1﹣4+9=6;(2)原式=10a2﹣8a+20a2+2a﹣6=30a2﹣6a﹣6.16.(6分)先化简,再求值:[(x﹣3y)2+(x﹣2y)(x+2y)﹣x(2x﹣5y)]+(﹣y),其中x=﹣2,y=﹣3.【分析】原式中括号中利用单项式乘多项式,完全平方公式以及平方差公式化简,去括号合并后得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣6xy+9y2+x2﹣4y2﹣2x2+5xy)﹣y=﹣xy+5y2﹣y,当x=﹣2,y=﹣3时,原式=﹣6+45+3=42.17.(8分)根据题意及解答,填注推导理由:如图,直线AB∥CD,并且被直线EF所截,交AB和CD于点M、N,MP平分∠AME,NQ平分∠CNE.试说明MP∥NQ.解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等)∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义)∵∠AME=∠CNE,∴∠1=∠2.(等量代换)∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行)【分析】利用平行线的性质定理和判定定理解答即可.【解答】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,∠CNE.(角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;角平分线的定义;等量代换;同位角相等,两直线平行.18.(8分)为了准备体育艺术节的比赛,某篮球运动员在进行定点罚球训练,如表是部分训练记录:罚球次数20406080100120命中次数153248658096命中频率0.750.80.80.810.80.8(1)根据上表:估计该运动员罚球命中的概率是0.8;(2)根据上表分析,如果该运动员在一次比赛中共获得10次罚球机会(每次罚球投掷2次,每命中一次得1分),估计他罚球能得多少分,请说明理由.【分析】(1)直接由表格数据可估计该运动员罚球命中的概率;(2)根据(1)可知运动员罚球命中的概率,由题意可知20次罚球得分多少.【解答】解:(1)根据表格数据可知该运动员罚球命中的概率0.8,故答案为0.8;(2)由题意可知,罚球一次命中概率为0.8,则罚球10次得分为10×2×0.8=16,∴估计他能得16分.19.(10分)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【分析】(1)根据三角形内角和定理计算,得到答案;(2)根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【解答】解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠F AC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠F AC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+F A=20,由(2)可知,DA=DB,F A=FC,∴BC=DB+DF=FC=DA+DF+F A=20.20.(10分)如图,AD为△ABC的中线,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF ⊥DF.(1)求证;DE⊥DF;(2)求证:△BDE≌△DCF;(3)求证:EF∥BC.【分析】(1)由角平分线的性质和平角的性质可求结论;(2)由“AAS”可证△BDE≌△DCF;(3)通过证明四边形DEFC是平行四边形,可得EF∥BC.【解答】证明:(1)∵DE平分∠ADB,DF平分∠ADC,∴∠PDE=∠ADB,∠FDP=∠ADC,∴∠EDF=∠PDE+∠PDF=∠ADB+∠ADC=(∠ADB+∠ADC)=90°,∴DE⊥DF;(2)∵BE⊥DE,DF⊥CF,∴∠BED=∠DFC=90°,∵∠BDE+∠CDF=90°,∠CDF+∠DCF=90°,∴∠BDE=∠DCF,∴DE∥CF,∵D是BC中点,∴BD=DC,在△BDE和△DCF中,,∴△BDE≌△DCF(AAS),(2)∵△BDE≌△DCF,∴DE=CF,∵DE∥CF,∴四边形DEFC是平行四边形,∴EF∥BC.一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)21.(4分)计算:()2019×()﹣2020=.【分析】根据负整数指数幂的定义以及同底数幂的乘法法则计算即可.【解答】解:()2019×()﹣2020===.故答案为:.22.(4分)如图,把一条两边边沿互相平行的纸带折叠,在∠α与∠β的数量关系中,若用∠α的代数式表示∠β,则∠β=180°﹣2∠α.【分析】利用平行线的性质可得∠α=∠3,∠1=∠β,再利用平角定义可得答案.【解答】解:∵AB∥CD,∴∠α=∠3,∠1=∠β,由折叠可得∠3=∠2,∵∠2+∠3+∠1=180°,∴∠β+2∠α=180°,∴∠β=180°﹣2∠α,故答案为:180°﹣2∠α.23.(4分)有五张正面分别标有数﹣2,0,1,3,4的纸片做成无差别的纸团,洗匀后从中任取一个纸团,若展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率为.【分析】当a分别取2,0,1,3,4时,解方程ax﹣1﹣3(x+1)=﹣3x得到正整数的个数,然后根据概率公式求解.【解答】解:当a=﹣2时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣2x﹣1﹣3x﹣3=﹣3x,解得x=﹣2;当a=0时,方程ax﹣1﹣3(x+1)=﹣3x化为﹣1﹣3x﹣3=﹣3x,无解;当a=1时,方程ax﹣1﹣3(x+1)=﹣3x化为x﹣1﹣3x﹣3=﹣3x,解得x=4;当a=3时,方程ax﹣1﹣3(x+1)=﹣3x化为3x﹣1﹣3x﹣3=﹣3x,解得x=;当a=4时,方程ax﹣1﹣3(x+1)=﹣3x化为4x﹣1﹣3x﹣3=﹣3x,解得x=1;所以使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的结果数为2,所以展开后将纸片上的数记为a,则使关于x的方程ax﹣1﹣3(x+1)=﹣3x的解是正整数的概率=.故答案为.24.(4分)如图所示,在△ABC中,AB=6,AC=4,AD是△ABC的中线,若AD的长为偶数,则AD=2或4.【分析】延长AD至E,使DE=AD,连接CE,由“SAS”可证△ABD≌△ECD,可得CE=AB=6,由三角形的三边关系可得1<AD<5,即可求解.【解答】解:延长AD至E,使DE=AD,连接CE,在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=6,在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<10,∴1<AD<5,∵AD为偶数,∴AD=2或4,故答案为2或4.25.(4分)如图所示,∠AOB=60°,点P是∠AOB内一定点,并且OP=2,点M、N分别是射线OA,OB上异于点O的动点,当△PMN的周长取最小值时,点O到线段MN 的距离为1.【分析】作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB 分别交于点M与N则P'P''的长即为△PMN周长的最小值;连接OP',OP'',过点O作OC⊥P'P'',在Rt△OCP'中求出OC即可.【解答】解:作点P关于OB的对称点P',点P关于OA的对称点P'',连接P'P''与OA,OB分别交于点M与N则P'P''的长即为△PMN周长的最小值,连接OP',OP'',过点O作OC⊥P'P''于点C由对称性可知OP=OP'=OP'',∵OP=2,∠AOB=60°,∴∠P'=∠P''=30°,OP′=OP''=2,∴OC==1;故答案为1.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)小明周末外出爬山,他从山脚爬到山项的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示.(1)小明中途休息用了20分钟;上述过程中,小明所走的路程为3800米;(2)若小明休息后爬山的平均速度是25米/分,求a的值.【分析】(1)根据函数图象中的数据,可以计算出小明中途休息用了多少分钟,小明所走的路程是多少;(2)根据函数图象中的数据和题意,可以计算出a的值.【解答】解:(1)由图象可得,小明中途休息用了60﹣40=20(分钟),上述过程中,小明所走的路程为3800米,故答案为:20,3800;(2)由题意可得,a﹣60=(3800﹣2800)÷25,解得,a=100,即a的值是100.27.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:(a+b)3=a3+b3+3a2b+3ab2;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.【分析】【知识生成】利用面积相等推导公式(a+b)2﹣4ab=(a﹣b)2;【知识迁移】利用体积相等推导(a+b)3=a3+b3+3a2b+3ab2;(1)应用知识生成的公式,进行变形,代入计算即可;(2)先根据非负数的性质得:a+b=6,ab=7,由知识迁移的等式可得结论.【解答】解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.28.(12分)探究等边三角形“手拉手”问题.(1)如图1,已如△ABC,△ADE均为等边三角形,点D在线段BC上,且不与点B、点C重合,连接CE,试判断CE与BA的位置关系,并说明理由;(2)如图2,已知△ABC、△ADE均为等边三角形,连接CE、BD,若∠DEC=60°,试说明点B,点D,点E在同一直线上;(3)如图3,已知点E在ABC外,并且与点B位于线段AC的异侧,连接BE、CE.若∠BEC=60°,猜测线段BE、AE、CE三者之间的数量关系,并说明理由.【分析】(1)结论:CE∥AB.证明△BAD≌△CAE(SAS)可得结论.(2)利用全等三角形的性质证明∠ADB=∠AEC=120°,证明∠ADB+∠ADE=180°即可解决问题.(3)结论:BE=AE+EC.在线段BE上取一点H,使得BH=CE,设AC交BE于点O.利用全等三角形的性质证明△AEH是等边三角形即可.【解答】(1)解:结论:CE∥AB.理由:如图1中,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=60°,∴∠BAC=∠ACE=60°,∴AB∥CE.(2)证明:如图2中,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC,∵△ADE是等边三角形,∴∠AED=∠ADE=60°,∵∠BEC=60°,∴∠AEC=∠AED+∠BEC=120°,∴∠ADB=∠AEC=120°,∴∠ADB+∠ADE=120°+60°=180°,∴B,D,E共线.(3)解:结论:BE=AE+EC.理由:在线段BE上取一点H,使得BH=CE,设AC交BE于点O.∵△ABC是等边三角形,∴AB=BC,∠BAC=60°,∵∠BEC=60°,∴∠BAO=∠OEC=60°,∵∠AOB=∠EOC,∴∠ABH=∠ACE,∵BA=CA,BH=CE,∴△ABH≌△ACE(SAS),∴∠BAH=∠CAE,AH=AE,∴∠HAE=∠BAC=60°,∴△AEH是等边三角形,∴AE=EH,∴BE=BH+EH=EC+AE,即BE=AE+EC.。
初一数学试卷期末考试试卷分析开发区二中初一数学组一. 试题总体分析本次考试有助于全面提高数学教育质量, 有利于初中数学课程改革和教学改革, 培养学生的创新精神和实践能力;有利于减轻学生过重的负担, 促进学生主动、活泼、生动地学习.这次考试主要考察了初一数学上学期的第七章到第十二章的全部内容。
主要内容有《整式的运算》《相交线与平行线》《可能性》《数据的表示》《三角形》《变量之间的关系》。
试卷的总体难度适宜, 能坚持“以纲为纲, 以本为本”的原则, 在加强基础知识的考查的同时, 还加强了对学生的能力的考查。
命题能向课程改革靠拢, 注重基础, 加大知识点的覆盖面, 控制题目的烦琐程度, 题目力求简洁明快, 不在运算的复杂上做文章;整体布局力求合理有序, 加大对学生应用知识解决问题的能力考查力度, 适当设置创新考题, 注重知识的拓展与应用, 适应课程改革的形势.大部分的题目都是见过的题目, 既考察了基本知识又考查了基本技能试题的难度适中, 由易到难, 适合初一学生的年龄特征和知识智力水平。
1.二. 答题情况统计与分析2.试卷总体分析3.题型全面, 知识覆盖面广, 选择题12个, 整式的运算选择题1,2,3,7考察了整式的运算中,合计12分。
相交线与平行线选择题4,810,11, 合计12分。
可能性, 数据的表示, 变量之间的关系各有一题, 分值分别3分。
填空题中六章的个考察了一个题目, 相对学生答题情况较好。
解答题共7个答题。
19题20题整式的运算合计18分, 21题,22题, 24题主要考察了三角形合计28分, 23题,25题变量之间的关系合计20分。
4.成绩统计:①初一数学的优秀率、及格率、平均分、最高分、最低分2.答卷分析选择题中难度较大的是11题, 用到了数学方法的反证法, 对学生的思想方法提出了较高要求。
填空题18题答题不是很好, 证明三角形全等的五种方法, 学生不能在理解的基础上学会证明问题的方法。
2019年初一数学下期末考试试卷分析
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!
同学们,中国()为您整理了xxxx年初一数学下册期末考试试卷分析,供广大老师参考。
一、选择题
1、下列各式中是二元一次方程的是.
2、已知是关于x、y的二元一次方程,则m、n的解是
3、方程组的解的情况是.
A.一个解
B.二个解c.无解D.无数个
4、下列各组数值是方程的解的一组是
,
5、由方程组可得出与的关系是
6、甲、乙二人从同一地点出发,同向而行,甲骑车乙步行,若乙先行千米,那么甲小时追上乙;如果乙先走小时,甲只用小时追上乙,则乙的速度是
A.千米/时
B.千米/时
c.千米/时D.千米/时
7、已知,是方程组的解,则的值为.
8、如果二元一次方程组的解是二元一次方程的一
个解,则
9、若,,则的值为.
不能求出
10、若方程组有唯一解,那么a、b的值应当是
a≠2,b为任意实数a=2,b≠0
a=2,b≠2a,b为任意实数
二、填空题
1、方程的一个解是那么的值为_____.
2、已知二元一次方程,用含x的式子表示y,则y=_____;若y的值为2,则x的值为_____.
3、如果,,则_____.
4、若甲队有人,乙队有人,若从甲队调出人到乙队,则甲队人数是乙队人数的一半,可列方程为_____.
5、当_____________时,下列方程①,②,③有公共解.
6、二元一次方程的所有正整数解为_____.
7、若,那么_____.
8、甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的等于丙数的,假设甲、乙、丙三个数分别为x、y、z,则可得方程组为。
9、学生问老师:“您今年多大了?”老师风趣地说:“我像你这么大时,你才出生;你到我这么大时,我已
经37岁了.”那么老师现在的年龄是_____岁.
10、给出下列程序:
且已知当输入的x值为1时,输出值为1;输入的x值为-1时.输出值为-3.
则当输入的x值为时.输出值为.
三、解答题
1、解下列方程组:
2、小明手上有一张元的人民币,当路过商店门口时,他想把这元钱换成元或元的零钱,请他细考虑一下,售货员可有几种兑换方法?
3、经营户小熊在蔬菜批发市场上了解到以下信息内容:
蔬菜品种红辣椒黄瓜西红柿茄子
批发价
零售价
他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完.请你计算出小熊能赚多少钱?
4、小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容,求出他们看中的随身听和书包单价各是多少元吗?
5、现有三箱精装苹果,其中两箱共个苹果,两箱
共个苹果,两箱共个苹果,求每箱各有多少个平果?
6、某景点的门票价格规定如下表:
购票人数1-50人51-100人100人以上
每人门票价13元11元9元
我校初二,两个班共104人准备利用假期去游览该景点,其中班人数较少,不到50人,班人数较多,有50多人,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问两班各有多少名学生?你认为还有没有好的方法去节省门票的费用?若有,请按照你的方法计算一下能省多少钱?
7、“利海”通讯器材商场,计划用元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部元,乙种型号手机每部元,丙种型号手机每部元.
若商场同时购进其中两种不同型号的手机共部,并将元恰好用完.请你帮助商场计算一下如何购买.
若商场同时购进三种不同型号的手机共部,并将元恰好用完,并且要求乙种型号手机的购买数量不少于部且不多于部,请你求出商场每种型号手机的购买数量.
聪明出于勤奋,天才在于积累。
我们要振作精神,下苦功学习。
中国()编辑整理提供。
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!。