海洋生物制药品种与药品特点
- 格式:docx
- 大小:18.05 KB
- 文档页数:1
海洋生物制药课程海洋生物制药课程简介海洋生物制药是一门研究利用海洋生物资源开发药物的课程。
海洋是人类未来医药领域的重要资源之一,具有丰富的潜在医药价值。
海洋生物制药课程旨在探索海洋生物的潜在药物用途,并培养学生在这个领域中的专业知识和技能。
海洋生物制药课程通常包括以下内容:1. 海洋生物资源的概述:介绍各种海洋生物资源,包括海藻、海绵、海洋植物和海底微生物等。
学生将学习如何提取和利用这些资源来制作药物。
2. 海洋生物科学研究方法:学生将了解海洋生物科学研究的基本方法和技术。
他们将学习如何进行采样、分离和鉴定海洋生物,并了解如何评估其潜在的药物活性。
3. 海洋生物药物的开发过程:学生将通过实践项目和实验室实践来了解海洋生物药物的开发过程。
他们将学习如何设计、合成和测试海洋生物化合物,并评估其在医学上的潜在应用。
4. 海洋生物资源的可持续利用:学生将学习如何在保护海洋生物资源的前提下,合理利用这些资源进行药物研发。
他们将进一步了解海洋生态系统的重要性,并学习如何平衡资源利用和保护的需求。
5. 最新发展及未来趋势:学生将了解当前海洋生物制药领域的最新研究和发展。
他们将研究最新的科学文献、参观相关企业,并评估海洋生物制药所面临的挑战和机遇。
通过学习海洋生物制药课程,学生将获得以下能力:1. 在药物研发中利用海洋生物资源的能力。
2. 运用科学研究原理和方法,开展海洋生物制药项目。
3. 分析和评估海洋生物药物的药理活性和毒理学特性。
4. 掌握海洋生态系统的保护和可持续利用的原则。
5. 领导和团队合作能力,与不同领域的专业人士合作。
6. 追踪海洋生物制药领域的最新进展。
海洋生物制药课程为学生提供了了解海洋生物资源和药物开发领域的机会。
随着社会对新药物需求的增长和海洋资源的进一步开发,海洋生物制药的前景充满希望。
这门课程不仅可以为学生提供相关领域的专业知识,还能激发他们对保护海洋生态环境和人类健康的使命感。
海洋生物资源在生物制药中的应用近年来,随着生物技术的飞速发展,海洋生物资源在生物制药领域的应用也逐渐受到重视。
海洋生物资源丰富多样,包括海藻、海洋微生物、海洋植物等,具有独特的生物活性成分,被广泛用于药物研发和生产。
本文将探讨海洋生物资源在生物制药中的应用。
海洋生物资源中,海藻是一类常见而重要的资源。
海藻富含多糖、蛋白质、脂肪酸等多种化学成分,具有抗氧化、抗菌、抗病毒等多种生物活性。
其中,海藻多糖是一种常见的生物活性成分,具有调节免疫、抗肿瘤、降血脂等作用。
许多药物研发中都离不开海藻多糖的应用,如抗肿瘤药物、抗病毒药物等。
此外,海藻中的褐藻酸、海藻素等化合物也被广泛应用于生物制药领域,为药物研发提供了新的可能性。
除了海藻,海洋微生物也是生物制药领域的重要资源。
海洋微生物具有庞大的物种多样性,其中包括各类细菌、真菌、古菌等微生物。
这些微生物产生的次生代谢产物具有多种生物活性,如抗菌、抗肿瘤、抗病毒等。
通过对海洋微生物的筛选和分离,科研人员已经发现了许多具有潜在药用价值的活性物质,为新药研发提供了重要的资源基础。
除了海藻和海洋微生物,海洋植物也是生物制药领域的重要来源。
海洋植物种类繁多,包括红藻、绿藻、褐藻等,具有丰富的生物活性成分。
其中,海洋植物中的褐藻素、螺旋藻素等成分被广泛应用于保健品和药物中,具有抗氧化、抗炎、抗肿瘤等作用。
海洋植物中的生物活性成分通过提取、纯化和合成等技术手段,可以应用于药物研发和生产,为人类健康提供新的治疗选择。
总的来说,海洋生物资源在生物制药中的应用具有巨大的潜力。
海洋生物资源丰富多样,具有独特的生物活性成分,为新药研发提供了重要的资源基础。
随着生物技术的不断发展和创新,海洋生物资源在生物制药中的应用将进一步拓展,为人类健康和医疗事业作出更大的贡献。
希望未来海洋生物资源的研究与开发能够取得更多的突破,为新药研发和临床治疗带来更多的希望。
生物制药与化学制药的比较分析随着现代医学的发展,生物制药已经成为当前国际上重要的制药方向之一,与传统的化学制药相比,生物制药具有很多优势。
本文将着重探讨生物制药与化学制药的比较分析。
一、生物制药与化学制药的定义与特点生物制药是指利用基因工程等现代生物技术,生产制造各种蛋白质类制剂,如生长激素、重组人胰岛素等产品。
生物制药具有高效、高特异性、高生物活性的特点,可以更好地满足患者疾病治疗需求。
化学制药则是指使用化学合成方法,通过有机合成或半合成的方式制造各种化学物质,如青霉素、阿司匹林等产品。
化学制药以化学原料为基础,其剂量、质量、纯度都相对更容易控制。
二、生物制药与化学制药的生产工艺比较生物制药生产过程复杂,通常需要使用细胞培养技术,大规模培养生产需要专业的生物反应器和生物工程技术,而后生产的产品需要进行分离纯化等复杂的制造过程。
生产流程的复杂性直接导致生物制药的成本较高。
化学制药的生产过程相对简单,通常使用化学合成方法即可完成,制造过程性质稳定、易于控制,仅需要进行分离纯化流程即可。
化学制药的生产过程更加成熟、可控制性更高,因此成本相对较低。
三、生物制药与化学制药的药效和安全性比较生物制药通常来源于天然蛋白质或重组蛋白质,因此具有更高的特异性,药效更加明显、稳定,并且能够降低副作用,减少毒性。
例如重组人胰岛素、重组人生长激素等产品已经成为临床上广泛使用的药品。
化学制药通常是由化学物质构成的,药效方面相对不如生物制药明显,但具有广谱性,临床疗效较好。
然而,由于制造过程中使用多种化学物质和工艺,副作用和毒性大大增加。
四、生物制药与化学制药在临床治疗上的应用现状生物制药通常用于治疗肿瘤、心血管疾病、免疫系统疾病等一系列严重疾病。
例如,费用昂贵的同种型单抗药物被应用于多种鉴别疾病的治疗,这在以前是无法实现的,这也意味着新的药物可以治疗更多的疾病,并降低治疗费用和毒性。
而化学制药在临床上广泛应用于治疗许多常见病,如感冒、咳嗽等。
海洋生物药物高效表达与产物纯化技术在生物制药中的应用研究引言生物制药作为一种重要的药物生产方式,近年来受到了广泛的关注与发展。
海洋生物药物作为一种独特的资源,具有潜在的巨大价值,而海洋生物药物的高效表达和产物纯化技术的研究,对于其在生物制药中的应用具有重要意义。
本文将对海洋生物药物高效表达与产物纯化技术在生物制药中的应用进行研究和探讨。
一、海洋生物药物的特点与应用潜力海洋资源庞大且多样,具有独特的生物多样性。
海洋生物药物作为海洋资源的重要组成部分,具有以下特点:①海洋生物药物具有与陆生生物不同的物种组成和生物活性成分,其中许多生物活性成分具有显著的药物活性与应用潜力;②海洋环境条件的独特性也使得海洋生物适应了不同于陆地生物的环境压力,这些特殊的适应机制也为海洋生物药物的发现和应用奠定了基础;③海洋生物药物具有天然的稳定性和抗菌特性,这些特征使其在生物制药中具有广阔的应用前景。
海洋生物药物的应用潜力巨大,主要体现在以下几个方面:①抗癌药物研究。
海洋生物药物中的一些化合物具有抗肿瘤活性,可以作为抗癌药物的前体或药物活性物质;②抗感染药物研究。
由于海洋环境中存在着许多抗菌物质,因此海洋生物药物在抗感染药物研究中具有巨大的应用潜力;③神经系统疾病治疗药物研究。
海洋生物药物中的某些成分具有神经保护和修复的作用,能够为神经系统疾病的治疗提供新型药物;④心血管疾病治疗药物研究。
海洋生物药物中的一些成分具有降低血压、抑制血小板凝聚等作用,可以作为心血管疾病治疗药物的前体;⑤消化系统疾病治疗药物研究。
海洋生物药物中的一些成分具有抗溃疡、抗炎等作用,可以作为消化系统疾病治疗药物的前体或药物活性物质。
二、海洋生物药物的高效表达技术海洋生物药物的高效表达技术是指利用表达载体和宿主细胞,将目标蛋白的基因转入宿主细胞中,并通过合适的表达调控元件使其高效表达。
目前常用的海洋生物药物高效表达技术包括:细胞内表达技术、细胞外表达技术和载体介导的基因递送技术。
海洋生物制药研究进展【摘要】:海洋蕴藏着丰富的药物资源,即大量的活性物质,海洋药物的研究和开发已经成为各国互相竞争的重点。
随着着生物制药的快速发展及细胞工程、基因工程和酶工程的广泛而深入的应用,海洋生物制药的发展更具科学性,有着广阔的前景。
从海洋生物制药研究特点、海洋生物制药研究现状和海洋生物制药的前景三方面综述了海洋生物制药的研究进展。
【关键词】:生物制药;海洋生物制药;基因工程技术中国分类号:Q819 文献标识码:A 文章编号:1002-6908(2007)0220003-01海洋占整个地球的70%,而海洋中生活着丰富多样的海洋生物,蕴含着与陆地生物不同的、化学结构特异的活性物质(化合物),但是由于受到科技发展的制约,海洋生物的利用一直没有很大的发展,随着生物制药的快速发展及细胞工程、基因工程和酶工程的广泛而深入的应用,使得海洋生物制药得到了长足的进步。
1.海洋生物制药研究特点及概念新药研究开发是非常复杂并具高技术密集性,是一项动态的系统工程,它涉及化学、药理、毒理、制剂、临床医学等多个学科领域。
海洋生物制药的研制过程,同样必须应用多学科的知识和经验,并应充分利用各学科取得的成果。
海洋生物制药是指应用海洋药源生物具有明确药理作用的活性物质按制药工程进行系统的研究,研制成为海洋药物的制药工程。
海洋生物制药是新兴制药工业的分支学科,是研究海洋生物的药物来源、分布、形态、鉴别、采集加工、化学成分、药理作用、炮制、制剂、临床前研究及临床应用等多学科的综合性科学。
海洋生物药物的特点(1)海洋生物药物的药源来自海洋药用生物,(2)海洋生物活性物质含量低微、结构奇特、活性显著,是海洋生物制药先导化合物丰富的来源。
最近启用基因工程、蛋白质工程、生物发酵工程技术,深入研究海洋药物结构与功能的基础上,针对特定的受体,设计全新的药物分子,使的海洋生物制药进入一个全新的阶段。
2. 海洋生物制药研究现状由于海洋的活性物质在生物体内的分布是极其微量的,如果要获得大量的活性物质则需要采集大量的海洋生物,导致资源的枯竭和海洋生态系统的破坏,而且价格极其昂贵,不利于海洋药物的开发,目前基因工程、细胞工程和酶工程的发展,使的海洋药物的开发成为可能,同时使海洋生物制药有了广阔的前景。
天然产物在制药领域中的应用随着科学技术的不断发展和进步,人们对药品的质量和疗效的要求越来越高,这让天然产物在制药领域中扮演了越来越重要的角色。
天然产物是指自然界中存在的各种动植物和微生物产生的有机物质,具有广泛的药理学和生物学活性。
因此,天然产物在新药研究、药物开发和治疗疾病方面都有着广泛的应用和前景。
一、天然产物的种类天然产物可以分为动物、植物和微生物产生的三大类。
1. 动物:动物产生的天然产物主要包括海洋生物、昆虫和动物细胞。
海洋生物中常见的天然产物有海绵、海葵、珊瑚、软体动物和海洋微生物等,具有抗癌、抗感染、抗炎、保护心血管等功效。
昆虫可以产生各种抗菌、抗病毒、抗癌、抗炎和神经保护等活性成分。
动物细胞常常被用来制造利用多克隆抗体和生物碱类药物,如治疗乳腺癌的赫赛汀和用于肾透析的艾洛普汀。
2. 植物:植物产生的天然产物来源广泛,包括树皮、根、叶子、种子、果实、花和根茎等部分。
其中,地中海地区的横柏、大叶黄杨和紫杉树均是制药业中重要的原材料。
植物产生的化合物中最有名的莫过于吗啉醇(马钱子碱),它是治疗癌症的重要化合物。
黄酮类化合物在医药领域中被广泛应用, 例如芦丁,具有抗氧化、抗炎、抗过敏、安抚神经系统和减少皮下组织水肿等功效。
生物碱类化合物如喜树碱、大家庭、紫杉醇等化合物,因其具有强烈的抗癌效果,而且毒副作用较小,已经成为抗癌化疗的重要药物。
此外,植物中尚有多类其他天然产物可供药物开发使用,如百里香、欧芹、迷迭香等,也是制药领域中的重要原料。
3. 微生物:微生物在天然产物领域中有很重要的地位,包括细菌、真菌和放线菌等。
目前世界上50%的天然产物来自微生物。
其代表性物质甚至可以靶向抗生素、抗肿瘤和免疫调节等领域的诱导剂,包括链霉素、头孢菌素和自然免疫增强剂等。
著名的微生物源天然产物包括链霉菌、泛菌素、红霉素和四环素等广谱抗生素,其中链霉菌(菌素NMIA)是第一代广谱抗生素。
另外,微生物甚至可以产生一些治疗艾滋病、结核病和癌症等疾病的药物化合物。
鲎试剂百科名片鲎试剂鲎试剂是由海洋生物鲎的血液变形细胞溶解物制成的无菌冷冻干燥品,含有能被微量细菌内毒素和真菌葡聚糖激活的凝固酶原,凝固蛋白原,能够准确、快速地定性或定量检测样品中是否含有细菌内毒素和(1,3)-β-葡聚糖激。
目前,鲎试剂广泛用于制药、临床以及科研等领域,用于细菌内毒素和真菌葡聚糖检测。
目前使用的鲎试剂分为美洲鲎试剂和东方鲎鲎试剂两大类。
目录简介试剂分类实验方法正确使用编辑本段简介鲎的血液中含有铜离子,它的血液是蓝色的。
这种蓝色血液的提取物——“鲎试剂”,可以准确、快速地检测人体内部组织是否因细菌感染而致病;在制药和食品工业中,可用它对毒素污染进行监测。
此外,鲎的肉、卵均可食用。
鲎试剂是从栖生于海洋的节肢动物“鲎”的蓝色血液中提取变形细胞溶解物,经低温冷冻干燥而成的生物试剂,专用于细菌内毒素检测和真菌(1,3)-β-D-葡聚糖检测。
鲎试验法是国际上至今为止检测内毒素最好的方法,它简单﹑快速﹑灵敏﹑准确,因而被欧美药典及我国药典定为法定内毒素检查法,并已被世界各国所采用。
目前能生产鲎试剂的主要有美国、日本、中国等国家。
中国国内现在生产鲎试剂的厂家有福州新北生化工业有限公司,厦门市鲎试剂实验厂有限公司,湛江安度斯生物有限公司及湛江博康海洋生物公司等。
编辑本段试剂分类按原料来源分一种是由美洲鲎血液提取的称美洲鲎试剂(Limulus Amebocyte Lysate),缩写为LAL,由美国生产;另一种是由东方鲎血液中提取的称东方鲎鲎试剂(Tachypleus Amebocyte Lysate),缩写为TAL。
TAL 与LAL有相同的功效。
按实验方法分细菌内毒素检查法包括两种方法,即凝胶法和光度测定法,后者又包括浊度法和显色基质法。
则鲎试剂可分为:凝胶法鲎试剂、动态浊度法鲎试剂、终点浊度法鲎试剂、动态显色法鲎试剂和终点显色法鲎试剂。
凝胶法鲎试剂通过与内毒素产生凝集反应的原理来定性检测或半定量内毒素的方法。
1.海洋生物制药品种与药品特点
品种:中药,化学药(西药),生物制品
特点:①是新发展的药物研究领域
②药源来自海洋药用生物
③海洋生物活性物质含量低微、结构奇特、活性显著,
是海洋生物制药先导化合物的丰富来源。
2.溶剂分离法的原理与选用溶剂的注意点。
原理:根据活性物质在溶剂中溶解度(极性)的差异分离
选择溶剂注意点:①对有效成分溶解度大,对杂质溶解度小;②不与化学成分起化学变化;③经济、易得、使用安全
3.色谱法原理及其分类。
原理:利用不同物质在不同相态的选择分配性,以流动相对固定相中物质进行洗脱,混合物中不同物质会以不同速度沿固相移动,最终达到分离效果
4.超临界流体萃取的原理,什么是超临界CO2萃取及其特点
原理:利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的,具有提取率高、产品纯度好、流程简单、能耗低的特点。
超临界CO2萃取:以超临界状态下的CO2为溶剂,利用该状态下流体CO2所具有的高渗能力和高溶解能力分离混合物的过程。
特点:①可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。
②由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,100%的纯天然,符合当今“绿色环保”、“回归自然”的高品位追求。
③控制工艺参数可以分离得到不同的产物,可用来萃取多种产品,而且原料中的重金属、无机物、尘土等都不会被CO2溶解带出。
④蒸馏和萃取合二为一,可以同时完成蒸馏和萃取两个过程,尤其适用于分离难分离的物质,如有机混合物、同系物的分离精制等。
⑤能耗少;热水、冷水全都是闭路循环,无废水、废渣排放。
CO2也是闭路循环,仅在排料时带出少许,不会污染环境。
由于能耗少、用人少、物料消耗少,所以运行费用非常低。
5.高速逆流色谱仪(HSCCC)如何做到化合物样品的分离
(1)样品中一种高分配系数的化合物在固定相中的浓度要高于在流动相中的浓度,要晚一些从柱子里洗脱出来。
(2)另一种低分配系数的化合物在流动相中的浓度要高于在固定相中的浓度,要早一些洗脱出来。
(3)如果一种化合物在两相中的是平均分配的(D=1) ,不论哪一相溶剂被选为流动相,在流动相流出1倍柱体积的量后,这种化合物都会被洗脱出来。
6.海洋药用无脊椎动物的主要生物学来源有哪几个门,各举一例,
并说明其主要的药用价值。
(1)多孔动物门:海绵,活体检测水质,具有抗肿瘤活性物质。
(2)环节动物门:沙蚕,提取沙蚕毒素。
是一种仿杀虫剂。
(3)腔肠动物门:海蜇,治疗心血管疾病。
珊瑚,抑制癌细胞增长。
(4)软体动物门:贝类、乌贼、海兔,中药:厣,海螵鞘,石决明,珍珠。
(5)节肢动物门:虾、蟹、鲎,甲壳质、壳聚糖。
(6)苔藓动物门:苔虫素防腐蚀剂,抗癌,促进造血。
(7)棘皮动物门:海星、海胆、海参
2.使用核磁共振仪进行物质结构鉴定时,样品应该如何处理?
(1)对样品的要求:样品要纯;样品量不能太小,通常为1-3mg(低灵敏度NMR仪需10-30mg)、不含氧和灰尘;固体样品要用合适溶剂溶解;加入内标,如TMS
(2)对溶剂的要求:不含质子、沸点低、不与样品缔合、溶解度好,如CCl4, CS2, CHCl3,。
为防干扰,多采用D代试剂,如CHCl3-d1, (CH3)2CO-d6, H2O-d2(水溶性试剂) TMS只能在测定时加入,不要加入过早。
7.海洋药用大型藻类的主要生物学来源有哪几个门,各举一例,
并说明其主要的药用价值。
门类:红藻门(石花菜)、褐藻门(裙带菜)、轮藻门(苦草)
药用价值:①石花菜:清肺化痰、清热燥湿,滋阴降火、凉血止血
②裙带菜:抗癌
③苦草:清热解毒,止咳祛痰,养筋和血。
用于急、慢
性支气管炎、咽炎,扁桃体炎,关节疼痛;外治外伤出
血。
8.红树林有哪些主要的次生代谢产物,简述其中的一、两种。
(1)萜类:是红树林植物中含量最为丰富的一种代谢产物,二萜是最为重要的化学成分,与多种生物活性密切相关。
二倍半萜化合物-柠檬苦素具有较好的细胞毒性。
(2)糖苷类化合物:是红树林植物中一种重要的代谢产物。
(3)甾醇:植物甾醇是滨海湿地植物中的常见化学成分,含量高且类型单一。
(4)生物碱类:在滨海湿地植物中发现较少。
但在红树林植物中发现了新颖结果的生物碱,有拒食活性。
(5)含硫化合物:是滨海湿地植物中一类比较特殊的成分,目前仅在红树科的Brugiera属中有发现。
有新颖结构的化合物发现。
(6)其它:芳香类表现抗革兰氏阳性菌和阴性菌活性。
9.红树里植物的次生代谢产物主要有哪些生物学活性?
①抗病毒活性;②抗肿瘤活性;③镇痛、抗炎及抗氧化活性;④抗菌、毒素和昆虫拒食素及其他活性
如何利用本课程中学习的技术鉴定一个未知化合物的结构(包括立体结构)。
(1)质谱(MS):确定分子量、分子式
(2)计算不饱和度,推测化合物的大致类型
(3)紫外光谱(UV):是否具有共轭基团,是芳香族还是脂肪族化合物。
(4)红外光谱(IR):官能团类型
(5)核磁共振氢谱(1H-NMR):质子类型(具有哪些种类的含氢官能团);氢分布(各种官能团中含氢的数目);氢核间的关系
(6)质谱(MS):验证所推测的未知物结构的正确性
8.高通量筛选的模型有哪些?
(1)分子水平的药物筛选模型;包括受体筛选模型;酶筛选模型;离子通道筛选模型。
(2)细胞水平药物筛选模型;包括:内皮细胞激活;细胞凋亡;抗肿瘤活性转录调控检测;信号转导通路;细菌蛋白分泌;细菌生长。
9.什么是虚拟药物筛选?其组成如何?
虚拟药物筛选定义:针对重要疾病特定靶标生物大分子的三维结构或定量构效关系(QSAR)模型,从现有小分子数据库中,搜寻与靶标生物大分子结合或符合QSAR模型的化合物,进行实验筛选研究。
组成:虚拟药物筛选应用软件,理论方法,操作对象,操作过程,结果分析评价。
10.基于分子对接的虚拟筛选的过程如何?
(1)收集文献上发表的小分子化合物结构的信息,组成二维小分子数据库。
对每个小分子进行原子类型和化学键归属,将2D结构转变成3D 结构并进行结构优化,组成3D小分子数据库。
(2)对生物大分子(蛋白质)进行质子化合原子电荷归属,并进行结构优化,确定小分子结合位点,构建计算网格;
(3)将3D小分子数据库中的每个化合物对接到生物大分子的活性位点,并进行打分-计算小分子-生物大分子的结合强度Ki(结合自由能)(4)根据打分的结果挑选化合物(打分比较高的分子)进行类药性评价,选择化合物进行生物实验测试。
10.海洋生物制药研发瓶颈及其解决办法
瓶颈:①有效成分无法确定;②药源不足
解决办法:①人工养殖;②开辟新的资源领域,探索新的方法和技术11.如何应用膜分离技术制取海洋生物来源的甘露醇,此项技术的
应用有哪些优点?
优点:①节省水、电和蒸汽耗量,降低生产成本;②提高产品得率;
③经济效益显著;④减轻劳动强度,改善生产环境。
12.什么是生物反应器?生产藻类活性物质生物反应器技术的研
究有哪两项?
生物反应器:一般是指利用固定化酶及固定化细胞高效生产产物的技术,是现代生物技术研究的焦点。
生产藻类活性物质生物反应器技术的研究
光和微藻生物反应器包括:
1.大面积室外养殖
2.真正意义上的生物反应器—在可控条件下高密度养殖
13.简答基因芯片在海洋生物制药中的应用
(1)新药靶点发现;(2)药物作用机制研究;(3)超高通量药物筛选;(4)药物毒理学研究;(5)药物基因组学研究。