第4章 涡轮增压器的计算.
- 格式:ppt
- 大小:2.73 MB
- 文档页数:61
CRUISE M冷却系统建模教程(基础)说明A VL 先进模拟技术部门于2015 年10 月正式发布了车辆系统级仿真平台软件A VL CRUISE M,旨在为车辆及子系统的开发提供助力。
CRUISE M 仿真平台专门设计用于车辆多物理系统仿真,和高度灵活、多层次的建模方法相结合,同时集成了第三方工具的标准接口FMI,无缝地将发动机热力循环、尾气净化装置系统、冷却和润滑系统、车辆传动系统以及控制系统集成到统一的仿真平台上。
为了帮助工程师尽快了解和掌握CRUISE M软件,我们制作了CRUISE M系列学习教程。
根据CRUISE M对应的模块,分为实时发动机建模、车辆与传动系统建模、冷却与润滑系统建模、发动机尾气后处理仿真等不同部分。
同时,每一模块的教程又分为基础教程和专题教程,以满足不同领域和不同阶段的工程需要。
本教程的目的是帮助用户熟悉软件的基本操作,同时初步了解发动机冷却系统建模方法,所搭建的模型仅能计算不同回路的流量和压降,并不能计算换热。
如需详细了解具体参数的含义、模型背后的计算公式等,请查阅CRUISE M Users Guide 或直接与我们联系。
本教程作为CRUISE M Flow的基础培训教程,基于CRUISE M v2015版本制作而成。
建模过程中需要导入的文件和阶段性完成模型位于(……\Tutorial\Cooling\)文件目录下。
软件学习过程中遇到任何问题,请与我们联系(CRUISE_support_china@),以获帮助。
教程难免有不足之处,欢迎指正以及改进意见!本教程版权归A VL公司所有,未经允许,请勿传播。
A VL 先进模拟技术部ast.china@2016年5月31日目录第1章CRUISE M Flow简介 (1)第2章冷却系统模型搭建 (2)2.1 冷却水套(Cooling jacket) (3)2.2 散热器支路(Radiator) (6)2.3 小循环支路(Radiator Bypass) (7)2.4 乘员舱支路(Cabin Heater) (8)2.5 涡轮增压器冷却支路(Turbocharger) (9)2.6 润滑油冷却器(Oil Cooler) (9)2.7 控制单元 (10)第3章模型参数输入 (11)3.1 水泵(Pump) (11)3.2 节点(CL Node) (13)3.3 液路管道(Liquid Flow Pipes) (14)3.4 压力损失(Discrete Loss) (15)3.5 阀(Valve) (16)3.6 弯管(Bend) (16)3.7 膨胀水箱(Expansion Chamber) (17)3.8 小孔(Orifice) (18)3.9 渐变管(Diffuser) (18)3.10 突变管(Expansion Contraction) (19)3.11 液体换热器(Liquid Heat Exchanger) (19)3.12 壁面(Solid Wall) (21)3.13 其他元件参数设置 (23)3.14 数据总线连接 (24)第4章计算任务 (25)4.1 流体回路设置(Circuit) (25)4.2 计算任务设置 (26)第5章算例及运行设置 (28)第6章计算结果后处理 (32)第1章CRUISE M Flow简介A VL CRUISE M Flow 模块是车辆能量管理系统的重要组成部分,能够建立冷却系统、润滑系统和传热网络,详细描述热量的产生和传递过程,实现关键零部件的冷却和加热。
涡轮增压技术103这篇文章涉及较多的涡轮技术,包括描述压缩机的部分特性曲线图、计算发动机的增压比和空气质量流量,怎样在特性曲线图上绘制点来帮助你选择合适的涡轮增压器。
把你的计算器放在手边吧。
一压缩机部分特性曲线图[1]压缩机特性曲线图是详细描述压缩机压缩效率、空气质量流量范围、增压性能和涡轮转速等性能特性的一种图表。
下面展示的是一幅典型的压气机特性曲线图:[2]增压比增压比()被定义为出口处绝对压力除以进口处绝对压力注:=增压比、P2c=压气机出口绝对压力、P1c=压气机入口绝对压力[3]在压气机入口和出口处使用绝对压力为计量单位非常有必要,一定要记住绝对压力的基础是14.7磅/平方英寸(在这个单位下“a”代表绝对压力)这被称为标准大气压力和标准情况。
[4]表压即计示压力(在计量单位为磅/平方英寸下“g”代表表压力)测量的是超过大气压力的大小,所以表压力在大气压力下应该显示为“0”。
增压表测量的岐管压力是相对于大气压力的,这就是表压力。
这对于决定压缩机出口处的压力是非常重要的。
比如说增压表上读出的12磅/平方英寸意味着进气歧管的压力高于标准大气压力12磅/平方英寸。
即:歧管压力26.7磅/平方英寸=12磅/平方英寸(表压力)+14.7磅/平方英寸(标准大气压力)[5]这个条件下的增压比就能计算了:(26.7磅/平方英寸[绝对压力])/14.7磅/平方英寸(标准大气压力)=1.82[6]然而这是在假定压气机入口处没有空气滤清器影响的情况下[7]在决定增压比的时候,压气机入口处的绝对压力时常比环境压力小,特别是在高负荷时。
为什么会这样呢?因为任何对空气的阻碍(这其中就包括空滤器管道的限制)都会对进气造成压力损耗,在决定增压比时,压气机上游的损耗都需要被计算。
这种压力损耗在某些进气系统上可能达到或超过1磅/平方英寸的表显压力。
在这种情况下压气机入口处压力应该如下取值:压气机入口绝对压力=14.7psia – 1psig = 13.7psia[8]带入最新的入口处压力进行增压比计算应该是下面这样(12 psig + 14.7 psia) / 13.7 psia = 1.95.[9]以上计算方法很好,但是如果你不是在标准大气压下呢?在这种情况下,在计算工式中简单地用真实的大气压力替代标准大气压力14.7psi能够使计算更精确。
涡轮增压器转子涡轮级气动轴向力数值计算何嘉伟;王强;李书奇;张继忠【摘要】应用计算流体动力学软件CFX,以某柴油发动机的涡轮增压器涡轮级为研究对象,对其进行了轴向力传统理论计算与数值模拟计算.计算出不同发动机折合转速下涡轮端轴向力的大小,并与传统计算方法进行对比,通过对窄缝间隙的流场分析,找出两者之间差异的原因.研究结果表明,随着增压器转子转速增加,涡轮端轴向力合力越来越大,且两种计算方法结果差异随之减小,由最大值146.314N减至125.4N,减小了14.3%;研究密封环间隙、叶顶间隙对轴向力的影响,发现叶顶间隙对轴向力影响比密封环间隙小0.155~2.955N,并且发现在整个计算的过程中,传统计算给予的假设近乎理想状态,并非实际情况.【期刊名称】《机械设计与制造》【年(卷),期】2019(000)004【总页数】5页(P196-199,203)【关键词】涡轮增压器;涡轮系统;转子轴向力;窄缝间隙;数值模拟【作者】何嘉伟;王强;李书奇;张继忠【作者单位】中北大学机械与动力工程学院,山西太原 030051;中北大学机械与动力工程学院,山西太原 030051;中国北方发动机研究所,天津 300400;中国北方发动机研究所,天津 300400【正文语种】中文【中图分类】TH161 引言涡轮增压器是发动机的重要组成部分,发动机在实际工作的过程中,止推轴承结构是承担增压器压气机级与涡轮级气体压力作用的关键部件,该作用力的合力即为转子轴向力。
由于车用涡轮增压器通常在变工况条件下工作,叶轮两侧的压力变化频繁,造成止推轴承承载载荷随之频繁变化,特别是在排气脉冲条件下更加复杂[1],因此,增压器轴向气动作用力计算分析是止推轴承设计的必要环节,它的合理性、准确性,关系着涡轮增压器的使用寿命和工作效率。
对于轴向力的计算,人们通常在某一确定工况下进行,由于轴向力的计算多样化[2-3],结果也千差万别[4]。
文献[5]运用 NUMECA 中计算软件FINE/TURBO分别对涡轮增压器的压气机端、涡轮端进行了流场分析,并对轮背间隙处流场进行了计算,将压气机和涡轮叶轮的表面及背面压力分布进行积分,最终得到轴向力;文献[6]对不同工况下的计算,得到增压器转子轴向力随转速变化的一般规律,并利用数值模拟计算结果,对涡轮增压器止推轴承设计进行了校核。
涡轮增压器原理
涡轮增压器是一种利用废气能量来增加发动机进气压力的装置。
其原理是通过废气带动涡轮转动,涡轮叶片与压气机叶片相连,使得压气机可以将更多的空气压缩送入汽缸,从而增加燃烧室内的氧气含量和燃烧效率,实现更强劲的动力输出。
具体来说,涡轮增压器的原理可以分为两个部分,即涡轮与压气机。
涡轮部分由废气流经导向壳体,流经壳体中的涡轮叶片,使涡轮产生高速旋转。
而压气机部分则由同一轴上的压气机叶片与涡轮叶片相连接,当涡轮旋转时,压气机叶片也跟随旋转,将大量空气通过压气机叶片的压缩作用送入汽缸。
涡轮增压器的原理基于能量转换的原理。
废气进入涡轮增压器后,通过涡轮叶片的旋转产生机械能,而压气机叶片将机械能转化为气体的压力能。
压气机压缩的空气经过冷却进入发动机燃烧室后,更多的氧气可以与燃料充分混合燃烧,从而提高燃烧效率和动力输出。
涡轮增压器的原理可以有效地提高发动机的功率和扭矩输出,特别是在低转速时。
通过增压技术,发动机可以更有效地利用废气能量,提高燃烧效率和动力性能,从而获得更高的性能表现。
涡轮增压器的压比与增压效率1. 背景涡轮增压器是现代内燃机中常见的增压设备,它通过提高进气压力来增加发动机的进气量,从而提高发动机的功率和效率涡轮增压器的压比和增压效率是衡量其性能的重要指标,本文将从专业角度分析这两个参数对涡轮增压器性能的影响2. 涡轮增压器的基本原理涡轮增压器主要由涡轮、压缩机、中间冷却器和排气歧管等组成发动机排出的高温高压气体驱动涡轮旋转,涡轮通过传动系统带动压缩机旋转,压缩机将空气压缩后送入发动机燃烧室,从而提高发动机的进气量中间冷却器用于降低压缩后空气的温度,以提高进气效率3. 压比与增压效率的概念压比是指涡轮增压器进气侧和排气侧的压力比值,它反映了涡轮增压器对空气的压缩程度压比越高,空气被压缩得越厉害,进气量也就越大但压比过高会导致压缩机功耗增大,发动机的热效率反而降低增压效率是指涡轮增压器实际提供的进气压力与自然进气压力的比值,它反映了涡轮增压器的增压效果增压效率越高,说明涡轮增压器的性能越好,对发动机的功率提升作用越明显压比和增压效率之间存在一定的关联压比越高,增压效率通常也越高,因为空气被压缩得越厉害,进气量越大,发动机的功率也就越大然而,压比过高会导致压缩机功耗增大,发动机的热效率反而降低因此,在设计涡轮增压器时,需要在这两个参数之间取得平衡5. 压比与增压效率对涡轮增压器性能的影响压比和增压效率是涡轮增压器性能的关键参数,它们对发动机的性能有着重要影响(1)压比对发动机性能的影响:压比越高,进气量越大,发动机的功率和效率越高但压比过高会导致压缩机功耗增大,发动机的热效率反而降低因此,在实际应用中,需要根据发动机的负荷特性和工作条件选择合适的压比(2)增压效率对发动机性能的影响:增压效率越高,说明涡轮增压器的性能越好,对发动机的功率提升作用越明显增压效率的提高可以降低发动机的油耗和排放,提高发动机的性能6. 结论涡轮增压器的压比和增压效率是衡量其性能的重要指标压比越高,进气量越大,发动机的功率和效率越高,但过高的压比会导致压缩机功耗增大,发动机的热效率反而降低增压效率越高,说明涡轮增压器的性能越好,对发动机的功率提升作用越明显在设计涡轮增压器时,需要在压比和增压效率之间取得平衡,以实现发动机的最佳性能为了实现涡轮增压器的高效性能,工程师们通过以下几个方面对压比和增压效率进行优化:(1)涡轮和压缩机的设计:优化涡轮和压缩机的设计可以提高压比和增压效率例如,采用叶轮形状、材料和尺寸的优化设计,以提高气流的流动效率和降低能量损失(2)中间冷却器的设计:中间冷却器用于降低压缩后空气的温度,以提高进气效率通过优化冷却器的设计,可以提高冷却效果,进而提高增压效率(3)传动系统的优化:传动系统的效率对涡轮增压器的性能有很大影响通过优化传动系统的结构设计、材料选择和润滑条件,可以降低能量损失,提高增压效率(4)控制策略的优化:通过采用先进的控制策略,可以实现涡轮增压器在不同工况下的最优工作状态例如,根据发动机的负荷和转速,调节涡轮和压缩机的转速,以实现最佳的压比和增压效率8. 压比与增压效率的测试与评估为了确保涡轮增压器的性能符合设计要求,需要对其进行严格的测试与评估测试方法主要包括以下几个方面:(1)台架试验:在实验室条件下,通过台架试验对涡轮增压器进行全面性能测试测试参数包括压比、增压效率、进气量、功耗等(2)实车试验:在实车条件下,对涡轮增压器的性能进行测试通过实车试验,可以评估涡轮增压器在实际运行条件下的性能表现(3)模拟计算:利用计算机模拟软件,对涡轮增压器的性能进行仿真计算通过模拟计算,可以预测涡轮增压器的性能,为设计和优化提供依据9. 压比与增压效率的应用案例涡轮增压器在各种车型中得到了广泛应用以下是一些典型的应用案例:(1)汽车:涡轮增压器在汽车发动机中得到了广泛应用,可以提高发动机的功率和效率,降低油耗和排放(2)卡车:在卡车发动机中,涡轮增压器可以提高发动机的扭矩和爬坡能力,提高运输效率(3)船舶:在船舶发动机中,涡轮增压器可以提高发动机的功率和效率,降低燃油消耗(4)发电机组:在发电机组中,涡轮增压器可以提高燃气轮机的功率和效率,降低能源消耗10. 发展趋势与展望随着排放法规的日益严格和节能需求的不断提高,涡轮增压器在发动机中的应用将更加广泛在未来,涡轮增压器的发展趋势主要体现在以下几个方面:(1)小型化:随着科技的发展,涡轮增压器的小型化将成为可能小型化的涡轮增压器可以适用于更小的发动机,提高整车的性能(2)高效化:进一步提高涡轮增压器的效率,降低油耗和排放通过优化设计和控制策略,实现更高的压比和增压效率(3)集成化:将涡轮增压器与其他发动机组件集成,实现发动机的整体优化例如,将涡轮增压器与废气再循环(EGR)系统集成,以降低排放(4)智能化:利用先进的传感器和控制技术,实现涡轮增压器的智能化控制通过实时监测发动机工况,自动调节涡轮增压器的性能,以实现最佳的工作状态11. 结论与展望涡轮增压器的压比和增压效率是衡量其性能的重要指标,对发动机的性能有着重要影响通过优化涡轮和压缩机的设计、中间冷却器的设计、传动系统的优化和控制策略的优化,可以提高压比和增压效率,实现涡轮增压器的高效性能同时,对涡轮增压器的性能进行严格的测试与评估,可以确保其性能符合设计要求实车试验和模拟计算等方法在性能测试与评估中发挥着重要作用在实际应用中,涡轮增压器已经广泛应用于汽车、卡车、船舶和发电机组等多种机型中,并取得了显著的性能提升未来,随着排放法规的日益严格和节能需求的不断提高,涡轮增压器的发展趋势主要体现在小型化、高效化、集成化和智能化等方面通过不断优化设计和控制策略,实现更高的压比和增压效率,以满足不断严格的排放法规和节能需求总体而言,涡轮增压器的压比和增压效率对其性能有着重要影响,通过优化设计和控制策略、严格测试与评估以及适应发展趋势,可以实现涡轮增压器的高效性能,为发动机的性能提升做出重要贡献。
涡轮级及叶轮流场计算规范北京理工大学涡轮增压实验室2008年10月目录1.概述 (1)2.涡轮级网格划分技术 (1)涡壳网格划分技术 (1)喷嘴环和叶轮的网格划分技术 (3)涡轮级网格的生成 (5)网格分区及拓扑结构对涡轮叶轮流道网格质量的影响 (6)附面层网格剖分的要求 (10)叶轮网格质量判断准则 (11)3.边界条件的给定 (14)4计算区域的选择 (17)5湍流模型研究 (22)6 涡轮三维流动计算判别准则 (22)熵的分布 (22)静压分布 (23)马赫数分布 (25)叶轮进口攻角 (25)1.概述车用涡轮增压器使用的小型径流涡轮内的流动具有强烈的三维特征,气流将在几何尺寸很小的通道内从径向转为轴向,加上旋转和各种曲率的影响,造成涡轮内流动非常复杂,因此采用三维CFD方法对涡轮性能和内部流动进行数值模拟也比较复杂,影响计算准确程度的因素主要包括:网格的划分、计算区域的选择、计算边界条件、湍流模型等。
本课题采用叶轮机械CFD软件NUMECA的Fine/turbo软件包,对典型的车用增压器涡轮进行数值计算研究,分析上述因素对涡轮性能的影响,并确定涡轮内部流场的判别准则。
2.涡轮级网格划分技术一个完整的径流涡轮级包含涡壳、喷嘴环和叶轮,涡轮级的网格划分研究选择JK90S增压器作为研究对象,它是径流有叶涡轮增压器,涡轮的主要几何参数和性能参数如表1所示。
涡轮级的网格划分是对涡壳、喷嘴环叶片和叶轮分别划分网格,然后进行整个级的网格生成。
涡壳网格划分技术JK90S增压器涡轮壳采用双通道梨形360度全周进气,其截面形状如图1所示,截面参数表如表2所示。
图1 JK90S涡轮壳流道截面形状(如图2所示)。
图2 JK90S涡轮涡壳三维模型涡壳三维模型建立以后,将模型的iges文件输入到Numeca的Fine/turbo 软件包中的网格生成模块IGG中划分网格。
由于涡壳流通区域几何形状复杂,在涡壳网格划分时采用分块的措施,即将涡壳流道划分为13个块,其中从入口到0-0截面为1块,从0-0截面到360度截面按照每30度划分为1个块共计12块。
涡轮增压汽油机匹配计算及性能预测涡轮增压汽油机是一种采用涡轮增压器提高气缸进气压力的汽油机。
它具有高功率、高扭矩、低油耗、低废气排放等优点,因此广泛应用于高性能汽车、赛车以及航空航天领域。
涡轮增压汽油机的匹配计算是设计高性能发动机的关键之一,本文将探讨涡轮增压汽油机的匹配计算及性能预测。
涡轮增压汽油机的匹配计算可分为三个步骤:参数选择、涡轮增压器匹配和喷油器匹配。
第一步骤是参数选择,需要确定涡轮增压汽油机的基本参数,包括气缸数、缸径、行程、压缩比、气门数量和排量等。
这些参数将直接影响发动机性能及涡轮增压器选择。
第二步骤是涡轮增压器匹配,需要根据发动机参数选择合适的涡轮增压器。
涡轮增压器的主要参数包括压缩比、进出口直径、转子直径和转速等。
选取合适的涡轮增压器可使发动机性能得到最大化,同时也需要考虑选用涡轮增压器的成本、重量和可靠性等因素。
第三步骤是喷油器匹配,需要根据发动机的最大输出功率和最大输出扭矩来计算出所需的燃油量和喷油器喷油量。
喷油器的选择需要考虑油品质量、喷雾效果、喷油形状和喷油压力等参数,以确保发动机能够稳定运行。
涡轮增压汽油机的性能预测主要涉及功率、扭矩、燃油消耗量、废气排放量等方面的预测。
常用方法包括流动模拟计算和试验验证两种。
流动模拟计算主要采用CFD(Computational Fluid Dynamics)软件,计算出涡轮增压器、进气道和排气道等部位流场分布、压力分布和温度分布等参数,进而预测出发动机的性能参数。
试验验证则是采用实验方法测量涡轮增压汽油机的关键性能参数,包括功率、扭矩、燃油消耗量、废气排放量等。
试验流程繁琐,成本较高,但是结果更加精确可靠。
总之,涡轮增压汽油机匹配计算及性能预测是设计高性能发动机必不可少的环节。
通过合理选取涡轮增压器、喷油器等部件并结合合适的流动模拟计算和试验验证方法可提高发动机性能,同时也能降低成本和优化设计。
另外,涡轮增压汽油机在匹配计算和性能预测过程中,还需要考虑一些限制因素,如冷却、机油供应、噪声和振动等。
航空发动机设计手册第8册简介航空发动机设计手册第8册是一本综合性的手册,涵盖了航空发动机设计的各个方面。
本手册旨在为航空发动机设计师提供全面、详细且深入的指导,帮助他们设计出符合性能要求和安全要求的航空发动机。
结构航空发动机设计手册第8册共分为以下几个章节:1.引言2.性能需求3.材料选择4.涡轮机设计5.压气机设计6.燃烧室设计7.高压涡轮设计8.低压涡轮设计9.推力矩设计10.发动机控制与监控11.温度管理12.外形设计13.震动与噪音控制14.发动机制造与测试对于每个章节,本手册提供了背景知识、设计原则、计算方法、设计示例和实践经验等内容,以帮助读者全面理解和掌握航空发动机设计的关键要点。
引言本章节介绍了航空发动机设计的背景、发展历程和重要性。
还介绍了本手册的目的和使用方法,为读者提供了一个框架,帮助他们更好地利用本手册进行学习和实践。
性能需求本章节介绍了航空发动机设计中的性能需求,包括推力要求、燃油效率要求、重量要求等。
通过对这些性能需求的分析和理解,读者可以更好地进行发动机设计,并确保其满足航空运行的要求。
材料选择本章节详细介绍了航空发动机设计中的材料选择问题。
包括材料的物理性质、机械性质、耐热性等方面的要求,以及常用材料的特点和应用范围。
读者可以通过学习本章节,了解材料在航空发动机设计中的重要性,并正确选择材料以满足设计要求。
涡轮机设计本章节主要讲述了航空发动机中涡轮机(涡轮增压器和涡轮扇)的设计原理和计算方法。
包括气流分析、流道设计、涡轮叶片设计等内容。
通过学习本章节,读者可以了解涡轮机的基本原理和设计要点,并掌握相关的计算和分析方法。
压气机设计本章节主要介绍了航空发动机中的压气机的设计原理和计算方法。
包括气流分析、叶片轮廓设计、叶片数目选择等内容。
通过学习本章节,读者可以了解压气机的基本原理和设计要点,并掌握相关的计算和分析方法。
燃烧室设计本章节详细介绍了航空发动机中燃烧室的设计原理和计算方法。