《高等数学》空间向量与空间解析几何
- 格式:ppt
- 大小:1.41 MB
- 文档页数:63
向量与空间解析几何向量与空间解析几何是高等数学中的重要分支,它们是研究空间中点、直线、平面等几何对象的数学工具。
向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
空间解析几何则是利用向量的概念,通过坐标系和代数方法来研究空间中的几何问题。
本文将从向量的定义、运算、坐标表示以及空间解析几何的基本概念和应用等方面进行详细介绍。
一、向量的定义和运算向量是空间中的一个重要概念,它可以用来表示空间中的位移、速度、加速度等物理量,同时也可以用来描述空间中的几何对象。
向量的定义如下:定义1:向量是具有大小和方向的量,用一个有向线段来表示。
向量的大小称为向量的模,用符号 a 表示,方向则由有向线段的方向确定。
向量的起点和终点分别称为向量的始点和终点,用符号a和b表示。
向量的表示方法有多种,如箭头表示法、坐标表示法、分量表示法等。
向量的运算包括加法、减法、数乘和点乘等。
其中,向量的加法和减法定义如下:定义2:向量的加法:设向量a和b的始点相同,则向量a+b的终点为向量a的终点和向量b的终点的连线的终点。
定义3:向量的减法:设向量a和b的始点相同,则向量a-b的终点为向量a 的终点和向量-b的终点的连线的终点。
向量的数乘定义如下:定义4:向量的数乘:设k为实数,则向量ka的模为k · a ,方向与向量a 的方向相同(当k>0时)或相反(当k<0时)。
向量的点乘定义如下:定义5:向量的点乘:设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则向量a·b=a1b1+a2b2+a3b3。
向量的点乘有很多重要的性质,如交换律、分配律、结合律等,这些性质在空间解析几何中有着重要的应用。
二、向量的坐标表示向量的坐标表示是空间解析几何中的重要概念,它将向量与坐标系联系起来,使得向量的运算可以通过代数方法来进行。
在三维空间中,我们通常采用右手坐标系来表示向量,其中x轴、y轴和z轴分别垂直于彼此,并且满足右手定则。
空间向量与空间解析几何的联系知识点总结空间向量和空间解析几何是高中数学中的重要内容,两者之间存在紧密的联系。
本文将对空间向量和空间解析几何的联系进行总结和阐述。
一、空间向量的概念和性质空间向量是空间中带有方向和大小的物理量,通常用箭头表示。
空间向量具有以下性质:1. 平分定理:设空间向量$\overrightarrow{AB}$平分角$\angle AOC$,则有$\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OC}$。
2. 共线定理:若空间向量$\overrightarrow{AB}$和$\overrightarrow{AC}$共线,则存在实数$k$,使得$\overrightarrow{AB}=k\overrightarrow{AC}$。
3. 相反向量:对于任意空间向量$\overrightarrow{a}$,存在唯一一个向量$-\overrightarrow{a}$,使得$\overrightarrow{a}+(-\overrightarrow{a})=\overrightarrow{0}$。
二、空间解析几何的基本概念空间解析几何是利用坐标系统和代数方法研究空间中点、直线、平面等几何对象的学科。
其基本概念有:1. 空间直角坐标系:由三个相互垂直的坐标轴形成的坐标系。
通常用$(x, y, z)$表示空间中的点。
2. 空间直线的方程:空间直线可以用参数方程、对称方程或一般方程表示,如参数方程为:$$\begin{cases}x=x_0+mt\\y=y_0+nt\\z=z_0+pt\end{cases}$$其中$(x_0, y_0, z_0)$为直线上一点,$(m, n, p)$为方向向量。
3. 空间平面的方程:空间平面可以用点法式方程、一般方程或截距式方程表示,如点法式方程为:$$\overrightarrow{r}\cdot\overrightarrow{n}=d$$其中$\overrightarrow{r}=(x, y, z)$为平面上一点,$\overrightarrow{n}=(A, B, C)$为法向量,$d$为常数。
空间向量与解析几何空间向量和解析几何是高等数学中的两个重要概念。
本文将介绍空间向量和解析几何的基本概念和相关性质,并探讨它们在几何问题中的应用。
一、空间向量的定义和性质空间向量是指具有大小和方向的有向线段,通常用箭头表示。
空间中的向量通常用字母加箭头标记,如A B⃗,其中A和B表示向量的起点和终点。
1.1 向量的表示空间向量可以用坐标表示,也可以用点和方向向量表示。
设A(x1, y1, z1)和B(x2, y2, z2)是空间中两点,则向量AB的坐标表示为A B⃗=(x2 - x1) i⃗ +(y2 - y1) j⃗ +(z2 - z1) k⃗,其中i⃗、j⃗和k⃗分别是x、y、z轴的单位向量。
1.2 向量的运算空间向量可以进行加法、减法和数乘运算。
1.2.1 向量加法若有向量A B⃗和向量C D⃗,则它们的和为A B⃗ + C D⃗ = A C⃗。
1.2.2 向量减法向量减法与向量加法类似,即A B⃗ - C D⃗ = A B⃗ + (- C D⃗)。
1.2.3 数乘运算若有向量A B⃗,实数k,则kA B⃗ = A B⃗ + A B⃗ + ... + A B⃗ (k个A B⃗)。
1.3 向量的数量积和向量积空间向量的数量积和向量积是两个重要的向量运算。
1.3.1 向量的数量积设有两个向量A B⃗和C D⃗,它们的数量积定义为A B⃗・ C D⃗ = |A B⃗| |C D⃗ | cosθ,其中θ为A B⃗和C D⃗的夹角,|A B⃗|和|C D⃗|分别为向量的模。
1.3.2 向量的向量积设有两个向量A B⃗和C D⃗,它们的向量积定义为A B⃗ × C D⃗ = |A B⃗| |C D⃗ | sinθ n⃗,其中θ为A B⃗和C D⃗的夹角,n⃗为与A B⃗和C D⃗都垂直且符合右手定则的单位向量。
二、解析几何的基本概念和性质解析几何是将几何问题转化为代数问题进行研究的数学分支,它主要运用代数方法研究空间中的几何问题。
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
《高等数学》各章知识点总结——第6章第6章《向量代数与空间解析几何》是高等数学中的重点章节之一,主要讲述了向量及其运算、空间直线与平面方程、空间曲线及其切线等内容。
以下是该章节的知识点总结:一、向量及其运算1.向量的定义:具有大小和方向的量,用有向线段表示。
2.向量的运算:(1)向量的加法:满足交换律和结合律。
(2)向量的数乘:向量乘以一个实数。
(3)向量的数量积:等于两个向量的模的乘积与它们的夹角的余弦值的乘积。
(4)向量的向量积:等于两个向量模的乘积与它们夹角的正弦的乘积。
(5)向量的混合积:等于三个向量的向量积与第三个向量的数量积。
二、空间直线及其方程1.空间直线的定义:两点确定一条直线。
2.空间直线的方程:(1) 参数方程:x = x0 + at, y = y0 + bt, z = z0 + ct(2)对称方程:(x-x0)/a=(y-y0)/b=(z-z0)/c(3)一般方程:Ax+By+Cz+D=0三、空间平面及其方程1.空间平面的定义:三点共面确定一个平面。
2.空间平面的方程:(1)一般方程:Ax+By+Cz+D=0(2)点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0(3)法线方程:(x-x0)/l=(y-y0)/m=(z-z0)/n四、空间曲线及其切线1.切线的定义:曲线上特定点的切线是通过该点且与曲线相切的直线。
2.参数方程表示的曲线的切线方程:(1)曲线上一点的切线方程:x=x0+h,y=y0+k,z=z0+l(2)曲线的切线方程:(x-x0)/h=(y-y0)/k=(z-z0)/l以上是《高等数学》第6章《向量代数与空间解析几何》的主要知识点总结。
通过学习这些知识点,我们可以了解并掌握向量的定义和运算、空间直线和平面的方程、曲线的切线方程等内容,为后续的学习打下坚实的基础。