单作用叶片泵工作原理(动画)
- 格式:ppt
- 大小:264.00 KB
- 文档页数:9
丹尼逊叶片泵工作原理
丹尼逊叶片泵的工作原理如下:
丹尼逊叶片泵由转子、定子、叶片和端盖等组成。
定子具有圆柱形内表面,定子和转子间有偏心距。
叶片装在转子槽中,并可在槽内滑动。
当转子回转时,由于离心力的作用,使叶片紧靠在定子内壁。
这样,在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间。
当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。
在图的左部,叶片被定子内壁逐渐压进槽内,工作空间逐渐缩小,将油液从压油口压出,这是压油腔。
在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开。
这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油。
因此称为单作用丹尼逊叶片泵。
如需了解更多关于丹尼逊叶片泵的工作原理,建议咨询专业技术人员获取帮助。
动画演示11种泵的工作原理,很直观易懂!更多好内容:化工707网下载此文档:化工707论坛在化工生产中,泵是一种特别重要的设备,了解泵的工作原理不仅能够预防和减少流体泄漏事故、冒顶事故、错流或错配事故。
还能够在泵运行故障中快速诊断。
因此了解泵的工作原理是一件非常重要的事,今天小七就带领大家了解一下各种泵的工作原理,希望能够对大家有所帮助。
液压泵工作原理液压泵是靠密封容腔容积的变化来工作的。
上图是液压泵的工作原理图。
当凸轮1由原动机带动旋转时,柱塞2便在凸轮1和弹簧4的作用下在缸体3内往复运动。
缸体内孔与柱塞外圆之间有良好的配合精度,使柱塞在缸体孔内作往复运动时基本没有油液泄漏,即具有良好的密封性。
柱塞右移时,缸体中密封工作腔a的容积变大,产生真空,油箱中的油液便在大气压力作用下通过吸油单向阀5吸入缸体内,实现吸油;柱塞左移时,缸体中密封工作腔a的容积变小,油液受挤压,便通过压油单向阀6输送到系统中去,实现压油。
如果偏心轮不断地旋转,液压泵就会不断地完成吸油和压油动作,因此就会连续不断地向液压系统供油。
从上述液压泵的工作过程可以看出,其基本工作条件是:1.具有密封的工作容腔;2. 密封工作容腔的容积大小是交替变化的,变大、变小时分别对应吸油、压油过程;3. 吸、压油过程对应的区域不能连通。
基于上述工作原理的液压泵叫做容积式液压泵,液压传动中用到的都是容积式液压泵。
齿轮泵的工作原理上图是外啮合齿轮泵的工作原理图。
由图可见,这种泵的壳体内装有一对外啮合齿轮。
由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。
当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。
因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。
随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。
叶片泵工作原理
叶片泵是一种通过叶轮叶片旋转来输送液体的泵。
它的工作原理基于离心力和压力的变化。
当叶片泵开始工作时,电动或机械驱动器将叶轮带动转动。
叶轮内部的叶片与泵壳之间形成一系列密封的腔室。
当叶轮转动时,液体进入泵的吸入管道并进入腔室。
随着叶轮的旋转,腔室逐渐变小。
由于液体的连续流入,液体在腔室中被困并受到离心力的作用。
这导致液体的压力升高。
当腔室的体积最小且压力最大时,位于腔室边缘的出口阀门打开,使压力高的液体被推出泵。
液体流经出口管道并输送到需要的位置。
随后,叶轮继续旋转,腔室体积逐渐增大,液体再次从吸入管道进入腔室。
如此循环,实现了连续的液体输送。
叶片泵的工作原理核心是利用叶轮叶片的旋转运动产生的离心力将液体推出泵。
由于叶片泵具有较高的工作效率和良好的流量控制性能,广泛应用于各种工业领域,如化工、石油、能源等。
单作用叶片泵单作用叶片泵是一种常用的离心泵,具有简单结构、运行稳定、流量大等特点,广泛应用于工农业生产中的输送水、污水和其他液体的领域。
单作用叶片泵一般由泵体、叶轮、进出口管道、轴承等组成。
其工作原理是通过叶轮的旋转产生离心力,使液体从进口处注入泵体,经过叶轮转动后,液体受到离心力的作用从出口处排出。
泵体通常采用铸铁或不锈钢制造,能够承受一定的压力和温度。
叶轮由叶片固定在轴上,转动时产生离心力,驱动液体流动。
轴承则支撑叶轮轴,保证转动的平稳。
单作用叶片泵的优点之一是具有较大的流量能力。
由于叶轮旋转产生的离心力,使泵体内的液体被迫向出口方向移动,从而形成稳定的流动。
叶片泵的流量通常可达到几千升/分,能够满足大量液体输送的需求。
此外,单作用叶片泵还能够适应不同类型的液体输送。
因为叶片泵的叶轮是靠离心力推动液体流动的,对液体的性质要求较低。
它可以处理含有悬浮物、颗粒物或纤维物等杂质的液体,不会造成堵塞或损坏泵体。
因此,叶片泵适用于污水、河水、海水等各种液体输送。
另外,单作用叶片泵还可以自吸。
这意味着它能够从较低的液位处吸取液体,不需要外部吸入管道。
这对于液体位于较低位置或需要远距离输送时非常方便。
叶片泵的自吸能力通常较强,能够达到5-8米。
然而,单作用叶片泵也存在一些不足之处。
首先,由于叶轮只能产生单向流动,泵体内的液体在流动过程中会产生脉动,需要额外的减振设备来减少振动和噪音。
其次,叶片泵的效率较低,能量损失较大。
因为液体在流经叶轮时,不可避免地与叶片发生摩擦,消耗了一部分能量。
另外,叶轮运动也会带来一定的摩擦损失。
综上所述,单作用叶片泵是一种常用的离心泵,具有简单结构、运行稳定、流量大等特点。
它适用于各种液体输送,能够自吸,但也存在一些不足之处,需要在实际应用中加以注意和改进。
叶片泵的工作原理
叶片泵是一种常见的离心泵,它通过旋转叶片来将液体从入口抽入并通过泵体
排出。
其工作原理主要包括离心力、动能转换和压力能转换三个方面。
首先,离心力是叶片泵工作的基础。
当泵转子旋转时,叶片受到离心力的作用,使液体产生离心运动,从而形成一个液体环。
这个液体环随着叶片的旋转而不断扩大,将液体从入口处抽入并通过泵体排出。
其次,动能转换也是叶片泵工作原理的重要组成部分。
液体在叶片泵内部经过
离心力的作用后,产生了一定的动能。
这时,叶片泵的设计使得动能转换成为压力能,使液体在排出口处产生一定的压力,从而实现了液体的输送。
最后,压力能转换是叶片泵工作原理的关键环节。
在叶片泵内部,液体经过动
能转换后,产生了一定的压力能。
这种压力能使得液体能够克服管道阻力和重力,顺利地从泵的排出口输送至需要的地方。
总的来说,叶片泵的工作原理是通过离心力、动能转换和压力能转换三个方面
相互作用,最终实现液体的抽入和输送。
这种工作原理使得叶片泵在工业生产和生活中得到了广泛的应用,为液体输送提供了便利和高效率的解决方案。