驱动桥设计说明书
- 格式:docx
- 大小:195.89 KB
- 文档页数:34
第六节驱动桥壳设计驱动桥课的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求:1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力.2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性.3)保证足够的离地间隙.4)结构工艺性好,成本低.5)保护装于其上的传动部件和防止6)拆装,调整,维修方便.一.驱动桥壳结构方案分析驱动桥壳大致可分为可分式、整体式和组合式三种形式。
1.可分式桥壳可分式桥壳(图5—29)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。
每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。
这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。
但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。
2.整体式桥壳整体式桥壳(图5—30)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。
它具有强度和刚度较大,主减速器拆装、调整方便等优点。
按制造工艺不同,整体式桥壳可分为铸造式(图5—30a)、钢板冲压焊接式(图5—30b)和扩张成形式三种。
铸造式桥壳的强度和刚度较大,但质量大,加:上面多,制造工艺复杂,主要用于中、·重型货车上。
钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。
3)组合式桥壳组合式桥壳(图5—31)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压入壳体两端,两者间用塞焊或销钉固定。
它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。
二.驱动桥壳强度计算对于具有全浮式半轴的驱动桥,强度计算的载荷工况与半轴强度计算的:三种载荷工况相同。
毕业设计任务书设计题目:比亚迪速锐驱动桥设计专业:交通10-1学号: ********* *名:***指导教师:***毕业设计开题报告目录摘要 (1)Abstract (1)第一章绪论 (2)1.1 本设计的目的与意义 (2)1.2 驱动桥国内外发展现状 (3)1.3 本设计的主要内容 (3)1.4 本次设计的其他数据 (3)第二章驱动桥的选型 (4)2.1 驱动桥的选型 (4)2.1.1 方案(一):非断开式驱动桥 (5)2.1.2 方案(二):断开式驱动桥 (6)2.1.3 方案(三):多桥驱动的布置 (7)第三章驱动半轴的设计 (9)3.1 半轴的结构形式分析 (9)3.2 半轴的强度计算 (10)半浮式半轴计算载荷的确定 (11)a 半轴在纵向力最大时 (11)b 半轴在侧向力最大时 (11)c 半轴在垂向力最大时 (13)3.3 半轴的强度计算 (13)a 纵向力最大时, (13)b 侧向力最大时 (14)c 垂向力最大时 (14)3.4 半轴花键的设计 (14)3.5 半轴的材料及热处理半轴的材料及热处理 (16)3.5.1 半轴的工作条件和性能要求 (16)3.5.2 处理技术要求 (16)3.5.3 选择用钢 (16)3.5.4 半轴的工艺路线 (17)3.5.5 热处理工艺分析 (17)第四章驱动桥壳的设计 (18)4.1 驱动桥壳结构方案选择 (18)a 可分式桥壳 (18)b 整体式桥壳 (18)c 组合式桥壳 (19)4.2 驱动桥壳强度计算 (20)4.2.1 桥壳的静弯曲应力计算 (20)4.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (21)4.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (22)4.2.4 紧急制动时的桥壳强度计算 (23)4.2.5 汽车受最大侧向力时的桥壳强度计算 (24)第五章轮胎的选取 (26)5.1 轮胎与车轮应满足的基本要求 (26)5.2 轮胎的特点与选用 (26)5.3 轮胎的选型及尺寸参数 (26)第六章CAD进行建模装配 (28)6.1 CAD的介绍 (28)6.2 CAD建模过程 (28)6.2.1 车桥的建模 (28)6.2.2 半轴的建模 (31)6.2.3 轴承和螺栓的建模 (31)6.2.4 车轮的建模 (33)6.3实体装配 (34)总结 .............................................................................................................................. 错误!未定义书签。
欧曼2010版AK-BZ驱动桥使用说明书(第二代零部件明细表)安徽安凯福田曙光车桥有限公司目录1、技术参数 (4)2、外形图及连接尺寸 (4)3、构造 (7)3-1 后桥主减速器部分 (7)3-2 中桥主减速器部分 (10)3-3 轮边总成部分 (17)3-4 制动部分 (19)4、使用、保养及维修 (21)4-1 新车桥使用 (21)4-2 车桥保养 (21)4-3 车桥使用注意事项 (22)5、清洗及检查 (22)5-1 清洗 (22)5-2 检查 (23)6、易损件 (23)7、中、后桥制动鼓及制动器维修标准 (24)8、驱动桥的使用与维修 (27)前言欢迎选用我公司产品。
本书阐述的是13T级AK-BZ系列双桥总成的使用、维修及保养,同时对常见故障进行了分析,并给出了一些易损件的明细。
为了使汽车经常充分发挥性能,并同时延长零部件使用寿命,请用户严格按说明书的要求使用,并有计划地进行日常保养,不分大修、小修都应按照检修数据加以检修。
此外,部件、油脂、密封胶类等应使用纯正品或指定品种。
我们希望本手册能为各用户使用、维修、保养车桥提供帮助。
本公司产品,可能因不同的厂家要求会有所改变,但关键件、通用件不会改变,会保证相关产品的通用性。
若本手册内容与用户所用的产品有部分不同,请予以谅解。
根据时代的发展,本公司的产品在不断的进行创新,其中的ABS、制动间隙自动调整臂装置,是供用户选用的,所以您在订购配件时务必分清您所使用的产品是否选用了这种装置,以免造成误解。
本公司保留设计和结构更改权。
1 主要技术参数额定轴荷 13000 kg 簧距 950,1030mm 适用车轮轮距 1800,1860mm 适用轮辋型式 8.0-20或8.5-20 适用轮胎型式 11.00R20、12.00R20 制动器规格 Φ 410 ×180×18mm可选速比 4.76 5.26 5.92 6.73 最大输出扭矩(Nm ) 24275 21968 19519 17170 齿轮油 90#重负荷齿轮油 最大离地间隙 305mm2 外形安装图及连接尺寸2.1 总成安装图1521040簧距1528431860~1880轮距2414~24341260~1280115图1 中桥外形图安装图?3351521040簧距1521158431860~1880轮距2414~24341260~1280图1 后桥外形安装图2.2 总成外部件装配图下图是中、后桥总成外部件安装图。
毕业设计(论文)任务书学生姓名系部汽车与交通工程学院专业、班级指导教师姓名职称教授从事专业车辆工程是否外聘□是√否题目名称4吨轻型载货汽车驱动桥设计一、设计(论文)目的、意义汽车驱动桥是汽车的主要部件之一,其基本功用是增大由传动轴或变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能;同时驱动桥还要承受作用于路面和车架或承载车身之间的铅垂力、纵向力、横向力及其力矩。
驱动桥质量、性能的好坏直接影响整车的安全性、经济性、舒适性、可靠性。
要求所设计的驱动桥结构合理,绘制的图纸格式规范,图面质量好,撰写的设计说明书内容完整,格式规范。
设计能使学生综合运用所学专业知识,熟练CAD绘图技能。
二、设计(论文)内容、技术要求(研究方法)设计内容:1.选题的背景、目的及意义;2.4吨轻型载货汽车后驱动桥的总体结构设计;3.主减速器总成的设计;4.差速器的设计;5.半轴的设计;6.桥壳的设计。
技术要求:驱动形式:4×2;总质量:4195kg;装载质量:2500kg;发动机最大功率:74kw;发动机最大转矩:184N*m;最高车速:115km//h;变速器传动比:6;最小转弯半径:12.5;要求:单级主减速器;生产纲领:成批生产。
三、设计(论文)完成后应提交的成果CAD绘制驱动桥装配图、零件图折合0号图纸3张以上,设计说明书15000字以上。
四、设计(论文)进度安排(1)知识准备、调研、收集资料、完成开题报告第1~2周(2.28~3.11)(2)整理资料、提出问题、撰写设计说明书草稿、绘制装配草图第3~5周(3.14~4.1)(3)理论联系实际分析问题、解决问题,进行驱动桥的总体结构设计,主减速器总成的设计,差速器的设计,半轴的设计,桥壳的设计,CAD绘制部分图纸等内容,中期检查第6~8周(4.4~4.22)(4)改进完成设计,改进完成设计说明书,指导教师审核,学生修改第9~12周(4.25~5.20) (5)评阅教师评阅、学生修改第13周(5.23~5.27)(6)毕业设计预答辩第14周(5.30~6.3)(7)毕业设计修改第15~16周(6.6~6.17)(8)毕业设计答辩第17周(6.20~6.24)五、主要参考资料1.徐灏主编.《新编机械设计师手册》.机械工业出版社2.陈立德主编.《机械设计基础》.高等教育出版社3.王宝玺主编.《汽车制造工艺学》(3).机械工业出版社,2007.54.陈秀宁,施高义编.《机械设计课程设计》.浙江大学出版社5.刘惟信主编.《汽车设计》.清华大学出版社,6.李硕根,杨兴骏编.《互换性与技术测量》.中国计量出版社7.汽车构造、汽车理论、汽车设计书籍8.轻型载货汽车驱动桥资料9.网络资源,超星数字图书馆10.近几年相关专业CNKI网络期刊等六、备注指导教师签字:年月日教研室主任签字:年月日。
载货汽车驱动桥设计摘要 (I)Abstract (II)1 绪论 (1)1.1本课题研究的目的和意义 (1)1.2 汽车驱动桥国内外进展状况 (1)1.3 本课题研究的要紧任务 (2)1.4 汽车驱动桥概述 (2)2 主减速器设计 (5)2.1 主减速器结构形式简介及选择 (5)2.2 主减速器的差不多参数选择与设计运算 (6)2.2.1 主减速齿轮运算载荷的确定 (6)2.2.2 主减速齿轮差不多参数的选择 (7)2.2.3 齿轮的几何尺寸运算 (10)2.3 主减速器齿轮的材料选择 (12)2.4 主减速器齿轮强度运算 (12)2.5 主减速器齿轮支承形式的选择 (16)2.6 主减速器齿轮轴承的载荷运算 (17)2.6.1 锥齿轮齿面上的作用力 (17)2.6.2 锥齿轮齿面上的轴向力和径向力 (17)2.6.3 主减速器齿轮轴承的选择 (19)3 差速器设计 (21)3.1 差速器介绍 (21)3.2 差速器的原理 (21)3.3差速器齿轮要紧参数选择 (22)3.4 差速器齿轮几何尺寸运算 (25)3.5 差速器齿轮的强度运算 (28)4 半轴设计 (30)4.1 半轴的类型与选择 (30)4.2 全浮式半轴的设计运算 (30)4.2.1 全浮式半轴运算载荷的确定 (30)4.2.2 全浮式半轴直径的选择 (31)4.2.3 全浮式半轴的强度运算 (31)4.3 半轴的结构设计及材料选择 (31)4.4 半轴花键的参数选择 (31)4.5 半轴花键的强度运算 (32)5 驱动桥三维模型建立及运动仿真 (34)5.1 CATIA软件简介 (34)5.2 建立驱动桥三维模型 (34)5.3 驱动桥模型运动仿真 (38)6 驱动桥壳设计及有限元分析 (41)6.1 驱动桥壳设计要求 (41)6.2 驱动桥壳类型确定和材料选择 (41)6.3 对驱动桥壳进行有限元分析 (42)7 结论 (46)致谢 (47)参考文献 (48)摘要本次设计是以东风牌LZ1090D载货汽车要紧性能参数为依据来完成其驱动桥的设计。
驱动桥毕业设计(总62页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。
它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。
数据确定后,利用AUTOCAD建立二维图,再用CATIA软件建立三维模型,最后用CAITA中的分析模块对驱动桥壳进行有限元分析。
关键词:驱动桥;CAD;CATIA;有限元分析AbstractDrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or performance will have a direct impact on automobile performance,and it is particularly important for the truck. Using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.This article referred to the traditional driving axle's design method to carry on the truck driving axle's this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the Main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of confirming the parameters, using AUTOCAD to establish 2 dimensional model,then using CATIA establish 3 dimensional model. Finally using the analysis module in CATIA to finite element analysis for the axle housing.Key words: drive axle;CAD;CATIA;finite element analysis目录1 绪论 ........................................................................................................ 错误!未定义书签。
目录1前言 (2)2 总体方案论证 (3)2.1非断开式驱动桥 (3)2.2断开式驱动桥 (4)2.3多桥驱动的布置 (4)3 主减速器设计 (6)3.1主减速器结构方案分析 (6)3.2主减速器主、从动锥齿轮的支承方案 (7)3.3主减速器锥齿轮设计 (9)3.4主减速器锥齿轮的材料 (11)3.5主减速器锥齿轮的强度计算 (12)3.6主减速器锥齿轮轴承的设计计算 (13)4 差速器设计 (18)4.1差速器结构形式选择 (19)4.2普通锥齿轮式差速器齿轮设计 (19)4.3差速器齿轮的材料 (21)4.4普通锥齿轮式差速器齿轮强度计算 (21)5 驱动车轮的传动装置设计 (23)5.1半轴的型式 (23)5.2半轴的设计与计算 (23)5.3半轴的结构设计及材料与热处理 (26)6 驱动桥壳设计 (27)6.1桥壳的结构型式 (27)6.2桥壳的受力分析及强度计算 (28)7 结论 (29)致谢 (30)附件清单 (31)1前言本课题是对货车驱动桥的结构设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。
第1章绪论1.1 选题背景目的及意义从目前我国载货车销售的结构上看,由于国家基础设施建设以及市政建设的投入日益加大,重型自卸车的销量猛增;又由于货物运输向专用化、大型化发展,传统意义的重型载货车较之上年有不同程度的下挫。
对于国内卡车市场而言,虽然最近群雄并起,各种资本纷纷进入,竞争异常残酷激烈,但目前大的格局基本已定:解放、东风、重汽、陕汽、欧曼将跻身第一集团;上汽依维柯红岩、江淮、北奔、华菱做为第二集团,将向第一集团的地位不断发起冲击;而广汽、集瑞、长安、大运等后起之秀或许会后来居上、有所作为,有待市场考验。
自卸车市场,占据较大数量的是东风EQ3208系列,占市场的70%多。
该系列采用康明斯180至210马力发动机,超大的车厢以及经济型的配置使得该车在自卸车市场具有绝对的优势。
牵引车市场受追捧的是陕汽、重汽的S35和S29,良好的性价比以及大马力、大吨位的特点使得该系列产品拥有极佳的口碑。
260至360马力发动机、富勒变速箱、斯太尔加强桥使该车的配置光彩夺目。
货运车(包括仓栅车)竞争极为激烈,可用群雄纷争来形容,一汽的CA1200系列、东风的EQ1208系列、红岩的CQ19系列等都是畅销产品。
重型专用车批量小、难度高,一直不为国内企业所重视,高档专用车为进口品牌所垄断,沃尔沃、曼等品牌参与国内竞争主要以专用车为主。
国外卡车的发展趋势各国商用车制造厂家目前正采用令人惊叹的高新技术来最大限度地保障安全,提高效率。
重型车的发展趋势对安全、可靠、舒适的人性化设计等方面提出更高的要求。
在安全性方面,国际潮流是安装制动防抱死系统(ABS)、翻车警告系统、电子控制制动系统(EBS)、红外线夜视系统以及其它的驾驶室安全性措施。
在欧洲,多数重型车驾驶室都要经受严格的加载、撞击与扭振试验,完全合格后方可投入批量生产。
其目的是在发生翻车事故后,驾驶室不会被压扁,保证驾驶员的生存空间,车门不会自行打开,人员不会抛出车外。
KD1060型货车驱动桥设计摘要驱动桥主要包括驱动桥壳、主减速器、差速器和两个后桥半轴,本次设计后桥为驱动桥。
驱动桥是汽车传动系主要总成之一,具有承载车身和驱动汽车的功用。
根据本次设计的车型和技术参数要求及现有的生产技术水平,为降低生产成本,使该车具有良好的燃油经济性,操纵性和结构简单的特点,决定本次设计采用以下形式:差速器为普通对称式圆锥齿轮差速器;半轴的形式为全浮式半轴;驱动桥壳为焊接整体式桥壳。
作为非断开式驱动桥。
因此驱动桥设计应当满足如下基本要求:1. 所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性;2. 外形尺寸要小,保证有必要的离地间隙;3. 齿轮及其它传动件工作平稳,噪声小;4. 结构简单,加工工艺性好,制造容易,拆装,调整方便。
在说明书的计算部分,说明了主要参数选择的依据,对主减速器,差速器,半轴和驱动桥壳进行了尺寸和强度计算。
此外,还计算了主减速器支撑轴承的寿命。
本文提供了关于以上计算的详细计算依据、步骤和计算数据。
关键词:驱动桥,主减速器,差速器,半轴DRIVING AXLE DESIGN OF KD1060 TRUCKABSTRACTThe driving axle includes a shell of drive axle,a main decelerator, a differentional, and two axle shafts. The rear axle acts as the driving axle in this project. The rear axle is an important component of the truck, which is used to bear the frame and drive the truck.According the design of the car and the ability of the manufacture technology at the present,in order to deciline the cost of the production and make sure the car had a better quality and proper price,The type of the design as follow:the common symmetric conic gear differentional;the floating axle shaft;the welding banjo axle housing driving axle case.So it needs some basic requirement to design.1. We should choose suitable gear ratio ,so that we can get best dynamic property and fuel economy in giving special conditions;2 .The small overall dimensions of vehicle can be sure enough ground clearance ;3 .The gear and other driving parts work no vibration and noise ;4 .The structure should be simple and the technological efficiency should be good .It also should be easy to repair and adjust .The calculation section of this paper is mainly concerning about the physical dimension of the gear of the main drive, the diff, the driving axle, the driving axle housing and the strength of them. In addition, the life of the bearing of the main drive is also calculated in this section. Majority of computations basis, the step and the estimated data for these project are advanced in paper.KEY WORDS: driving axle, final drive, differential, rear suspension前言本课题是对KD1060货车驱动桥的结构设计。
汽车驱动桥的设计以及组成详解一.功能:驱动桥处于动力传动系的末端,是汽车传动系的重要总成之一。
其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。
驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
二.驱动桥的设计:驱动桥设计应当满足如下基本要求:1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。
2.外形尺寸要小,保证有必要的离地间隙。
3.齿轮及其他传动件工作平稳,噪声小。
4.在各种转速和载荷下具有高的传动效率。
5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。
6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。
7.结构简单,加工工艺性好,制造容易,拆装、调整方便。
三.驱动桥的分类驱动桥分非断开式与断开式两大类。
1.非断开式驱动桥非断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。
它由驱动桥壳1,主减速器(图中包括6、7),差速器(图中包括2、3、4)和半轴5组成。
1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮齿圈;7-主减速器主动小齿轮2.断开式驱动桥驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。
1-主减速器;2-半轴;3-弹性元件;4-减振器;5-车轮;6-摆臂;7-摆臂轴为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。
为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。
四.驱动桥的组成驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。
汽车设计课设-驱动桥设计
汽车驱动桥是汽车的重要组成部分,用于传输发动机的动力到车轮。
一般来讲,驱动
桥由两个主要部分组成:轴承、减速比器和齿轮由尼龙、铝合金和钢制成。
轴承负责将动
力传递给减速比器,减速比器作为中间部分,将由动力轮传输的动力放大或减弱,最后齿
轮将动力传输到转向器。
在设计驱动桥的过程中,应该注意以下方面:
一、结构设计:结构设计要考虑驱动桥的基本类型、各部件尺寸和材料的选择,以及
总体的重量以确定动力的传导以及结构强度等。
二、减速器设计:减速比器设计时要考虑其内部机构及零部件的特性,包括齿轮及调
整齿轮、弹簧和各项零件的特性,以及减速器结构。
三、驱动装置设计:主要考虑齿轮箱布置、输出装置及变速箱本身设计等,驱动装置
组件还要结合实际工况,合理选择轴承、齿轮等装置件,以保证正常工作效果。
在动力传输的影响下,轴承的负载特性以及它的生产工艺关系都很重要,轴承要考虑
到工作条件和性能要求,以及轴承的表征参数以满足各种要求,并使轴承的结构和表面的
正确应用。
此外,减速器要考虑转速,当转速较高时,可能会影响减速器的精度或使它失去功效,因此要选择合适的组合,以期达到希望的速率和扭矩传输效果。
最后,齿轮的组合也是重要的,要保证齿轮的设计量可以达到负载要求的质量级别,
同时,要回旋轴的尺寸,扭矩,扭矩流量及相关影响因素,进而确定最佳齿轮设计。
总之,设计驱动桥要考虑到轴承、减速比器、驱动装置和齿轮之间特性和材料的特点,以确保驱动桥结构的正确使用、高效能和低成本效益,在这种情况下,在设计驱动桥时要
考虑各个方面,以期达到理想的结果。
摘要本次毕业设计题目为ZL40装载机驱动桥及主传动器设计,大致上分为主传动器设计、差速器设计、半轴设计、终传动设计和桥壳设计五大部分。
本说明书将以“驱动桥设计”为内容,对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
本次设计中,ZL40装载机传动采用液力机械传动方案,选用双涡轮液力变矩器和行星动力换挡变速箱,并按以下原则分配传动比:在终传动能安装的前提下,将传动比尽可能地分配给终传动,使整机结构尺寸减小,结构紧凑。
主传动器采用单级锥齿轮传动式,锥齿轮采用35º螺旋锥齿轮并选用悬臂式支承。
将齿轮的基本参数确定以后,算得齿轮所有的几何尺寸,然后进行齿轮的受力分析和强度校核。
齿轮的基本参数和几何尺寸的计算是此部分设计的重点。
在掌握了差速器、半轴、终传动和桥壳的工作原理以后,结合设计要求,合理选择其类型及结构形式,然后进行零部件的参数设计与强度校核。
差速器设计采用普通对称式圆锥行星齿轮差速器,齿轮选用直齿锥齿轮。
半轴设计采用全浮式支承方式。
终传动设计采用单行星排减速形式。
关键词:装载机;驱动桥;主传动器AbstractThe content of my graduation design is The Design of ZL30Loader Axles(Main Transm ission),largely at five parts,included of the main transmission design,differential design,half -shaft design,the design of the final drive and design of axle case.The design specifications will introduce the structure type and design of the drive axle and the main components in the driving axle design one by one.In this design,ZL30loader is adopts hydromechanical transmission,select and uses doub le turbine hydraulic torque converter and planetary power shift transmission,and distribution of the transmission ratio according to the following principles:in the premise of final drive ca n be installed in the hub,assign the transmission ratio to final drive as much as possible to makes the whole structure size decreases and structure terse.Main drive is adopts a single-stage bevel gear with35o and spiral bevel gears use cantile ver support.After considered of the basic parameters of gear,calculate all the geometric para meters of the gear,and then analysis gear stress and check its strength.The calculation of gear s basic parameters and geometry parameters is the key point of this part.After mastered theworking principle of differential,axle,final drive and axle case,have a reasonable choice and the structure of its type by combining with the design requirements,and then design parts and check strength.The differential design adopts ordinary symmetric tapered planetary gear diffe rential,and the gear is straight bevel gears.The half-shaft design uses the full floating axle s-upporting.The final drive design uses a single planetary row.Keywords:loader,drive axle main transmission1.引言装载机是一种广泛用于公路、铁路、矿山、建筑、水电、港口等工程的土石方工程施工机械,它的作业对象是各种土壤,砂石料、灰料及其他建筑路用散装物料等。
目录1前言 (1)2 总体方案论证 (2)2.1非断开式驱动桥 (2)2.2断开式驱动桥 (3)2.3多桥驱动的布置 (3)3 主减速器设计 (5)3.1主减速器结构方案分析 (5)3.2主减速器主、从动锥齿轮的支承方案 (6)3.3主减速器锥齿轮设计 (7)3.4主减速器锥齿轮的材料 (10)3.5主减速器锥齿轮的强度计算 (10)3.6主减速器锥齿轮轴承的设计计算 (12)4 差速器设计 (17)4.1差速器结构形式选择 (17)4.2普通锥齿轮式差速器齿轮设计 (17)4.3差速器齿轮的材料 (19)4.4普通锥齿轮式差速器齿轮强度计算 (19)5 驱动车轮的传动装置设计 (21)5.1半轴的型式 (21)5.2半轴的设计与计算 (21)5.3半轴的结构设计及材料与热处理 (24)6 驱动桥壳设计 (25)6.1桥壳的结构型式 (25)6.2桥壳的受力分析及强度计算 (25)7 结论 (27)参考文献 (28)致谢 (29)1前言本课题是对YC1090货车驱动桥的结构设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。
汽车设计课程设计轻型货车驱动桥设计姓名: 黄华明学号: 12431173专业班级: 机英123指导教师: 王淑芬题目:1. 整车性能参数:驱动形式6x2后轮;轴距3800mm;轮距前/ 后1750/1586mm;整备质量4310kg ;额定载质量5000kg ;空载时前轴分配负荷45%满载时前轴分配负荷26%前悬/ 后悬1270/1915mm ;最高车速110km/h ;最大爬坡度35%;长、宽、高6985、2330、2350;发动机型号YC4E140-20 ;最大功率99.36KW/3000rpm ;最大转矩380N- m/1200~1400rpm变速器传动比7.7 4.1 2.34 1.51 0.81 ;倒挡8.72 ;轮胎规格9.00-20 ;离地间隙>280mm。
2. 具体设计任务:1)查阅相关资料,根据其发动机和变速箱的参数、汽车动力性的要求,确定驱动桥上主减速器的减速形式,对驱动桥总体进行方案设计和结构设计。
2)校核满载时的驱动力,对汽车的动力性进行验算。
3 )根据设计参数对主要零部件进行设计与强度计算。
4)绘制所有零件图和装配图。
5)完成6千字的设计说明书。
第1章驱动桥的总体方案确定1.1驱动桥的结构和种类和设计要求1.1.1汽车车桥的种类汽车的驱动桥与从动桥统称为车桥,车桥通过悬架与车架(或承载式车身)相连, 它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。
根据悬架结构的不同,车桥分为整体式和断开式两种。
当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。
在绝大多数的载货汽车和少数轿车上,采用的是整体式非断开式。
断开式驱动桥两侧车轮可独立相对于车厢上下摆动。
根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。
其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥。
1.1.2驱动桥的种类驱动桥位于传动系末端,其基本功用首先是增扭、降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并合理的分配给左、右驱动车轮,其次,驱动桥还要承受作用于路面和车架或车厢之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩。
驱动桥分为断开式和非断开式两种。
驱动桥的结构型式与驱动车轮的悬挂型式密切相关。
当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥,其桥壳是一根支撑在左右驱动车轮上的刚性空心梁,主减速器、差速器和半轴等所有的传动件都装在其中;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。
1.1.3驱动桥结构组成在多数汽车中,驱动桥包括主减速器、差速器、驱动车轮的传动装置(半轴)及桥壳等部件如图1.1所示。
1 2 3 4 5 61-轮毂2-半轴3-钢板弹簧座4-主减速器从动锥齿轮5-主减速器主动锥齿轮6-差速器总成图1.1驱动桥1.1.4驱动桥设计要求1、选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
2、外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。
3、齿轮及其他传动件工作平稳,噪声小。
4、在各种载荷和转速工况下有较高的传动效率。
5、具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。
6、与悬架导向机构运动协调。
7、结构简单,加工工艺性好,制造容易,维修,调整方便。
1.2设计车型主要参数轮距(双胎中心线)3800 mm1.3主减速器结构方案的确定1.3.1主减速比的计算主减速比i o对主减速器的结构形式、轮廓尺寸、质量大小影响很大。
当变速器处于最高档位时i o 对汽车的动力性和燃料经济性都有直接影响。
i o的选择应在汽车总体设计时和传动系统的总传动比一起由整车动力计算来确定。
可利用在不同的下的功率平衡图来计算对汽车动力性的影响。
通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择i o值,可是汽车获得最佳的动力性和燃料经济性。
对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率P amax 及其转速“p的情况下,所选择的i o值应能保证这些汽车有尽可能高的最高车速V amax。
这时i o值应按下式来确定⑸:i o =0.377 “P(1.1)V amax igh式中:r r——车轮的滚动半径,r「=0.405mi gh ----------- 变速器最高档传动比1.0 (为直接档)。
n p ——最大功率转速3200 r/minV a ——最大车速90km/h对于与其他汽车来说,为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大10%〜25%,即按下式选择:i o = (0.377~0.472)—(1.2)V a max i gh经计算初步确定i o =6.14按上式求得的i o应与同类汽车的主减速比相比较,并考虑到主、从动主减速齿轮可能的齿数对i0予以校正并最后确定。
1.3.2主减速器的齿轮类型本次设计米用螺旋锥齿轮。
轮距(双胎中心线)3800 mm 1.3.3主减速器的减速形式本次设计货车主减速比i0=6.14,所以采用单级主减速器134主减速器主从动锥齿轮的支承形式及安装方法1、主减速器主动锥齿轮的支承形式及安装方式的选择现在汽车主减速器主动锥齿轮的支承形式有如下两种:(1)悬臂式;(2)骑马式跟据实际情况,所设计的为轻型货车所以采用悬臂式支撑。
2、主减速器从动锥齿轮的支承形式及安装方式的选择本次设计主动锥齿轮采用悬臂式支撑(圆锥滚子轴承),从动锥齿轮采用骑马式支撑(圆锥滚子轴承)。
1.4差速器结构方案的确定本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。
1.5半轴形式的确定根据相关车型及设计要求,本设计采用全浮半轴。
1.6桥壳形式的确定桥壳的结构型式大致分为可分式,组合式整体式三种。
本次设计驱动桥壳就选用整体式桥壳。
第2章主减速器设计2.1概述主减速器是汽车传动系中减小转速、 增大扭矩的主要部件,它是依靠齿数少的锥齿 轮带动齿数多的锥齿轮。
对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变 动力方向。
由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩 和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速 器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及 质量减小、操纵省力。
2.2主减速器齿轮参数的选择与强度计算2.2.1主减速器齿轮计算载荷的确定1、按发动机最大转矩和最低挡传动比确定从动锥齿轮的计算转矩T j T je Temax iTL K0 T /ni TL ----------- 由发动机到所计算的主减速器从动齿轮之间的传动系最低档传动比i TL =i 0 i 1 =6.14 6.01=36.9014变速器传动比i 1=6.01;T——上述传动部分的效率,取T=0.9;K 。
——超载系数,取K °=1.0;n ――驱动桥数目1。
T je =20136.9014 1 0.9/1=6675.462、按驱动轮在良好路面上打滑转矩确定从动锥齿轮的计算转矩T jG 2 r r1 j:__LB i LB式中:G 2 ――汽车满载时驱动桥给水平地面的最大负荷,N ;但后桥来说还应考虑到汽车加速时负腷增大量,可初取:G 2=G 满 >9.8=4100 g .8=40180N ;轮胎对地面的附着系数,对于安装一般轮胎的公路用汽车,取 对于越野汽车,取 =1.0;je(2.1)式中.Temax发动机最大转矩201 N m ;(2.2)=0.85;——车轮滚动半径,0.405m ;LB ,i LB――分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和 传动比,分别取0.96和1。
G 2r r 40180 0.85 0.405T --==14408.29LB L B通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情 况下作用于主减速器从动齿轮上的转矩(T je ,T j )的较小者,作为载货汽车计算中用 以验算主减速器从动齿轮最大应力的计算载荷。
由式(2.1),式(2.2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能 用它作为疲劳损坏依据。
汽车的类型很多,行驶工况又非常复杂,轿车一般在高速轻 载条件下工作,而矿用车和越野车在高负荷低车速条件下工作,对于公路车辆来说, 使用条件较非公路用车稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的, 即主减速器的平均计算转矩。
3、按汽车日常行驶平均转矩确定从动锥齿轮的计算转矩 T m传动比i o 较大时,Z i 尽量取得小一些,以便得到满意的离地间隙。
对于不同的主传动 比,Z i 和Z 2应有0.96 1jmT jm =(G -^^) ri LB LB= (f R nHf p )(2.3)式中:G a ——汽车满载总重 N, G a =6000>9.8=58800N ;G T ——所牵引的挂车满载总重,N ,仅用于牵引车取G T =0;R――道路滚动阻力系数,初取f R =0.015; H ――汽车正常使用时的平均爬坡能力系数。
初取f H =0.05;P――汽车性能系数10.195(G a G T )]P[ 16]100T emax(2.4)当 0.195(GaG T )=57.04>16时,取 f p =o 。
T e maxT jm =(G ^1)r ri LB LBn (fR58800 0.405(O .O 15 0.05 0)=1612.40.96 1 12.2.2主减速器齿轮参数的选择主、从动齿数的选择选择主、从动锥齿轮齿数时应考虑如下因素:为了磨合均匀,Z i ,Z 2之间应避免有公约数;为了得到理想的齿面重合度和高的轮齿弯曲强度,主、从动齿轮齿数和应不 小于40;为了啮合平稳,噪声小和具有高的疲劳强度对于商用车乙一般不小于6;主1、 Z i适宜的搭配。
主减速器的传动比为6.14,初定主动齿轮齿数z i=7,从动齿轮齿数Z2=43。
2、从动锥齿轮节圆直径d2及端面模数m t的选择根据从动锥齿轮的计算转矩(见式2.1和式2.2并取两式计算结果中较小的一个作为计算依据)按经验公式选出:d2 K d2斤(2.5) 式中:K d2――直径系数,取K d2=13〜16;T j ――计算转矩,N m,取T j,T je较小的。
取J =6675.46。
计算得,d2=244.78〜301.26mm,初取d 2=300mm。