压水反应堆的热功率
- 格式:doc
- 大小:803.50 KB
- 文档页数:14
压水堆核电站出力提升常规岛汽水系统可靠性分析报告摘要:核电站设计额定负荷通常是一个较为保守的定值,本文主要根据常规岛汽水回路的主要系统关键参数论证百万级压水堆核电站最大出力提升至1180MWe的可行性。
主要从常规岛汽水回路的主要系统关键参数进行分析。
主要分析了凝结水系统,主给水系统,蒸汽旁路排放系统,汽水分离再热系统等参数变化前后是否仍然在设计范围内。
最后论证提升至1180MW是可行的。
关键字:出力提升常规岛承载能力可靠性1.概述1.1目的提示核电站的额定功率,在核电站系统可接受的情况下有利于提示核电站的年度发电量,有较一定的经济效应。
2.定义/缩写T-MCR工况:最大连续运行工况SCR工况:夏季出力工况VWO工况:汽机进汽调阀全开工况3.机组运行数据分析3.1T-MCR工况下机组实际参数根据某核电机组(A机组)商运至今实际运行参数及设计参数进行分析,选取(A机组)T-MCR工况下机组运行参数与设计值对比相关参数如表1:表1:某核电机组T-MCR工况下机组运行参数与设计值对比表通过对上述数据分析,发现该机组在冬季由于海水气温减低,机组背压相对低于设计值,反应堆功率热功率在此情况下仍有25.27-37.27MWe 的预量,因此提升机组出力具有一定的可行性。
3.2机组出力提升至边界值预测参数根据前期研究可知,核电机组由停机工况升功率到最大出力工况时,主蒸汽流量、主给水流量、凝结水流量等二回路汽水参数变化趋势均随电功率、核功率增加而线性增加,电功率、核功率稳定于某一点时,蒸汽流量、主给水流量、凝结水流量均稳定在一点波动运行,依据该现象可根据电动率、核功率边界限值预测出机组处力提升值目标值时主蒸汽流量、主给水流量、凝结水流量对应的参数。
1)核功率线性变化预测参数根据某核电机组(A机组)2月机组启动参数拟合生成曲线图:A机组核功率与电功率、主蒸汽流量、主给水流量、凝结水流量的曲线走势图。
通过生成曲线趋势分析,预测A机组核功率提升至边界值3060 MWe时,相对应的主蒸汽流量、主给水流量、凝结水流量分别为1710.971kg/s、1731.691kg/s、1093.16 kg/s。
6.2 AP-600,西屋西屋公司先进的非能动压水堆AP-600是一种电功率为600MW的压水反应堆,它具有先进的非能动的安全特性,并且通过广泛采用简化设计从而显著提高了电站的建造,运行和维护性能。
电站设计充分利用了经过30多年压水堆运行经验验证的成熟技术。
在世界范围内,压水堆的比重占所有轻水反应堆的76%,而67%的压水堆是建立在西屋压水堆技术基础之上的。
AP-600的设计目标是达到很高的安全和性能记录。
它的设计虽然基于保守的已被验证的压水堆技术,但是在安全特性方面强调依赖自然力。
安全系统尽可能使用自然驱动力比如压缩气体,重力流和自然循环流动。
安全系统不使用能动部件(比如泵,风机或柴油发电机)并且设计为功能实现不需要安全级的支持系统(比如交流电源,部件冷却水,生活服务水,采暖通风)。
控制安全系统所需的运行人员的操作在数量上和复杂度上都尽可能小;其宗旨就是用自动实现取代运行人员的操作。
最终结果就是形成的设计显著降低了复杂度并提高的可操作性。
AP-600的标准设计符合所有适用的美国核管会标准。
大量的安全分析工作已经完成,相关内容写入了提交核管会的标准安全分析报告(SSAR)和概率风险评价(PRA)。
广泛的实验计划也已经完成,从而验证了电站的创新性设计在运行中将与预期的设计和分析一致。
概率风险评价(PRA)的结果表明了其具有满足先进反应堆设计目标的非常低的堆芯损坏几率,并且由于改善了安全壳的隔离与冷却能力,其也具有很低的放射性泄漏几率。
AP-600的设计理念中非常重要的一个方面是关注电站的可操作性和可维护性。
这些因素已经融入了其整个的设计过程。
AP-600的设计具有许多独到之处,比如通过简化设计在提高可操作性的同时也减少了部件及其配套设施的数量。
特别是,简化的安全系统显著地简化了技术规格,从而降低了监督的要求。
通过强调已验证的部件的应用,从而确保达到高水平的可靠性同时具有很低的维护要求。
部件的标准化降低了备件的数量,减小了维护的培训要求,并且使维护周期进一步缩短。
2.1查水物性骨架表计算水的以下物性参数:(1)求16.7MPa时饱和水的动力粘度和比焓;(2)若324℃下汽水混合物中水蒸气的质量比是1%,求汽水混合物的比体积;(3)求15MPa下比焓为1600kJ/kg时水的温度;(4)求15MPa下310℃时水的热导率。
2.2计算核电厂循环的热效率13:14:49位置T /K p /kPa -1h /(kJ·kg ) 状态 给水泵入口 6.89 163 饱和液 给水泵出口7750 171 欠热液 蒸发器二次侧出口 7750 2771 饱和气 汽轮机出口6.891940两相混合物 蒸发器一次侧入口 599 15500 欠热液 蒸发器一次侧出口56515500欠热液第三章3.1的热导率,并求1600℃下97%理论密度的UO2与316℃下金属铀的热导率做比较。
13:14:49习题讲解8假设堆芯内所含燃料是富集度3%的UO2,慢化剂为重水D2O,慢化剂温度为260℃,并且假设中子是全部热能化的,在整个中子能谱范围内都适用1/v定律。
试计算中子注量率为1013 1/(cm2·s)处燃料元件内的体积释热率。
= 0.275试推导半径为R ,高度为L ,包含n 根垂直棒状燃料元件的圆柱形堆芯的总释热率Q t 的方程:1Q tnLA u q V ,maxF u其中,A u 是燃料芯块的横截面积。
4.1燃料元件,已知表面热有一压水堆圆柱形UO2流密度为1.7 MW/m2,芯块表面温度为400℃,芯块直径为10.0mm,UO2密度取理论密度的95%,计算以下两种情况燃料芯块中心最高温度:(1)热导率为常数,k = 3 W/(m•℃)(2)热导率为k = 1+3exp(-0.0005t)。
热导率为常数k不是常数,要用积分热导法4.2有一板状燃料元件,芯块用铀铝合金制成(铀占22%重量),厚度为1mm,铀的富集度为90%,包壳用0.5mm厚的铝。
元件两侧用40℃水冷却,对流传热系数h=40000 W/(m2•℃),假设:气隙热阻可以忽略铝的热导率221.5 W/(m•℃)铀铝合金的热导率167.9 W/(m•℃)裂变截面520×10-24cm2试求元件在稳态下的径向温度分布4.3已知某压水堆燃料元件芯块半径为4.7mm,包壳内半径为4.89mm,包壳外半径为5.46mm,包壳外流体温度307.5 ℃,冷却剂与包壳之间传热系数为 28.4 kW/(m2•℃),燃料芯块热导率为 3.011 W/(m•℃),包壳热导率为18.69 W/(m•℃),气隙气体的热导率为0.277W/(m•℃)。
第一章核反应堆是一个能维持和控制核裂变链式反应,从而实现核能到热能转换的装置。
传热机理—热传导、热对流、热辐射世界上第一座反应堆是1942 年美国芝加哥大学建成的。
核反应堆按照冷却剂类型分为轻水堆、重水堆、气冷堆、钠冷堆按照用途分为实验堆、生产堆、动力堆按中子能量分类:热中子堆、中能中子堆、快中子堆以压水堆为热源的核电站称为压水堆核电站主要有核岛和常规岛核岛的四大部件为蒸汽发生器、稳压器、主泵、堆芯五种重要堆型压水堆沸水堆重水堆高温气冷堆钠冷快中子增值堆水作为冷却剂慢化剂的优缺点:轻水作为冷却剂缺点是沸点低,优点具有优良热传输性能,且价格便宜。
描述反应堆性能的参数反应堆热功率[MWh]:反应堆堆芯内生产的总热量电厂功率输出[MWe]:电厂生产的净电功率电厂净效率[%]:电厂电功率输出/反应堆热功率容量因子[%]:某时间间隔内生产的总能量/[(电厂额定功率)×该时间间隔]功率密度[MW/m3]:单位体积堆芯所产生的热功率线功率密度[kW/m]:单位长度燃料元件内产生的热功率比功率[kW/kg]:反应堆热功率/可裂变物质初始总装量燃料总装量[kg]:堆芯内燃料总质量燃料富集度[%]:易裂变物质总质量/易裂变物质和可转换物质总质量比燃耗[MWd/t]:堆芯工作期间生产的总能量/可裂变物质总质量本章主要内容1.压水堆的主要特征2 沸水堆和重水堆的主要特征3 热工水力学分析的目的与任务(这个可以忽略)第二章(本章可以覆盖部分计算题)热力学第一定律:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中总能量保持不变。
热力学第二定律(永动机不可能制成):不可能将热从低温物体传至高温物体而不引起其它变化;不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响;不可逆热力过程中的熵的微增量总是大于零。
最基本的状态参数:压力(压强Pa,atm,bar,at)比体积(m3/kg)温度内能:系统内部一切微观粒子的一切运动形式所具有的能量总和,U焓:热力学中表示物质系统一个状态参数–H,数值上等于系统内能加上压强与体积的乘积。