开关电源输出过压保护电路的作用原理
- 格式:docx
- 大小:9.66 KB
- 文档页数:2
UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!)一、开关电源的电路组成[/b]::开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路[/b]::1、AC输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或者上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或者变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或者变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部份工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部份和保护部份。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断普通情况下,保险丝熔断说明开关电源的内部电路存在短路或者过流的故障。
由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。
电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。
检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM 控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路:1、AC输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源电路详解图、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源的各种过压保护电路开关电源输出过压保护电路,有通过控制自身电源来调节的,也有防止外部电压过高带来的电源损伤,自身调节一般是指,过压电路是在反馈环路出现问题的时候,控制输出电压不至于太高,或者是关闭开关电源控制,来避免输出电解电容与后级的用电设备损坏。
那我们就要知道当过压时,是限制电压不要超过一个电压还是要求关闭电源。
只有知道了要求后就根据要求来设计电路。
图1是输出保护电路的一种,这种电路应用非常多,他是用TL431与光耦的搭配,靠光耦的导通来控制原边的控制芯片停机,实现过于保护,的他的好处是过压保护电压精度高,一般应用到后级需要严格控制电源的电源。
他的成本是比较高的。
图2也是一种输出保护电路,这种电路就是在上一个电路的基础上进行了变动,原理是本来利用TL431来检测输出电压的电路改成了一个稳压管,稳压管的精度是没有TL431高的,但是价格比TL431便宜,这也就是他的优势,缺点是他的精度不高,对于这种电路一般应用在没有要求具体多少电压过压的电源,就是在出现过压的时候起到一个保护电解电容的作用,不至于电解电容坏。
上面的两种方法,我们一直看到有一个光耦的存在,这是应为我们的电源是隔离的原因,但是光耦的价格也是不便宜的。
如果不需要过压精度很高,那么我们是不是可以想办法吧光耦去除,而且是能检测输出电压的办法,是不是最好了,那有什么好的办法了,隔离不用光耦,我们是不是就想到用互感器等磁芯器件,但是这又违背了价格便宜的问题,最好是在不增加其他器件的基础上就能实现过压保护功能。
隔离电源我们都会有一个隔离变压器,这是每一个开关电源都有的,那么我们是不是可以利用这一个开关变压器来实现,我们知道电源是有VCC绕组,我们能不能用VCC绕组来实现过压保护了,肯定是可以的,只是精度与一致性不好,但是价格便宜,如果在你的接受范围内的话,是不是很好。
那么就有了下面的电路图,下面Latch脚是芯片检测过压的脚。
上面的三种电路都是对于电源自身反馈环路有问题的时才有作用,那要是输出电压被外电压强制提高怎么办了,很多的时候就想到了,看下面的图,是不是增加了一个TVS,这一个TVS 只能够钳位过压非常短的时间,要是长时间的,可能会坏,但是他的价格便宜。
开关电源电路组成及常见电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
电源线路中的过压保护技术
过压保护技术是电源线路中非常重要的一项技术,它可以有效地保护电器设备免受过电压的危害。
过压是指电压超过了设备正常工作范围的情况,如果设备长时间暴露在过压环境下,很容易造成设备损坏甚至起火等严重后果。
因此,电源线路中的过压保护技术显得尤为重要。
过压保护技术的原理是通过在电源线路中增加过压保护单元来监测电压的波动情况,一旦检测到电压超过设定的安全阈值,过压保护单元就会迅速切断电源,从而有效地保护设备不受过压的损害。
同时,过压保护技术还可以通过信号灯或声音提示等方式提醒用户电源出现问题,及时采取措施进行处理。
在实际应用中,过压保护技术可以应用在各种电子设备中,如电脑、冰箱、空调等家用电器,以及工业设备、医疗设备等专业设备中。
无论是家庭生活还是工业生产领域,都离不开过压保护技术的应用,这不仅提高了设备的安全性和可靠性,也保护了用户的生命财产安全。
除了过压保护技术,电源线路中还有一些其他保护技术,如过流保护技术、短路保护技术等。
这些保护技术结合起来,可以组成一套完善的电源保护系统,为电器设备提供全方位的保护。
因此,在设计电源线路时,一定要考虑到各种保护技术的应用,以确保设备的安全运行。
总的来说,电源线路中的过压保护技术是一项非常重要的技术,它可以有效地保护电器设备免受过压的危害,提高设备的可靠性和安全性。
在今后的电源线路设计中,我们需要重视过压保护技术的应用,从而确保设备的正常运行和人身财产的安全。
开关电源保护电路原理开关电源保护电路是一种用于保护开关电源的电路设计,能够保证开关电源在异常情况下正常工作,提高其稳定性和可靠性。
本文将从开关电源的工作原理、保护电路的分类和常见保护电路的原理等方面进行介绍。
开关电源是一种将电能转换为稳定输出电压或电流的电源装置。
其工作原理是通过控制开关管的导通和截止,使得输入电压以一定的频率和占空比转换为脉冲信号,再经过滤波电路和稳压电路,最终输出稳定的直流电压或电流。
开关电源具有高效率、体积小、重量轻和可调性好等优点,因此被广泛应用于电子设备中。
然而,开关电源在工作过程中可能会遇到多种异常情况,如输入电压过高或过低、输出短路、过载和过温等。
这些异常情况可能会导致开关管损坏、输出电压波动或无输出等问题,严重影响开关电源的稳定性和可靠性。
因此,保护电路的设计就显得尤为重要。
根据保护电路的功能和作用方式,可以将保护电路分为输入保护电路、输出保护电路和过温保护电路等。
输入保护电路主要用于对开关电源的输入电压进行监测和保护,防止过高或过低的输入电压对开关电源产生不利影响。
常见的输入保护电路包括过压保护电路和欠压保护电路。
过压保护电路通过检测输入电压是否超过设定值来进行保护。
当输入电压超过设定值时,保护电路会迅速切断开关管的导通,以防止过高的电压损坏开关管和其他电路元件。
欠压保护电路则是在输入电压低于设定值时进行保护,避免开关电源在低电压下无法正常工作。
输出保护电路主要用于对开关电源的输出电流和电压进行监测和保护。
过载保护电路是其中一种常见的输出保护电路。
它通过检测输出电流是否超过设定值来进行保护。
当输出电流超过设定值时,保护电路会迅速切断开关管的导通,以防止过大的电流对开关管和其他电路元件造成损坏。
另外,还有短路保护电路用于对输出短路情况进行保护。
过温保护电路是为了防止开关电源在长时间高负载工作或环境温度过高时产生过热而设计的。
该保护电路通过检测开关电源的温度来进行保护。
24v开关电源工作原理开关电源是一种通过开关技术来转换和稳定电源输出的装置。
它广泛应用于各种电子设备中,包括计算机、通信设备、工控设备等。
24V开关电源是指输出电压为24V的开关电源。
下面将介绍24V开关电源的工作原理。
1. 输入电源和整流滤波器24V开关电源的输入电源一般为交流电源,如220V交流电。
输入电源首先通过整流滤波器进行整流和滤波,将交流电转换成直流电,并去除电源中的纹波。
2. 输入稳压、过压保护电路为了保证开关电源的安全可靠工作,一般会在输入电路中添加稳压、过压保护电路。
稳压电路可以稳定输入电压,保证输出电压的稳定性。
过压保护电路可以在输入电压过高时切断输出电压,以避免对设备的损坏。
3. 开关电源控制芯片开关电源中的关键部件是控制芯片,它负责对电源的开关进行控制。
控制芯片接收反馈信号,并根据设定的输出要求控制开关的开关时间和频率。
控制芯片可以根据需要进行调整,以实现不同的输出电压和电流。
4. 开关变压器和功率开关管开关电源中使用开关变压器和功率开关管来实现电压的转换和调节。
开关变压器通过切换磁场来实现输入电流的隔离和变压。
功率开关管则通过开关操作来调节电流的流向和大小。
5. 输出整流滤波器在开关电源中,输出电流需要进行整流和滤波,以保证电源稳定输出。
输出整流滤波器一般由二极管和电容组成,它将交流电转换为直流电,并去除纹波。
6. 反馈控制回路为了保持输出电压的稳定性,开关电源通常会添加反馈控制回路。
反馈控制回路通过监测输出电压,并将这一信息反馈给控制芯片,使其能够及时调节开关的开关时间和频率,以实现输出电压的稳定。
综上所述,24V开关电源的工作原理是通过整流滤波、稳压保护、开关控制芯片、开关变压器和功率开关管、输出整流滤波以及反馈控制回路等关键部件的相互配合工作来实现对输入电源的转换和稳定输出。
开关电源具有高效率、稳定性好、体积小等优点,因此在各种电子设备中得到广泛应用。
同时,理解24V开关电源的工作原理有助于在工程设计和故障排除中更好地使用和维护开关电源。
UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源的工作原理和常见故障分析及维修开关电源的主要电路是由:防雷电路,输入电磁干扰滤波器(Electromagnetic Interference,简称EMI),输入整流滤波电路,功率变换电路,脉宽调制(PWM)控制器电路,输出整流滤波电路组成。
辅助电路有输入过压,欠压保护电路, 输出过压,欠压保护电路,输出过流保护电路,输出短路保护电路等。
开关电源的电路组成方框图如下:高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G 极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
开关电源的电路原理图如下:开关电源电路原理图开关电源的常见故障分析及维修由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。
其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。
下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。
一.保险丝熔断一般情况下,保险丝熔断说明开关电源的内部电路存在短路或过流的故障。
由于开关电源工作在高电压,大电流的状态下,直流滤波和变换振荡电路在高压状态工作时间太长,电压变化相对大。
电网电压的波动,浪涌都会引起电源内电流瞬间增大而使保险丝熔断。
重点应检查电源输入端的整流二极管,高压滤波电解电容,开关功率管,UC3842本身及外围元器件等。
检查一下这些元器件有无击穿,开路,损坏,烧焦,炸裂等现象。
一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器<EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1<热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小<RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
ovp过压保护原理
过压保护原理(Overvoltage Protection,OVP)是一种电路保护装置,用于防止电路系统受到过高的电压冲击。
当电路中出现异常情况,如电源电压超过设定的阈值时,OVP会自动断开电路或限制电流,以保护系统免受损坏。
OVP的工作原理可以分为两种主要类型:
1. 集成电路 OVP:在集成电路中,常使用电压比较器或开关电源来实现OVP。
当电源电压超过设定的阈值时,电压比较器会检测到过压信号,并触发相应的保护措施,如关断开关、降低电压或限制电流。
这样可以有效保护电路和相关器件免受高压的损坏。
2. 外部 OVP:外部OVP通常使用保护二极管或稳压器等组件来实现。
当输入电压超过设定的阈值时,保护二极管或稳压器会将过高的电压分流或消耗掉,以保护电路免受过压的影响。
外部OVP通常适用于需要额外过压保护的电路或装置。
无论采用哪种类型的OVP,其实质都是通过检测输入电压,一旦超过设定的阈值,就会触发保护机制。
这样可以有效保护电路不受过高电压的损害,延长电路和器件的寿命。
电路中的开关电源过压保护电路有什么作用电源过压保护电路是一种用于保护电路免受电源过压损坏的重要电子元件。
它能够检测电路中的过压情况,并在超出设定值后迅速切断电路,以保护相关设备。
本文将详细介绍开关电源过压保护电路的作用以及其工作原理。
一、开关电源过压保护电路的作用开关电源过压保护电路的主要作用是保护电路中的敏感元件。
在实际应用中,电源的过压可能导致电路元件损坏,甚至引发火灾等严重后果。
过压保护电路能够及时检测并阻止这些过压情况的发生,有效保护电路的安全运行。
1. 防止设备损坏:开关电源的过压可能导致电路元件的击穿和烧毁,对设备造成不可逆的损坏。
过压保护电路能在电源参数异常时迅速切断电路,以避免这种损坏的发生。
2. 保护用户安全:过压不仅会对设备造成损害,还可能对用户构成威胁。
特别是一些高功率设备,一旦发生电路故障,电压过大可能会对用户产生触电风险。
过压保护电路的存在能够及时切断电路,保障用户的人身安全。
3. 提高系统稳定性:过压保护电路能够防止电源瞬间过压所带来的冲击,避免对电路系统的不稳定性产生影响。
它对于一些对电源质量要求较高的系统,如精密仪器设备、通信系统等,具有非常重要的作用。
二、开关电源过压保护电路的工作原理开关电源过压保护电路一般由过压检测电路、比较电路和触发电路组成。
1. 过压检测电路:通过检测电源的电压,判断是否超过了设定的阈值。
电压可以通过压敏电阻、分压电路或直接连接到测量芯片来获取。
2. 比较电路:将检测到的电压值与设定的阈值进行比较。
当电源电压大于阈值时,比较电路会进行输出。
3. 触发电路:接收比较电路的输出信号,通过控制开关管或触发器等元件,迅速将开关电源与输入电源分离,切断电流通路。
除了以上一般的工作原理外,现代的开关电源过压保护电路还可以结合其他元件和技术来实现更加精确的保护。
例如,采用单片机控制的过压保护电路可以实现更高的灵活性和精确度。
总结:开关电源过压保护电路是一种重要的电子元件,具有保护电路免受过压损坏的关键作用。
开关电源芯片启动过压保护电路原理
开关电源芯片的过压保护电路通常是用来保护电路不受过大的
输入电压影响,以防止损坏电路元件或设备。
其原理主要包括以下
几个方面:
1. 过压检测,过压保护电路首先需要对输入电压进行检测,通
常会使用电压比较器或者其他传感器来监测输入电压是否超过设定
的阈值。
一旦检测到输入电压超过设定范围,保护电路会立即做出
响应。
2. 触发保护动作,当过压保护电路检测到输入电压超过设定范
围时,会立即触发保护动作,通常是通过控制开关电源芯片的工作
状态,使其停止工作或者减小输出功率,以减轻输入电压对电路的
影响。
3. 输出短路,有些过压保护电路还会通过输出短路的方式来保
护电路。
一旦检测到输入电压过高,保护电路会立即将开关电源芯
片的输出短路,以消耗过高的输入能量,保护电路和设备不受损害。
4. 自恢复功能,一些过压保护电路还具有自恢复功能,当输入
电压恢复正常范围后,保护电路会自动解除保护状态,使开关电源芯片恢复正常工作。
总的来说,过压保护电路的原理是通过检测输入电压、触发保护动作、输出短路等方式来保护开关电源芯片和其他电路元件,以确保整个电路系统的安全稳定运行。
开关电源芯片通常具有多种保护功能,以确保电路和设备的安全稳定运行。
以下是一些常见的保护原理:
1. 过压保护(OVP,Over Voltage Protection):当输入电压超过设定阈值时,OVP 保护会立即切断输出,以防止输出端电压过高损坏负载或其他部件。
2. 欠压保护(UVP,Under Voltage Protection):当输入电压低于设定阈值时,UVP 保护可以防止电路因供电不足而无法正常工作,保护设备免受损坏。
3. 过流保护(OCP,Over Current Protection):OCP 保护能够监测输出电流,当输出电流超过设定阈值时,会迅速切断输出,以防止过载损坏电路或负载。
4. 短路保护(SCP,Short Circuit Protection):SCP 保护会在检测到输出短路时迅速切断输出,以防止电路、负载或电源本身受到损坏。
5. 过温保护(OTP,Over Temperature Protection):当芯片内部温度超出安全范围时,OTP 保护会主动降低输出功率或直接切断输出,以避免因过热而导致芯片损坏。
这些保护原理结合在一起,可以使开关电源芯片在各种异常情况下及时做出反应,保护设备和电路免受损害。
这些保护功能的设计和实现对于确保开关电源系统的可靠性和安全性至关重要。
开关电源电路组成及常见各模块电路分析2009-10-14 17:36一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源输出过压保护电路的作用原理
摘要: 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。
当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。
应...
输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。
当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。
应用最为普遍的过压保护电路有如下几种:
1、可控硅触发保护电路:
如上图,当Uo1 输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。
Uo2 电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。
当输出过压现象排除,可控硅的控制端触发电压通过R 对地泄放,可控硅恢复断开状态。
2、光电耦合保护电路:
如上图,当Uo 有过压现象时,稳压管击穿导通,经光耦(OT2)R6 到地。