点线面的投影
- 格式:docx
- 大小:37.09 KB
- 文档页数:2
2-2 点、线、面的投影特性一、点的投影1、点的三面投影点是组成物体最基本的几何元素。
如图2-9所示,在三投影面体系中,由空间点A(x,y,z)分别向三投影面作正投影,得其三面投影a(x,y)、a′(x,z)、a″(y,z),即过点A分别作三投影面的垂线,其垂足即为点A的三面投影;展开H面和W面,得到点A的三视图:a 、a′长对正,a′、a″高平齐,a 、a″宽相等,如图2-10所示。
图2-9 点的三面投影图2-10 点的三视图例1 :已知空间点B的两面投影b ,b′,如图2-11所示,求其第三面投影b″。
分析:空间点B的三面投影b 、b′、b″符合“长对正,高平齐,宽相等”的投影规律。
作图: b′与b″高平齐,b与b″宽相等,则其交点即为b″。
图2-11 求点的第三面投影图2-12 求点的三面投影例2 :已知空间点D(5,4,3),如图2-12所示,求其三面投影。
分析:空间点D的三面投影分别为d(x,y)、d′(x,z)、d″(y,z),且符合“长对正,高平齐,宽相等”的投影规律。
作图:分别在三投影轴上取x1=5,y1=4,z1=3,按“长对正,高平齐,宽相等”的投影规律分别作直线段,交点即为空间点D的三面投影(d 、d′、d″)。
2、两点的相对位置空间两点的相对位置是指空间两点间前后、左右、上下的位置关系。
两点在空间的相对位置可以根据两点的坐标值来判定,如图2-13所示。
X坐标确定两点的左右位置关系。
X坐标值大的点在左;Y坐标确定两点的前后位置关系。
Y坐标值大的点在前;Z坐标确定两点的上下位置关系。
Z坐标值大的点在上。
图2-13 两点的相对位置故A点在B点的右,后,上方,即B点在A点的左,前,下方。
3、重影点及其可见性判断若空间两点在某一投影面上的投影重合,则称这两点为该投影面的重影点。
此时,这两点位于同一投射线上,且有两个坐标的值分别相等,不等值的坐标之大小可以确定重影点的可见性,即X、Y、Z坐标值大的点分别位于左方、前方、上方,为可见点,如图2-14所示。
点线面平行投影知识点平行投影是一种常见的投影方法,常用于工程、建筑、制图等领域。
它通过将三维物体投影到一个平面上,呈现出二维的效果,方便我们观察和分析物体的形状和结构。
在平行投影中,点、线和面的投影方式有所不同,下面将逐步介绍这些知识点。
一、点的平行投影点在平行投影中没有大小和形状,只有位置。
点的投影方式非常简单,就是将点投影到平面上的对应位置。
无论点在三维空间中的位置如何,它在平行投影中都只能呈现为一个点。
二、线的平行投影线在平行投影中可以有长度和方向,但厚度为零。
线的投影方式是将线的两个端点分别投影到平面上的对应位置,并在这两个点之间绘制一条直线连接。
线的投影结果在平行投影中仍然是一条直线。
三、面的平行投影面在平行投影中不仅有形状和大小,还有方向和位置。
面的投影方式是将面的各个顶点分别投影到平面上的对应位置,并用直线将这些点连接起来,形成一个多边形。
这个多边形就是面的投影结果。
需要注意的是,面的平行投影只能保留面的外形,无法显示面的内部结构。
四、投影线与平行线在平行投影中,投影线是指从三维物体上的点、线或面上的点,通过垂直投影到平面上的直线。
平行线是指在平面上与投影线平行的直线。
五、平行投影的应用平行投影在工程、建筑、制图等领域广泛应用。
在建筑设计中,平行投影可以用于绘制建筑图纸,展示建筑物的外形和结构。
在制图中,平行投影可以用于绘制机械零件图、电路图等,方便观察和分析物体的形状和结构。
六、平行投影的优点和缺点平行投影的优点是投影结果简洁明了,具有较强的可读性和易于绘制的特点。
它能够保持物体的形状和比例关系,在展示物体外形和结构时非常直观。
然而,平行投影也有一些缺点。
由于投影线是垂直投影到平面上的,因此在观察物体时会出现形变,影响了物体的真实感。
此外,平行投影无法显示物体的阴影和透视效果,有时可能会给人一种单调和平面感较强的视觉效果。
总结:通过以上的介绍,我们了解了点线面在平行投影中的投影方式和特点。
第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。
主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。
2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。
二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。
三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。
2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。
2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。
形成投影线的方法称为投影法(图2-1)。
(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。
1、中心投影法光线由光源点发出,投射线成束线状。
投影的影子(图形)随光源的方向和距形体的距离而变化。
光源距形体越近,形体投影越大,它不反映形体的真实大小。
2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。
平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。
(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。
(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。
用正投影法得到的投影叫正投影。
三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。
透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。
图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。
点线面的投影
投影是几何学中一个重要的概念,用来描述物体在不同维度中的影
子或映像。
在三维空间中,投影通常分为点投影、线投影和面投影三
种形式。
本文将对点线面的投影进行讨论,并探索其在现实生活中的
应用。
一、点的投影
点的投影是指当一个点在一个平面上投影时,与该点连线垂直于平
面的投影点。
这个投影点可以将原始点的位置在平面上进行准确表示,而不会改变该点的其他性质,如颜色、大小等。
在现实生活中,点的投影有着广泛的应用。
例如,在建筑设计中,
建筑师需要通过对建筑物顶部的点进行投影来确定其在平面图上的位置。
同样,在地图制作中,将地球上各个城市的经纬度进行投影来绘
制平面地图也是常见的应用。
二、线的投影
线的投影是指当一条线在三维空间中投影到一个平面上时,将线段
两个端点对应连接起来的线段。
线的投影可以更直观地展示出线在平
面上的位置和方向。
线的投影在工程和制图中有着广泛的应用。
例如,在建筑设计中,
工程师可以通过将建筑物的立面进行投影,来更好地展示建筑物的外
观和形状。
此外,在工程测量中,通过线的投影可以准确地测量出建
筑物内部的各种线段长度和角度,为工程施工提供了重要的参考。
三、面的投影
面的投影是指当一个平面在三维空间中投影到另一个平面上时,将
原始平面的各个顶点在投影平面上对应连接起来的多边形。
面的投影
能够完整地展示出原始平面的形状和大小。
面的投影在几何学和地理学中都有着广泛的应用。
例如,在地图投
影中,通过将地球表面的多个面投影到一个平面上,可以制作出我们
常见的地图样式。
此外,在几何学研究中,通过面的投影可以确定不
同形状的二维图形,为解决问题提供了重要的思路。
总结起来,点线面的投影是几何学中重要的概念,用来描述物体在
不同维度下的影子或映像。
它们在建筑设计、地图制作、工程测量等
领域都有着重要的应用。
通过理解和应用投影,我们可以更好地理解
和展示物体的形状、位置和方向,为解决实际问题提供了有力的工具。
以上是对点线面的投影的简要介绍,希望能够帮助您更好地理解和
应用投影的概念。
通过深入学习和实践,相信您能够在相关领域取得
更进一步的成就。
祝您学习进步,工作顺利!。