天津大学2020~2021 学年第一学期《高等数学》考试试卷
- 格式:docx
- 大小:121.43 KB
- 文档页数:4
天津卷高考数学试卷(文科)一、选择题1.已知全集{1,2,3,4,5,6}U =,集{}2,3,5A =,集合{1,3,4,6}B =,则集合A U C B =I (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}2.设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数的最大值为3y z x =+(A) 7 (B) 8 (C) 9 (D)143.阅读右边的程序框图,运行相应的程序,则输出i 的值为 (A) 2 (B) 3 (C) 4 (D)54.设R x Î,则“12x <<”是“|2|1x -<”的(A) 充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件5.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为F(2,0),且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D) 2213y x -= 6.如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM=2,MD=4,CN=3,则线段NE 的长为 (A)83 (B) 3 (C) 103 (D) 527.已知定义在R上的函数||()21(m )x m f x -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,b,c a ,的大小关系为(A) b c a << (B) b c a << (C) b a c << (D) b c a <<8.已知函数22||,2()(2),2x x f x x x ì-?ï=í->ïî,函数()3(2)g x f x =--,则函数y ()()f x g x =-的零点的个数为(A) 2 (B) 3 (C)4 (D)5二:填空题:本大题共6小题,每小题5分,共30分。
天津市河西区2020-2021学年高一上学期期末考试试卷一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 510-是( ) A. 第一象限角 B. 第二象限角 C. 第三象限角D. 第四象限角『答案』C 『解析』5102102360-=-⨯,210为第三象限角,则510-是第三象限角.故选:C.2. 设0a >,则下列运算正确的是( )A. 4334a a a =B. 414a a ⎛⎫= ⎪⎝⎭C. 22330a a-= D. 2332a a a ÷=『答案』B『解析』对A ,443333441225a a aa +==,故A 错误;对B ,411444=a a a ⋅⎛⎫= ⎪⎝⎭,故B 正确;对C ,2223023331a aa a--===,故C 错误; 对D ,2123313a a a a -=÷=,故D 错误.故选:B3. 已知集合{}2log ,1A y y x x ==>,1,12x B y y x ⎧⎫==>⎨⎬⎩⎭,则A B =( ) A.102y y ⎧⎫<<⎨⎬⎩⎭ B.{}01y y <<C. 112y y ⎧⎫<<⎨⎬⎩⎭ D. ∅『答案』A『解析』因为对数函数2log y x=为增函数,当1x >时,22log log 10x >=,即{}0A y y =>,因为指数函数12xy =为减函数,当1x >时,11022x <<,即102B y y ⎧⎫=<<⎨⎬⎩⎭, 因此,102A B y y ⎧⎫⋂=<<⎨⎬⎩⎭. 故选:A.4. 已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为( ) A. 4cm B. 6cm C. 8cm D. 10cm『答案』C『解析』由题意,设扇形所在圆的半径为R ,则扇形的弧长为4l R =,所以242612l R R R R +=+==,解得2R =,所以扇形的弧长为428cm =⨯=l , 故选C.5. 若(0,1)x ∈,则下列结论正确的是( ) A. 122lg xx x >>B. 122lg xx x >>C.122lg xx x >>D. 12lg 2xx x >>『答案』A『解析』根据指数函数的单调性,可知当(0,1)x ∈时,2(1,2)xy =∈; 根据幂函数的单调性,可知当(0,1)x ∈时,12(0,1)y x =∈; 根据对数函数的单调性,可知当(0,1)x ∈时,()lg ,0y x =∈-∞,所以122lg xx x >>.故选:A.6. 在下列区间中,方程e 430xx +-=的解所在的区间为( )A. 1,04⎛⎫- ⎪⎝⎭B. 11,42⎛⎫ ⎪⎝⎭ C.10,4⎛⎫ ⎪⎝⎭ D. 13,24⎛⎫ ⎪⎝⎭『答案』B『解析』设函数()()e 43,e 40'=+-=+>x x f x x f x ,所以()f x 是增函数,1102⎛⎫=> ⎪⎝⎭f ,1114441e 2e 1604⎛⎫=-=-< ⎪⎝⎭f , 方程e 430xx +-=的解所在的区间为11,42⎛⎫ ⎪⎝⎭.故选:B7. 已知()0,πα∈,sin cos 3αα+=,则cos2=α( )A.B.C.D.『答案』A『解析』()0,πα∈,sin cos αα+=,两边平方后得:112sin cos 3αα+=,即1sin cos 3αα=-,sin 0α∴>,cos 0α<,()215cos sin 12sin cos 1233αααα⎛⎫-=-=-⨯-= ⎪⎝⎭,cos sin αα∴-=,则()()22cos 2cos sin cos sin cos sin ααααααα=-=-+==.故选:A.8. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y=e kx+b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( ) A. 16小时 B. 20小时 C. 24小时D. 28小时『答案』C『解析』由题意得192e =b①,222248k b k be e e +=⋅=②.将①代入②得22e14=k,则111e 2=k, 当33x =时,333331e e e 192242+⎛⎫==⋅=⨯= ⎪⎝⎭k bk b y .故选:C9. 已知函数()()()()sin 0,πωϕωϕωϕ=+++><f x x x 的最小正周期为π,()f x 的图象关于y 轴对称,且在区间π0,4⎡⎤⎢⎥⎣⎦上单调递增,则函数()()2cos g x x ωϕ=+在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为( )A. 2⎡⎤⎣⎦ B.[]1,2-C.[]2,1-D. ⎡⎤⎣⎦ 『答案』A『解析』由题可知,函数()sin())(0,||π)ωϕωϕωϕ=++><f x x x ,则π()sin())2sin()3ωϕωϕωϕ=+++=++f x x x x ,由于()f x 的最小正周期为2ππω=,2ω∴=,π()2sin(2)3ϕ∴=++f x x ,又已知()f x 的图象关于y 轴对称, πππ+32ϕ∴+=k ,∈k Z ,则ππ,6ϕ=-∈k k Z , ()f x 在区间[π0,]4上单调递增,可以令56π=-ϕ,此时()2cos2f x x =-,则函数5π()2cos()2cos(2)6ωϕ=+=-g x x x , 所以在区间π[0,]2上,则5π5π2[66-∈-x ,π]6,得5πcos(2)[6-∈x 1],所以()[g x ∈2], 即()g x的值域为[2]. 故选:A .二、填空题:本大题共6小题,每小题5分,共30分.请将『答案』填在题中横线上.10.5πcos3=______________.『答案』12『解析』5π1coscos 2πcos 3332ππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故『答案』为:12.11. 若()234log log log 0x =⎡⎤⎣⎦,则x =________.『答案』64 『解析』()()42334log log log 0log log 1x x =⇒=⎡⎤⎣⎦34log 3464x x ⇒=⇒==.故『答案』为:6412. 将函数2sin 2y x =的图象向左平移π12个单位长度,再将图象上每个点的横坐标和纵坐标都变为原来的12倍,则所得图象的函数『解析』式为______________.『答案』πsin 46⎛⎫=+⎪⎝⎭y x 『解析』将函数2sin 2y x =的图象向左平移π12个单位长度, 得到ππ2sin 22sin 2126⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦y x x , 再将图象上每个点的横坐标和纵坐标都变为原来的12倍,所得函数的『解析』式为πsin 46⎛⎫=+⎪⎝⎭y x . 故『答案』为:πsin 46⎛⎫=+⎪⎝⎭y x . 13. 若函数xy a =(0a >,且1a ≠),在[]2,3上的最大值比最小值大22a ,则a = ______________.『答案』12或32.『解析』若01a <<,则函数()xf x a =在区间[]2,3上单调递减,所以2max ()5f x a =-,3min ()5f x a =-,由题意得2232a a a -=,又01a <<,故12a =; 若1a >,则函数()xf x a =在区间[]2,3上单调递增,所以3max ()5f x a =-,2min ()5f x a =-,由题意得2322a a a -=,又1a >,故32a =. 所以a 的值为12或32.14. 如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x bωϕ=++,则这段曲线的函数『解析』式为______________.『答案』π3π10sin 2084⎛⎫=++⎪⎝⎭y x ,[]6,14x ∈『解析』由图象可知,max30y=,min10y =,max min 102y y A -∴==,max min202y y b +==,从题图中可以看出,从614时是函数()sin y A x bωϕ=++的半个周期,则()214616T =⨯-=,2ππ8ω∴==T . 又π102π2π8ϕ⨯+=+k ,∈k Z ,得()3π2π4ϕ=+∈k k Z ,取3π4ϕ=, 所以π3π10sin 2084⎛⎫=++⎪⎝⎭y x ,[]6,14x ∈. 故『答案』为:π3π10sin 2084⎛⎫=++⎪⎝⎭y x ,[]6,14x ∈.15. 已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是__________『答案』[)1,-+∞『解析』画出函数()f x 的图像,e =x y 在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点,此时满足1a -≤,即1a ≥-,故『答案』为:[)1,-+∞.三、解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16. 已知π,π2α⎛⎫∈ ⎪⎝⎭,3tan 4α=-.(1)求tan 2α的值;(2)求sin 2cos 5cos sin αααα+-的值;(3)求πsin 26α⎛⎫- ⎪⎝⎭的值. 『解』(1)2232()2tan 244tan 2===-31-tan 71-()4ααα⨯--(2) 3-2sin 2cos tan 254===35cos sin 5tan 235-4αααααα⎛⎫+ ⎪++⎝⎭--⎛⎫- ⎪⎝⎭(3) 222232()2sin cos 2tan 244sin 2====-3sin cos 1+tan 251+()4ααααααα⨯-+- 2222222231-()cos sin 1-tan 74cos2====3sin cos 1+tan 251+()4ααααααα--+-π12417sin 2=2cos 2=62222522550ααα-⎛⎫⎛⎫∴--⨯--⨯=⎪ ⎪⎝⎭⎝⎭17. 已知函数1()21xf x m =++(m ∈R )是奇函数.(1)求实数m 的值;(2)求不等()23010f x x -+<的解集.『解』(1)由1()21xf x m =++的定义域为R ,可得1(0)02f m =+=,可得12m =-;(2)由(1)知11()212x f x =++,由2x为增函数,所以21x+为增函数,且211x+>,所以121x+为减函数,可得11()212x f x =++在R 上为减函数, 由()23010f x x -+<,可得()2310f x x -<-, 由211113(2)=2125210f =--=-+,即()2(2)f x x f -<, 由11()212x f x =++在R 上为减函数,所以22x x ->,即220x x -->,所以1x <-或2x >,故解集为()(),12,-∞-+∞.18. 已知函数()()21cos cos 2=+-∈f x x x x x R (1)求()f x 的最小正周期; (2)讨论()f x 在区间ππ-,44⎡⎤⎢⎥⎣⎦上的单调性; 『解』(1)依题意,()211cos21πcos cos 2sin 222226+⎛⎫=-=+-=+ ⎪⎝⎭x f x x x x x x 所以2ππω==T .(2)依题意,令πππ2π22π262-+≤+≤+k x k ,∈k Z , 解得ππππ36-+≤≤+k x k , 所以()f x 的单调递增区间为πππ,π36⎡⎤-++⎢⎥⎣⎦k k ,∈k Z .设ππ-,44⎡⎤=⎢⎥⎣⎦A,πππ,π36⎡⎤=-++⎢⎥⎣⎦B k k,易知ππ-,46⎡⎤=⎢⎥⎣⎦A B,所以当ππ-,44⎡⎤∈⎢⎥⎣⎦x时,()f x在区间ππ-,46⎡⎤⎢⎥⎣⎦上单调递增;在区间ππ,64⎡⎤⎢⎥⎣⎦上单调递减.。
天津大中学2020-2021学年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线y=﹣x+1的倾斜角是()A. 30°B. 45°C. 135°D. 150°参考答案:C【分析】由直线方程可得直线的斜率,进而可得倾斜角.【详解】直线y=﹣x+1的斜率为﹣1,设倾斜角为α,则tanα=﹣1,∴α=135°故选:C.【点睛】本题考查直线的倾斜角和斜率的关系,属基础题.2.参考答案:A3. 等于( )(A)(B)(C)(D)参考答案:C略4. 下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=|x|(x∈R)B.y=﹣x3(x∈R)C.D.参考答案:B【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据偶函数、奇函数的定义,减函数的定义,奇函数图象的对称性,以及反比例函数在定义域上的单调性即可判断每个选项的正误,从而找出正确选项.【解答】解:A.y=|x|是偶函数,不是奇函数,∴该选项错误;B.﹣(﹣x)3=﹣(﹣x3),∴y=﹣x3是奇函数;x增大时,x3增大,﹣x3减小,即y减小;∴y=﹣x3在定义域R上是减函数,∴该选项正确;C.的图象不关于原点对称,不是奇函数,∴该选项错误;D.在定义域上没有单调性,∴该选项错误.故选:B.【点评】考查奇函数和偶函数的定义,以及减函数的定义,奇函数图象的对称性,反比例函数的单调性,要熟悉指数函数的图象.5. 已知向量与向量满足||=3,||=2,||=2,则与的夹角为()A.B.C.D.参考答案:C【考点】数量积表示两个向量的夹角.【分析】设与的夹角为θ,由条件利用两个向量的数量积的定义,求得cosθ的值,可得θ的值.【解答】解:设与的夹角为θ,∵||=3,||=2,||=2,∴4+4+=4×13,即4×9+4×3×2×cosθ+4=4×13,求得cosθ=,∴θ=,故选:C.6. 已知集合A={x|y=log2x,y<0},,则A∪B=( ) A.(0,1)B.C.D.(﹣∞,1)参考答案:A【考点】并集及其运算.【专题】集合思想;数形结合法;集合.【分析】根据指数函数与对数函数的性质,化简集合A、B,求出A∪B即可.【解答】解:∵A={x|y=log2x,y<0}={x|0<x<1}=(0,1),={y|<y<1}=(,1),∴A∪B=(0,1)∪(,1)=(0,1).故选:A.【点评】本题考查了集合的运算与应用问题,也考查了函数的性质与应用问题,是基础题目.7. 已知,则函数的解析式为()参考答案:C8. 函数恒过定点()....参考答案:D略9. 若函数f(x)=|x|+(a>0)没有零点,则a的取值范围是()A.B.(2,+∞)C.D.(0,1)∪(2,+∞)参考答案:D【考点】函数的零点与方程根的关系.【专题】数形结合;转化法;函数的性质及应用.【分析】根据函数f(x)没有零点,等价为函数y=与y=﹣|x|的图象没有交点,在同一坐标系中画出它们的图象,即可求出a的取值范围.【解答】解:令|x|+=0得=﹣|x|,令y=,则x2+y2=a,表示半径为,圆心在原点的圆的上半部分,y=﹣|x|,表示以(0,)端点的折线,在同一坐标系中画出它们的图象:如图,根据图象知,由于两曲线没有公共点,故圆到折线的距离小于1,或者圆心到折线的距离大于半径,∴a的取值范围为(0,1)∪(2,+∞)故选:D.【点评】本题主要考查函数与方程的应用,利用条件构造函数,转化为两个函数的图象相交问题,利用数形结合是解决本题的关键.10. 若集合,,则=()A. B. C. D.参考答案:A略二、 填空题:本大题共7小题,每小题4分,共28分11. 若函数在上是减函数,则实数的取值范围是____________.参考答案:略12. 计算:= ;参考答案: 1略13. 已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为参考答案:3614. 已知线段AB 上有9个确定的点(包括端点A 与B ).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点A 上标1,称为点1,然后从点1开始数到第二个数,标上2,称为点2,再从点2开始数到第三个数,标上3,称为点3(标上数n 的点称为点n ),……,这样一直继续下去,直到1,2,3,…,2019都被标记到点上,则点2019上的所有标记的数中,最小的是_______.参考答案:3 【分析】将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得。
天津市高三数学上学期期末模拟试卷含答案第Ⅰ卷(共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}04|{2≤-=x x A ,集合}01|{>-=x x B ,则=B A ( ) A . )2,1( B . ]2,1( C .)1,2[- D .)1,2(- 2.“4πα=”是“02cos =α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要3.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥01209320y x y x x ,则目标函数y x z 2+=的取值范围是( )A .),6[+∞B .),5[+∞C .]6,5[D . ]5,0[4.阅读如图所示的程序框图,若输入的b a ,分别为1,2,运行相应的程序,则输出S 的值为( )A .320 B .516 C. 27 D .815 5.已知双曲线22221x y a b-=(0,0)a b >>的一个焦点为)0,2(-F ,且双曲线的两条渐近线的夹角为060,则双曲线的方程为( )A .1322=-y x B .12622=-y x C. 1322=-y x 或1322=-y x D .1322=-y x 或12622=-y x 6.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知B C 2sin sin =,且2=b ,3=c ,则a 等于( ) A .21B .3 C. 2 D .32 7.如图,平面四边形ABCD 中,090=∠=∠ADC ABC ,2==CD BC ,点E 在对角线AC 上,44==AE AC ,则ED EB •的值为( )A . 17B .13 C. 5 D .18.已知函数xxe e xf -+=)((其中e 是自然对数的底数),若当0>x 时,1)(-+≤-m e x mf x恒成立,则实数m 的取值范围为( )A .)31,0( B .]31,(--∞ C. ),31[+∞ D .]31,31[-第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知i 为虚数单位,则=+-ii12 . 10.在6)12(xx -的展开式中2x 的系数为 .(用数字作答) 11.一个四棱柱的三视图如图所示,该四棱柱的体积为 .12.已知曲线3x y =与直线)0(>=k kx y 在第一象限内围成的封闭图形的面积为4,则=k .13.在平面直角坐标系xOy 中,已知抛物线⎩⎨⎧==t y t x 442(t 为参数)的焦点为F ,动点P 在抛物线上,动点Q 在圆⎩⎨⎧=+=ααsin cos 3y x (α为参数)上,则||||PQ PF +的最小值为 .14.已知函数⎪⎩⎪⎨⎧>≤+=0|,ln |0,131)(x x x x x f ,若函数0)(=-ax x f 恰有3个零点,则实数a 的取值范围为 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数x x x x x f cos sin 32sin cos )(22+-=,R x ∈.(1)求)(x f 的最小正周期; (2)求)(x f 在区间]4,6[ππ-上的最大值与最小值. 16.某大学现有6名包含A 在内的男志愿者和4名包含B 在内的女志愿者,这10名志愿者要参加第十三届全运会支援服务工作,从这些人中随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.(1)求参加田赛服务工作的志愿者中包含A 但不包含B 的概率;(2)设X 表示参加径赛服务工作的女志愿者人数,求随机变量X 的分布列与数学期望.17. 在如图所示的几何体中,AC DE //,90=∠=∠ACD ACB ,32==DE AC ,2=BC ,1=DC ,二面角E AC B --的大小为060.(1)求证:⊥BD 平面ACDE ;(2)求平面BCD 与平面BAE 所成的角(锐角)的大小;(3)若F 为AB 的中点,求直线EF 与平面BDE 所成的角的大小. 18. 已知}{n a 是等比数列,满足21=a ,且432,2,a a a +成等差数列. (1)求}{n a 的通项公式;(2)设n n na b 2=,数列}{n b 的前n 项和为n S ,4792)(2-+-=n S n n n g ),2(*N n n ∈≥,求正整数k 的值,使得对任意2≥n 均有)()(n g k g ≥.19. 设椭圆22221(0)x y a b a b +=>>的左焦点为1F ,离心率为21,1F 为圆0152:22=-++x y x M 的圆心.(1)求椭圆的方程;(2)已知过椭圆右焦点2F 的直线l 交椭圆于B A ,两点,过2F 且与l 垂直的直线1l 与圆M 交于D C ,两点,求四边形ACBD 面积的取值范围. 20. 已知函数)1(ln )(x a x x f -+=,R a ∈. (1)讨论)(x f 的单调性;(2)当21-=a 时,令)(21)(2x f x x g --=,其导函数为)('x g ,设21,x x 是函数)(x g 的两个零点,判断221x x +是否为)('x g 的零点?并说明理由.高三数学(理)参考答案一、选择题: 1-8CABDC CDB 二、填空题: 9.1322i - 10.240 11.36 12.4 13.3 14.11,3e ⎡⎫⎪⎢⎣⎭三、解答题:(15)解:(Ⅰ)()22cos sin cos f x x x x x =-+cos 22x x =+12cos 2sin 22sin 2226x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭所以22T ππ==,所以()f x 的最小正周期为π. (Ⅱ)由,64x ππ⎡⎤∈-⎢⎥⎣⎦,得22,663x πππ⎡⎤+∈-⎢⎥⎣⎦, 所以当2,662x πππ⎡⎤+∈-⎢⎥⎣⎦,即,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递增; 当22,623x πππ⎡⎤+∈⎢⎥⎣⎦,即,64x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减; 且当266x ππ+=-,即6x π=-时,1sin 262x π⎛⎫+=- ⎪⎝⎭,此时()=1f x -; 当262x ππ+=,即6x π=时,sin 216x π⎛⎫+= ⎪⎝⎭,此时()=2f x ;当2263x ππ+=,即4x π=时,sin 262x π⎛⎫+= ⎪⎝⎭,此时()f x 所以当6x π=-时,()f x 取得最小值1-;当6x π=时,()f x 取得最大值2(16)解:(I )记参加田赛服务工作的志愿者中包含A 但不包含B 的事件为M , 则基本事件的总数为510C ,事件M 包含基本事件的个数为48C ,则()48510518C P M C ==.(II)由题意知X 可取的值为:0,1,2,3,4.则()5651010,42C P X C === ()416451051,21C C P X C === ()3264510102,21C C P X C ===()236451053,21C C P X C === ()146451014,42C C P X C ===因此X 的分布列为X 的数学期望是()()()()()()0011223344E X P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==151******** 2.4221212142⨯+⨯+⨯+⨯+⨯= (17)解:方法一:(I )因为90ACB ACD ∠=∠=,则AC CD ⊥,AC CB ⊥, 所以BCD ∠为二面角B AC E --的平面角,即60BCD ∠=, 在BCD ∆中,2BC =,1DC =,60BCD ∠=,所以214122132BD =+-⨯⨯⨯=,所以222BD DC BC +=,即BD DC ⊥, 由AC CD ⊥,AC CB ⊥,且BC DC C =,可知AC ⊥平面BCD ,又BD ⊂平面BCD ,所以AC BD ⊥, 又因为ACDC C =,AC ⊂平面ACDE ,DC ⊂平面ACDE ,所以BD ⊥平面ACDE .(II )由BD ⊥平面ACDE 得BD DC ⊥,BD DE ⊥,又AC CD ⊥,即DB ,DC ,DE 两两垂直,则以DB ,DC ,DE 分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示.由(I )知3BD =则()0,0,0D ,)30,0B,()0,1,0C ,由23AC DE ==得30,0,2E ⎛⎫⎪⎝⎭,()0,1,3A 依题意30,1,2AE ⎛⎫=--⎪⎝⎭,()31,3AB =--,设平面BAE 的一个法向量为(),,n x y z =,则00n AE n AB ⎧⋅=⎪⎨⋅=⎪⎩,即302330y z x y z ⎧--=⎪--=,不妨设3y =,可得()3,3,2n =--,由AC ⊥平面BCD 可知平面BCD 的一个法向量为()0,0,3AC = 设平面BCD 与平面BAE 所成的角(锐角)为θ,所以61cos cos ,432n AC n AC n ACθ⋅====⨯,于是=3πθ, 所以平面BCD 与平面BAE 所成的角(锐角)为3π. (III )若F 为AB 的中点,则由(II )可得313,,222F ⎛⎫⎪ ⎪⎝⎭,所以31,,022EF ⎛⎫= ⎪ ⎪⎝⎭,依题意CD ⊥平面BDE ,可知平面BDE 的一个法向量为()0,1,0DC =, 设直线EF 与平面BDE 所成角为α,则1sin cos ,2DC EF DC EF DC EFα⋅===,所以直线EF 与平面BDE 所成角的大小6π.方法二:(I )因为90ACB ACD ∠=∠=,则AC CD ⊥,AC CB ⊥, 所以BCD ∠为二面角B AC E --的平面角,即60BCD ∠=, 在BCD ∆中,2BC =,1DC =,60BCD ∠=,所以214122132BD =+-⨯⨯⨯=,所以222BD DC BC +=,即BD DC ⊥, 由AC CD ⊥,AC CB ⊥,且BC DC C =,可知AC ⊥平面BCD ,又BD ⊂平面BCD ,所以AC BD ⊥, 又因为ACDC C =,AC ⊂平面ACDE ,DC ⊂平面ACDE ,所以BD ⊥平面ACDE .(Ⅱ)令CD AE ,的延长线的交点为G ,连BG 。
2020-2021学年天津市师大南开附中高二(上)第一次月考数学试卷一、选择题(本大题共9小题,共45.0分)1.(5分)直线l经过原点和(1,﹣1),则它的倾斜角是()A.45°B.﹣45°C.135°D.45°或135°2.(5分)与向量=(﹣1,﹣2,2)共线的单位向量是()A.(﹣,﹣,)和(,,﹣)B.(﹣,﹣,)C.(,,﹣)D.(﹣,﹣,﹣)或(,,﹣)3.(5分)如图,在平行六面体ABCD﹣A1B1C1D1中,底面是边长为1的正方形,若∠A1AB =∠A1AD=60°,且A1A=3,则A1C的长为()A.B.C.D.4.(5分)过点M(﹣2,a),N(a,4)的直线的斜率为﹣,则|MN|=()A.10B.180C.6D.65.(5分)设点A(2,﹣3),B(﹣3,﹣2),直线l过P(1,1)且与线段AB相交,则l 的斜率k的取值范围是()A.{k|k≥或k≤﹣4}B.{k|﹣4≤k≤}C.{k|﹣≤k<4}D.以上都不对6.(5分)若光线从点P(﹣3,3)射到y轴上,经y轴反射后经过点Q(﹣1,﹣5),则光线从点P到点Q走过的路程为()A.10B.5+C.4D.27.(5分)直三棱柱ABC﹣A′B′C′中,AC=BC=AA′,∠ACB=90°,E为BB′的中点.异面直线CE与C′A所成角的余弦值是()A.B.C.D.8.(5分)已知直线l的倾斜角为π,直线l1经过点A(3,2)、B(a,﹣1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于()A.﹣4B.﹣2C.0D.29.(5分)如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为()A.(1,1,1)B.(,,1)C.(,,1)D.(,,1)二、填空题(本大题共8小题,共40.0分)10.(5分)已知=(λ+1,0,2),=(6,2μ﹣1,2λ),若∥.且与反向,则λ+μ=.11.(5分)已知=(﹣2,1,3),=(3,﹣4,2),=(7,λ,5),若,,共面,则实数λ=.12.(5分)若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则直线与平面的位置关系是.13.(5分)长方体ABCD﹣A1B1C1D1中,AA1=5,AB=12,那么直线B1C1和平面A1BCD1的距离是.14.(5分)经过点P(﹣2,﹣3),在x轴、y轴上截距相等的直线方程是.15.(5分)设,是空间两个不共线的向量,已知=+k,=5+4,=﹣﹣2,且A,B,D三点共线,则实数k=.16.(5分)已知直线l1:ax﹣y+a+1=0,直线l2:3x+(a﹣4)y+3=0,若l1∥l2,则实数a 的值为.17.(5分)如图,在正四棱锥P﹣ABCD中,P A=AB,点M为P A的中点,=λ.若MN⊥AD,则实数λ=.三、解答题(本大题共4小题,共65.0分)18.已知直线l1:x﹣2y+3=0与直线l2:2x+3y﹣8=0的交点为M.(Ⅰ)求过点M且与直线l3:3x﹣y+1=0平行的直线l的方程;(Ⅱ)若直线l'过点M,且点P(0,4)到l'的距离为,求直线l'的方程.19.已知空间三点A(﹣2,0,2),B(﹣1,1,2),C(﹣3,0,4),设=,=(1)若||=3,∥,求;(2)若k+与k﹣2互相垂直,求k;(3)若向量k+与+k平行,求k.20.已知△ABC的三个顶点分别为A(0,4),B(﹣2,6),C(﹣8,0).(1)求边AC和AB所在直线的方程;(2)求AC边上的中线BD所在直线的方程;(3)求AC边上的中垂线的方程.21.在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=3AD=3AB=3,AD⊥DC,AB∥DC,E为DC上一点,且DE=1.(1)求证:D1E∥平面A1BD;(2)求二面角B﹣A1D﹣E的正弦值.参考答案与试题解析一、选择题(本大题共9小题,共45.0分)1.【分析】利用斜率的计算公式先求出直线的斜率,再利用正切函数求出直线的倾斜角.【解答】解:∵直线l经过坐标原点和点(1,﹣1),∴直线l的斜率k==﹣1,∴直线l的倾斜角α=135°.故选:C.2.【分析】求出=(﹣1,﹣2,2)的||,再由与共线的单位向量是±,求出结果.【解答】解:∵向量=(﹣1,﹣2,2)的模为||==3,故与向量=(﹣1,﹣2,2)共线的单位向量是±,即=(﹣,﹣,)或﹣=(,,﹣).故选:A.3.【分析】用空间向量解答.【解答】解:∵=+﹣;∴2=(+﹣)2;即2=•+•﹣•+•+•﹣•﹣(•+•﹣•)=1+0﹣3×1×cos60°+0+1﹣3×1×cos60°﹣(3×1×cos60°+3×1×cos60°﹣9);=1﹣+1﹣﹣+9=5,∴A1C=.故选:A.4.【分析】根据直线MN的斜率求出a的值,再计算|MN|的值.【解答】解:∵过点M(﹣2,a),N(a,4)的直线斜率为k==﹣,解得a=10;∴|MN|===6.故选:D.5.【分析】根据题意,设直线l的方程为y﹣1=k(x﹣1),即kx﹣y+1﹣k=0,由一元二次不等式的几何意义可得(2k+3+1﹣k)(﹣3k+2+1﹣k)≤0,解可得k的取值范围,即可得答案.【解答】解:根据题意,设直线l的方程为y﹣1=k(x﹣1),即kx﹣y+1﹣k=0,直线l过P(1,1)且与线段AB相交,则A、B在l的两侧或在直线上,则有(2k+3+1﹣k)(﹣3k+2+1﹣k)≤0,即(k+4)(4k﹣3)≥0,解可得k≥或k≤﹣4,即k的取值范围是{x|k≥或k≤﹣4};故选:A.6.【分析】首先求出点Q关于y轴的对称点的坐标M,进一步利用两点间的距离公式的应用求出结果.【解答】解:光线从点P(﹣3,3)射到y轴上,经y轴反射后经过点Q(﹣1,﹣5),则首先求出点Q(﹣1,﹣5)关于y轴的对称点的坐标为M(1,﹣5),所以光线从点P到点Q走过的路程为|MP|==4,故选:C.7.【分析】以C为原点,CA为x轴,CB为y轴,CC′为z轴,建立空间直角坐标系,利用向量法能求出异面直线CE与C′A所成角的余弦值.【解答】解:直三棱柱ABC﹣A′B′C′中,AC=BC=AA′,∠ACB=90°,E为BB′的中点.以C为原点,CA为x轴,CB为y轴,CC′为z轴,建立空间直角坐标系,设AC=BC=AA′=2,则C(0,0,0),E(0,2,1),C′(0,0,2),A(2,0,0),=(0,2,1),=(2,0,﹣2),设异面直线CE与C′A所成角为θ,则cosθ===.∴异面直线CE与C′A所成角的余弦值为.故选:D.8.【分析】先求出l的斜率,利用垂直关系可得l1的斜率,由斜率公式求出a的值,由l1∥l2得,﹣=1,解得b值,可得结果.【解答】解:∵l的斜率为﹣1,则l1的斜率为1,∴k AB==1,∴a=0.由l1∥l2得,﹣=1,得b=﹣2,所以,a+b=﹣2.故选:B.9.【分析】设AC、BD交于点O,连结OE,由已知推导出OAME是平行四边形,从而M 是EF的中点,由此能求出点M的坐标.【解答】解:设AC、BD交于点O,连结OE,∵正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上,且AM∥平面BDE,∴AM∥OE,又AO∥EM,∴OAME是平行四边形,∴M是EF的中点,∵E(0,0,1),F(),∴M().故选:C.二、填空题(本大题共8小题,共40.0分)10.【分析】根据题意可设,且k<0,然后可得出,根据k<0解出λ,μ即可得出λ+μ的值.【解答】解:∵,且与反向,∴设,k<0,∴(6,2μ﹣1,2λ)=k(λ+1,0,2),∴,∵k<0,∴解得,∴.故答案为:.11.【分析】由空间向量的共面定理,列出方程组求出实数λ的值.【解答】解:由=(﹣2,1,3),=(3,﹣4,2),=(7,λ,5),且,,共面,所以存在实数m,n,使得,即(7,λ,5)=m(﹣2,1,3)+n(3,﹣4,2),列方程组,得,解得,;所以.故答案为:.12.【分析】利用向量共线定理、线面垂直的判定定理即可判断出.【解答】解:∵=﹣2,∴,因此l⊥α.故答案为:l⊥α.13.【分析】结合长方体,将原距离转化为点B1和平面A1B的距离解决,最终转化为直角三角形斜边上的高求解即可.【解答】解:∵直线B1C1和∥平面A1BCD1,∴直线B1C1和平面A1BCD1的距离即为点B1和平面A1BCD1的距离.∵面ABB1A1⊥面A1BCD1,在面ABB1A1内过B1作A1B的垂线,即为面A1BCD1的垂线,也就是直角三角形A1BB1斜边上的高d,由面积法得:d=.故答案为:.14.【分析】分类讨论,当直线过原点,即截距都为零,易得直线方程;当直线不过原点,由截距式,设出直线方程,把P点坐标带入,能求出结果.【解答】解:当直线过原点,即截距都为零时,直线经过原点(0,0),P(﹣2,﹣3),直线方程为,整理,得直线方程为3x﹣2y=0;当直线不过原点,由截距式,设直线方程为,把P(﹣2,﹣3)代入,得x+y+5=0.故答案为:x+y+5=0或3x﹣2y=015.【分析】由题意可得向量和共线,存在实数λ,使=λ,可得关于k,λ的方程组,进行求解即可.【解答】解:∵A,B,D三点共线,∴向量和共线,故存在实数λ,使=λ,由题意可得=+=(5+4)+(+2)=6(+),即+k=6λ+6λ,故可得,解得,故k=1,故答案为:1.16.【分析】由题意利用两条直线平行的条件,求得a的值.【解答】解:直线l1:ax﹣y+a+1=0,直线l2:3x+(a﹣4)y+3=0,若l1∥l2,显然a≠4,=≠,解得a=1,或a=3,故答案为:1或3.17.【分析】连结AC,交BD于O,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出实数λ.【解答】解:连结AC,交BD于O,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,设P A=AB=2,则A(,0,0),D(0,﹣,0),P(0,0,),M(,0,),B(0,,0),=(0,﹣2,0),设N(0,b,0),则=(0,b﹣,0),∵=λ,∴﹣2=,∴b=,∴N(0,,0),=(﹣,,﹣),=(﹣,0),∵MN⊥AD,∴=1﹣=0,解得实数λ=4.故答案为:4.三、解答题(本大题共4小题,共65.0分)18.【分析】(I)联立,解得:M坐标.可得与l3平行的的直线方程.(II)当斜率不存在时,不合题意;当斜率存在时,设l:y﹣2=k(x﹣1),即:kx﹣y+2﹣k =0.利用点到直线的距离公式即可得出.【解答】解:(I)联立,解得:M(1,2).所以:与l3平行的的直线方程为:y﹣2=3(x﹣1),整理得:3x﹣y﹣1=0.(II)当斜率不存在时,不合题意;当斜率存在时,设l:y﹣2=k(x﹣1),即:kx﹣y+2﹣k=0.由题得:,解得:4k2﹣4k+1=0,;所以,所求直线的方程为:x﹣2y+3=0.19.【分析】(1)根据空间向量的坐标表示与共线定理,利用模长公式,即可求出;(2)利用两向量垂直数量积为0,列方程求出k的值;(3)根据向量共线定理,列出方程求出k的值.【解答】解:(1)点A(﹣2,0,2),B(﹣1,1,2),C(﹣3,0,4),∴=(﹣2,﹣1,2),由∥,设=(﹣2x,﹣x,2x),且x≠0,∴=4x2+x2+4x2=9x2=9,解得x=±1,∴=(2,1,﹣2)或=(﹣2,﹣1,2);(2)==(1,1,0),==(﹣1,0,2),若k+与k﹣2互相垂直,则(k+)•(k﹣2)=0,∴k2﹣k•﹣2=0,即k2•(12+12+02)﹣k•(﹣1+0+0)﹣2•[(﹣1)2+02+22]=0,化简得2k2+k﹣10=0,解得k=﹣或k=2;(3)向量k+=(k﹣1,k,2),+k=(1﹣k,1,2k),由向量k+与+k平行,则,解得k=1或k=﹣1.20.【分析】(1)由于A、C两点分别在y轴和x轴,由直线方程的截距式列式,化简可得AC所在直线的方程;再由A、B的坐标,利用直线方程的两点式列式,化简即可得出AB所在直线的方程.(2)利用线段中点坐标公式,算出AC的中点D坐标为(﹣4,2),利用直线方程的两点式列式,化简即可得出AC上的中线BD所在直线的方程.(3)由,得AC边上的中垂线的斜率为﹣2,AC的中点坐标为(﹣4,2),点斜式可求出直线方程.【解答】解:(1)∵A(0,4),C(﹣8,0),∴直线AC的截距式方程得:,化简得x﹣2y+8=0.∵B(﹣2,6),A(0,4),∴由直线的两点式方程,得AB方程为,即x+y﹣4=0,综上所述,边AC所在直线的方程为x﹣2y+8=0,边AB所在直线的方程为x+y﹣4=0.(2)设中点D(x,y),由线段的中点坐标公式,可得,,∴AC中点D坐标为(﹣4,2).再由直线的两点式方程,得BD所在直线的方程为,化简得2x﹣y+10=0,即为所求边AC上的中线BD所在的直线的方程.(3)由,得AC边上的中垂线的斜率为﹣2,又AC的中点坐标为(﹣4,2),由点斜式,得AC边上的中垂线的方程为y﹣2=﹣2(x+4),即2x+y+6=0.21.【分析】(1)先证明四边形A1BED1为平行四边形,可得D1E∥A1B,由此得证D1E∥平面A1BD;(2)建立空间直角坐标系,求出平面A1BD以及平面A1DE的法向量,利用向量夹角公式先求得两个法向量的余弦值,进而求得二面角B﹣A1D﹣E的正弦值.【解答】解:(1)证明:∵AB∥DC,AB=1,DE=1,∴四边形ABED为平行四边形,又AD⊥DC,AD=1,∴平行四边形ABED为正方形,∴AD∥BE,且AD=BE=1,又四棱柱ABCD﹣A1B1C1D1直四棱柱,∴AD∥A1D1,且AD=A1D1=1,∴,∴四边形A1BED1为平行四边形,∴D1E∥A1B,又D1E不在平面A1BD内,A1B在平面A1BD内,∴D1E∥平面A1BD;(2)依题意,以点D为坐标原点,射线DA,DC,DD1分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(1,1,0),A1(1,0,3),D(0,0,0),E(0,1,0),设平面A1BD的一个法向量为,,则,可取,设平面A1DE的一个法向量为,,则,可取,设二面角B﹣A1D﹣E的平面角为锐角θ,则=,∴二面角B﹣A1D﹣E的正弦值为.。
西青区2020~2021学年度第一学期期末考试高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上;答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效. 祝各位考生考试顺利!第Ⅰ卷一.选择题:本大题共9小题,每小题5分,共45分.1. 已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B =( )A. {}2,3B. {}1,2,3,4C. {}1,4D. {}2,3,4【答案】C 【解析】 【分析】利用补集和交集的定义可求得集合()UA B .【详解】已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,{}2,3A B ∴=,因此,(){}1,4UA B ⋂=.故选:C.2. 下列四个函数中,在其定义域上既是奇函数又是递增函数的是( )A. x y e =B. sin y x =C. y =D. 3y x =【答案】D 【解析】 【分析】根据函数的解析式直接判断函数的奇偶性和单调性即可. 【详解】对A:xy e =它不奇函数也不是偶函数; 对B: sin y x =是奇函数,它在区间(2,2)()22k k k Z ππππ-+∈上递增,在定义域内不能说对C: y =对D:3y x =是奇函数,在定义域内是增函数. 故选:D .3. 设a ∈R ,则“1a >”是“2a a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 4. 下列说法正确的是( ) A. 若0a b >>,则22ac bc > B. 若a b >,则22a b > C. 若0a b <<,则22a ab b >> D. 若a b <,则11a b> 【答案】C 【解析】 【分析】根据已知条件结合不等式的性质可判断C 正确;举反例可判断ABD 错误. 【详解】对于A ,若0c,则22ac bc =,故A 错误;对于B ,若1,2a b ==-,则22a b <,故B 错误; 对于C ,若0a b <<,则22a ab b >>,故C 正确; 对于D ,若1,1a b =-=,则11a b<,故D 错误.5. 设函数1()ln (0),3f x x x x =->则()y f x =( ) A. 在区间1(,1),(1,e)e 内均有零点.B. 在区间1(,1),(1,e)e内均无零点.C. 在区间1(,1)e 内无零点,在区间(1,)e 内有零点.D. 在区间1(,1)e内有零点,在区间(1,)e 内无零点.【答案】C 【解析】 【分析】令()0f x =,画出函数13y x =和ln y x =的图像,观察两图像的交点所在的区间,即可得答案【详解】解:令()0f x =,得1ln 3x x =,作出函数13y x =和ln y x =的图像,如图所示根据图像可知,()y f x =区间1(,1)e内无零点,在区间(1,)e 内有零点,故选:C6. 已知函数()sin 12f x x π⎛⎫=++ ⎪⎝⎭,则( ) A. ()f x 是偶函数,最大值为1 B. ()f x 是偶函数,最大值为2 C. ()f x 是奇函数,最大值为1 D. ()f x 是奇函数,最大值为2【答案】B【分析】利用诱导公式进行化简,得到()cos 1f x x =+,结合余弦函数的性质,即可求解,得到答案. 【详解】由题意,函数()sin 1cos 12f x x x π⎛⎫=++=+ ⎪⎝⎭, 则()cos()1cos 1()f x x x f x -=-+=+=,所以()f x 是偶函数; 又由cos y x =的最大值为1,()f x ∴的最大值为2; 故选:B.【点睛】本题主要考查了三角函数的诱导公式,以及余弦函数的性质的应用,其中解答中熟记三角函数的诱导公式,以及三角函数的性质是解答的关键,着重考查了计算能力,属于基础题. 7. 设1ln2a =,12eb =,2c e -=,则a 、b 、c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性比较a 、b 、c 三个数与0、1的大小关系,由此可得出a 、b 、c 的大小关系.【详解】1lnln102a =<=,10221eb =>=,2001c e e -<=<=,因此,a c b <<. 故选:A8. 对于函数()sin(2)6f x x π=+,下列命题①函数图象关于直线12x π=-对称; ②函数图象关于点(,0)对称;③函数图象可看作是把sin 2y x =的图象向左平移个单位而得到;④函数图象可看作是把sin()6y x π=+的图象上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到;其中正确的命题的个数是( ▲ ) A. 0 B. 1 C. 2 D. 3【答案】C考点:正弦函数的对称性;函数y=Asin (ωx+φ)的图象变换. 专题:综合题. 分析:①把x=-π12代入函数的表达式,函数是否取得最大值,即可判定正误; ②把x=5π12,代入函数,函数值是否为0,即可判定正误; ③函数图象可看作是把y=sin2x 的图象向左平移个 π6单位,推出函数的表达式是否相同,即可判定;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的 12倍,得到函数的表达式是否相同,即可判定正误.解答:解:①把x=-π12代入函数f (x )=sin (2x+π6)=0,所以,①不正确; ②把x=5π12,代入函数f (x )=sin (2x+π6)=0,函数值为0,所以②正确;③函数图象可看作是把y=sin2x 的图象向左平移π6个单位得到函数为f (x )=sin (2x+3π),所以不正确;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的12倍,得到函数f (x )=sin (2x+π6),正确; 故选C .点评:本题是基础题,考查三角函数的基本性质的应用,考查逻辑推理能力,常考题型. 9. 定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f()sin αf >(cos β)B. f ()sin αf < (cos β)C. f (sin α)f > (sin β)D. f()cos αf <(cos β)【答案】A 【解析】 【分析】根据题意,分析可得f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sin α>cos β,从而根据f (x )在(0,1)上是增函数即可得出f (sin α)>f (cos β),即可得答案. 【详解】根据题意,定义在R 上的偶函数f (x )满足f (x +2)=f (x ), 则有f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称, 又由函数f (x )在[1,2]上是减函数,则其在[0,1]上是增函数, 若α,β是锐角三角形的两个内角, 则α+β2>π,则有α2>π-β,则有sin α>sin (2π-β)=cos β, 又由函数f (x )在[0,1]上是增函数, 则f (sin α)>f (cos β); 故选A .【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.第Ⅱ卷温馨提示:请将答案写在答题纸上,写在卷面上无效.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知幂函数()y f x =的图象过点,则()f x =_____________.【答案】12x 【解析】 【分析】设出幂函数解析式,根据点(求得幂函数的解析式.【详解】由于()f x 为幂函数,设()f x x α=,将(代入得122αα==,所以()12f x x=.故答案为12x【点睛】本小题主要考查幂函数解析式的求法,属于基础题.11. 132327log 3log 48⎛⎫⋅+= ⎪⎝⎭______.【答案】112【分析】根据指数、对数的运算性质计算即可得答案.【详解】原式=1323227311log 3log 4log +2=822⎛⎫⋅++= ⎪⎝⎭.故答案为:11212. 命题“x ∀∈R ,*n ∃∈N ,使得2n x ≥”的否定形式是__________. 【答案】x ∃∈R ,*n ∀∈N ,使2n x < 【解析】因为“∀”的否定是“∃”,“∃”的否定是“∀”,“2n x ≥”的否定是“2n x <”,所以命题“x R ∀∈,*n N ∃∈,使得2n x ≥”的否定形式是x R ∃∈,*n N ∀∈,使2n x <,故答案为x ∃∈R ,*n ∀∈N ,使2n x <.13. 函数tan y x =的定义域为______;若tan 2x =,则5cos sin sin 2cos x xx x-=+______.【答案】 (1). ,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭(2). 34 【解析】 【分析】根据正切函数的性质可直接得出定义域,将5cos sin sin 2cos x xx x-+化为关于tan x 的式子即可求出.【详解】可知tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, tan 2x =,5cos sin 5tan 523sin 2cos tan 2224x x x x x x ---∴===+++.故答案为:,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;34. 14. 用长度为28米的篱笆围成一边靠墙的矩形花园,墙长为16米,则矩形花园面积的最大值是______平方米.【解析】 【分析】设与墙平行的篱笆长为x 米,表示出矩形花园面积,利用二次函数的性质可求出. 【详解】设与墙平行的篱笆长为x 米,由题可得016x <≤, 则花园面积()2281149822x S x x -=⋅=--+,016x <≤, 则当14x =时,S 取得最大值为98,故矩形花园面积的最大值是98平方米. 故答案为:98.15. 已知函数()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,若对任意的1x 、2x R ∈,12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】8,23⎡⎤--⎢⎥⎣⎦【解析】 【分析】分析出函数()f x 为R 上的减函数,结合已知条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】设12x x <,则120x x -<,由()()12120f x f x x x -<-可得()()120f x f x ->,即()()12f x f x >,所以,函数()f x 为R 上的减函数.由于()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,由题意可知,函数()232115y x a x =+-+在(],1-∞上为减函数,则113a-≥, 函数ln 4y a x a =-在()1,+∞上为减函数,则0a <,且有()321154a a +-+≥-,所以11301624a a a a-⎧≥⎪⎪<⎨⎪+≥-⎪⎩,解得823a -≤≤-.因此,实数a 的取值范围是8,23⎡⎤--⎢⎥⎣⎦.故答案为:8,23⎡⎤--⎢⎥⎣⎦.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. 已知,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=.(1)求tan α的值; (2)求cos2α的值; (3)若0,2⎡⎤∈⎢⎥⎣⎦πβ,()5sin 13αβ+=-,求sin β. 【答案】(1)34-;(2)725;(3)5665. 【解析】 【分析】( 1 ) 根据同角的三角函数的关系即可求出; ( 2 ) 根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出; ( 3 ) 由 β=[(α+β)−α] ,根据同角的三角函数的关系结合两角差的正弦公式即可求出. 【详解】(1)3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭.4cos 5α∴==-.sin 3tan cos 4ααα∴==-. ( 2) 27cos 22cos 125αα=-=. (3)0,2⎡⎤∈⎢⎥⎣⎦πβ,,2παπ⎛⎫∈ ⎪⎝⎭322ππαβ∴<+<()5sin 13αβ+=-. 32ππαβ∴<+<()12cos 13αβ∴+==-. ()()()5412356sin sin sin cos cos sin 13513565βαβααβααβα⎛⎫=+-=+-+=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭.17. 若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值; (Ⅱ)求关于x 的不等式()0f x <的解集. 【答案】(Ⅰ)4a =;(Ⅱ)答案见解析. 【解析】 【分析】 (Ⅰ)14,1为方程()0f x =的两个根,用韦达定理构建方程解出来即可. (Ⅱ)(1)(1)0ax x -->,分0a <、0a =、01a <<、1a =和1a >五种情况讨论即可 【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩. 解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x > 当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=. 当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 当1a =时,原不等式为()210x -<,不等式的解集为∅. 综上:当0a =时,不等式的解集为{}1x x >; 当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或; 当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,不等式的解集为∅. 18. 已知函数log ay x =过定点(),m n ,函数()2xf x n x m=++的定义域为[]1,1-. (Ⅰ)求定点(),m n 并证明函数()f x 的奇偶性; (Ⅱ)判断并证明函数()f x 在[]1,1-上的单调性;(Ⅲ)解不等式()()210f x f x -+<.【答案】(Ⅰ)定点为()1,0,奇函数,证明见解析;(Ⅱ)()f x 在[]1,1-上单调递增,证明见解析;(Ⅲ)1|03x x ⎧⎫≤<⎨⎬⎩⎭. 【解析】 【分析】(Ⅰ)根据解析式可求得定点为()1,0,即可得()f x 的解析式,根据奇函数的定义,即可得证; (Ⅱ)利用定义法即可证明()f x 的单调性;(Ⅲ)根据()f x 的单调性和奇偶性,化简整理,可得()()21f x f x -<-,根据函数的定义域,列出不等式组,即可求得答案. 【详解】(Ⅰ)函数log ay x =过定点(),m n ,∴定点为()1,0,()21xf x x ∴=+,定义域为[]1,1-, ()()21xf x f x x -∴-==-+. ∴函数()f x 为奇函数.(Ⅱ)()f x 在[]1,1-上单调递增. 证明:任取[]12,1,1x x ∈-,且12x x <,则()()()()()()()()()()22122112121212222222121212*********x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++. []12,1,1x x ∈-,12x x <,120x x ∴-<,1210x x ->,∴()()120f x f x -<,即()()12f x f x <, ∴函数()f x 在区间[]1,1-上是增函数.(Ⅲ)()()210f x f x -+<,即()()21f x f x -<-, 函数()f x 为奇函数()()21f x f x ∴-<-()f x 在[]1,1-上为单调递增函数,12111121x x x x -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, 011113x x x ⎧⎪≤≤⎪∴-≤≤⎨⎪⎪<⎩,解得:103x ≤<.故不等式的解集为:1|03x x ⎧⎫≤<⎨⎬⎩⎭【点睛】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案. 19. 已知函数()2231f x x x =-+.(Ⅰ)函数()h x 是奇函数,当0x >时,()()h x f x =,求()h x 在x ∈R 上的解析式; (Ⅱ)若()()1g x f x mx =-++,当[]1,2x ∈时,若()g x 的最大值为2,求m 的值.【答案】(Ⅰ)()222310002310x x x h x x x x x ⎧---<⎪==⎨⎪-+>⎩;(Ⅱ)1.【解析】 【分析】(Ⅰ)首先设0x <,利用函数是奇函数,求函数的解析式;(Ⅱ)由(Ⅰ)可知()()223g x x m x =-++,讨论对称轴和定义域的关系,讨论函数的最大值,列式求m 的值.【详解】(Ⅰ)设0x <则0x -> 函数()h x 是奇函数,()()2231h x h x x x ∴=--=---()222310002310x x x h x x x x x ⎧---<⎪∴==⎨⎪-+>⎩(Ⅱ)()()1g x f x mx =-++,()()223g x x m x ∴=-++.()g x 二次函数开口向下,对称轴34mx +=, 在[]1,2x ∈时,()g x 的最大值为2, ①当314m+≤,即1m 时,()()max 1232g x g m ==-++=,解得1m =; ②当3124m +<<,即15m <<时,()2max 369248m m m g x g +++⎛⎫=== ⎪⎝⎭,解得1m =(舍)或7m =-(舍);③当324m+≥,即5m ≥时,()()max 28262g x g m ==-++=,解得2m =(舍); 综上所述,m 的值为1,即1m =.【点睛】关键点点睛:本题第一问的关键是:因为重点求0x <的解析式,所以设0x <,而不要设0x >;第二问的关键是讨论对称轴和定义域的关系,由函数在区间[]1,2的单调性,求函数的最大值.20. 已知函数()4cos cos 3f x x x a π⎛⎫=⋅-+ ⎪⎝⎭. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间; (Ⅲ)若23π是函数()f x 的一个零点,求实数a 的值及函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域. 【答案】(Ⅰ)T π=;(Ⅱ)06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)[]1,4.【解析】 【分析】利用三角恒等变换公式化简函数解析式,(1)利用周期公式2T πω=求解;(2)利用换元法或整体代换法求函数单调递增区间;(3)利用换元法求判断函数单调性,并求值域.【详解】解:(Ⅰ)()4cos cos 4cos cos cos sin sin 333f x x x a x x x a πππ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭22cos cos cos 2122sin 216x x x a x x a x a π⎛⎫=++=++=+++ ⎪⎝⎭,22T ππ==; (Ⅱ)法一: 令26z x π=+;0,2x π⎡⎤∈⎢⎥⎣⎦则7,66z ππ⎡⎤∈⎢⎥⎣⎦. sin y z =,7,66z ππ⎡⎤∈⎢⎥⎣⎦的单调增区间为,62ππ⎡⎤⎢⎥⎣⎦. 2662x πππ∴≤+≤,解得06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦.法二:222262k x k πππππ-≤+≤+,k Z ∈36k x k ππππ-≤≤+,k Z ∈0,2x π⎡⎤∈⎢⎥⎣⎦画数轴与所有区间取交集可知:06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)23π是函数()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭的一个零点 242sin 10336f a πππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭. 32sin102a π∴++= 解得:1a =.()2sin 226f x x π⎛⎫=++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,sin y z ∴=,当7,66z ππ⎡⎤∈⎢⎥⎣⎦单调递减区间为7,26ππ⎡⎤⎢⎥⎣⎦.72266x πππ∴≤+≤,解得62x ππ∴≤≤ f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦,单调递减区间,62ππ⎛⎤⎥⎝⎦()02sin236f π=+=,2sin 2462f ππ⎛⎫=+= ⎪⎝⎭,72sin 2126f ππ⎛⎫=+= ⎪⎝⎭.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域为[]1,4.【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.。
2020-2021学年天津市某校高二(上)第一次月考数学试卷一、选择题(本大题共9个小题,每小题5分,在每个小题给出的4个选项中,只有一个是符合题目要求的)1. 若A,B,C,D为空间任意四个点,则+-=()A. B. C. D.2. 已知=(2, −4, 2),=(1, a, 1),且⊥,则a=()A.−3B.−2C.1D.23. 下列命题正确的是()A.若与共线,与共线,则与共线B.若,,共面,则它们所在的直线共面C.若与平行,则存在唯一的实数λ,使得=λD.零向量是模为0,方向任意的向量4. 在平行六面体ABCD−A1B1C1D1中,=,=,=,E是BC的中点,用,,表示为()A.+-B.+-C.--D.-+5. 已知直线l与平面α垂直,直线l的一个方向向量为=(1, −3, z),向量=(3, −2, 1)与平面α平行,则z等于()A.3B.6C.−9D.96. 直三棱柱ABC−A1B1C1中,∠BCA=90∘,M,N分别是A1B1,A1C1的中点,BC= CA=CC1,则BM与AN所成角的余弦值为()A.1 10B.25C.√3010D.√227. 如图,在长方体ABCD−A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的余弦值为()A.√63B.2√55C.√155D.√1058. 已知向量,,满足++=,且||=7,||=5,||=3,则与的夹角为()A. B. C. D.9. 已知空间四个点A(−3, x, 3),B(−2, −1, 4),C(0, 3, 0),D(1, 1, 1)在同个平面内,则实数x=()A.1B.−2C.0D.−1二、填空题(本大题共6个小题,每小题5分)已知点P(1, 0, 2),Q(1, −3, 1),点M在y轴上,且M到P与到Q的距离相等,则M的坐标是________.已知A(1, −2, 5),B(−2, 0, 3),C(−1, 1, 0),若=2,则D的坐标为________.已知平面α,β的法向量分别为=(−2, m, 1),=(n, 4, −2),若α // β,则m−n=________.已知,均为空间单位向量,且它们夹角为,则|4−5|=________.已知=(1, 5, −2),=(3, 1, c),若=(a, b, −7),⊥,且⊥平面BCD,则=________.已知三棱锥S−ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为________.三、解答题(本大题共5个小题,满分0分.解答应写出文字说明.演算步骤或推理过程)如图所示的正四棱柱中,BC=2,BB1=4,M是棱CC1的中点.(1)求异面直线AM和CD所成的角的余弦值;(2)证明:平面ABM⊥平面A1B1M.如图所示的五面体中,A1A,B1B,C1C都与底面ABC垂直,且∠ABC=120∘,A1A=8,C1C=2,AB=BC=B1B=4.(1)证明:B1A⊥平面A1B1C1;(2)求直线AC1与平面CBB1所成的角的正弦值.如图,正方形ABCD与梯形CDEF所在的平面互相垂直,CD⊥DE,CF // DE,CD=CF=2,DE=4,G为AE的中点.(1)求证:FG // 平面ABCD;(2)求D点到平面FAE的距离;在四棱锥P−ABCD中,底面ABCD为平行四边形,∠ADC=45∘,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(1)求证:PB // 平面ACM;(2)求证:AD⊥平面PAC;(3)求二面角M−AC−D的正切值.在如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD =2AE=2,M是AB的中点.求证:CM⊥EM;(Ⅱ)求平面EMC与平面BCD所成的二面角的正弦值;(Ⅲ)在棱DC上是否存在一点N,使得直线MN与平面EMC所成的角是60∘,若存在,指出点N的位置;若不存在,请说明理由.参考答案与试题解析2020-2021学年天津市某校高二(上)第一次月考数学试卷一、选择题(本大题共9个小题,每小题5分,在每个小题给出的4个选项中,只有一个是符合题目要求的)1.【答案】A【考点】空间向量向量的线性运算性质及几何意义【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】向量的数量积判断向量的共线与垂直【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】命题的真假判断与应用【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】空间向量的基本定理及其意义空间向量的正交分解及其坐标表示【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】共线向量与共面向量【解析】此题暂无解析【解答】此题暂无解答6.【答案】C【考点】异面直线及其所成的角【解析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:如图,直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘,M ,N 分别是A 1B 1,A 1C 1的中点,设BC 的中点为O ,连结ON ,则MN = // 12B 1C 1=OB , 则MNOB 是平行四边形,BM 与AN 所成角就是∠ANO ,∵ BC =CA =CC 1,设BC =CA =CC 1=2,∴ CO =1,AO =√5,AN =√5,MB =√B 1M 2+BB 12=√(√2)2+22=√6,在△ANO 中,由余弦定理可得:cos ∠ANO =AN 2+NO 2−AO 22AN⋅NO =62×√5×√6=√3010. 故选C .7.【答案】C【考点】直线与平面所成的角【解析】连接A1C1交B1D1于点O,连接BO,在长方体中由AB=BC=2,可得CO1⊥B1D1,由长方体的性质可证有OC1⊥BB1,且由直线与平面垂直的判定定理可得OC1⊥平面BB1D1D,则∠C1BO为则BC1与平面BB1D1D所成角在Rt△BOC1中,可求【解答】解:连接A1C1交B1D1于点O,连接BO由AB=BC=2,可得A1B1C1D1为正方形即CO1⊥B1D1由长方体的性质可知BB1⊥面A1B1C1D1,从而有OC1⊥BB1,且BB1∩B1D1=B1∴OC1⊥平面BB1D1D则∠C1BO为则BC1与平面BB1D1D所成角在Rt△BOC1中,OC1=√2,BC1=√5OB=√3∴cos∠OBC1=OBBC1=√3√5=√155故选C.8.【答案】B【考点】平面向量数量积坐标表示的应用【解析】此题暂无解析【解答】此题暂无解答9.【答案】A【考点】共线向量与共面向量【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共6个小题,每小题5分)【答案】(0, −1, 0)【考点】空间向量的夹角与距离求解公式【解析】此题暂无解析【解答】此题暂无解答【答案】(−7, 5, −4)【考点】空间向量向量的线性运算性质及几何意义【解析】此题暂无解析【解答】此题暂无解答【答案】−6【考点】向量的数量积判断向量的共线与垂直【解析】此题暂无解析【解答】此题暂无解答【答案】【考点】平面向量数量积坐标表示的应用【解析】此题暂无解析【解答】此题暂无解答【答案】(11, −5, −7)【考点】向量的数量积判断向量的共线与垂直【解析】此题暂无解析【解答】此题暂无解答【答案】34【考点】直线与平面所成的角【解析】过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,由题设条件证出∠ABF即所求线面角.由数据求出其正弦值.【解答】解:过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴E为BC中点,∵BC⊥AE,SA⊥BC,∴BC⊥面SAE,∴BC⊥AF,AF⊥SE,∴AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长2,∴AE=√3,AS=3,∴SE=2√3,AF=3,2∴sin∠ABF=3.4.故答案为:34三、解答题(本大题共5个小题,满分0分.解答应写出文字说明.演算步骤或推理过程)【答案】正四棱柱中,BC=21=4,M是棱CC1的中点.以A为原点,AB为x轴,AA1为z轴,建立空间直角坐标系,A(6, 0, 0),2,2),2,5),2,0),=(8, 2, 2),,5,0),设异面直线AM和CD所成的角为θ,则cosθ===,∴异面直线AM和CD所成的角的余弦值为.证明:A(0, 2, 0),0,3),A1(0, 6, 4),B1(4, 0, 4),5,2),=(2, 4, 0),,2,6),,6,0),,8,−2),设平面ABM的法向量=(x,y,则,取y=1,得,6,−1),设平面A1B3M的法向量=(a,b,则,取b=1,得,1,3),∵=01B5M.【考点】异面直线及其所成的角平面与平面垂直【解析】此题暂无解析【解答】此题暂无解答【答案】证明:∵∠ABC=120∘,AB=BC=4,由勾股定理知,B1A2=AB4+B1B2=16+16=32,=AB4+=16+16=32,=BC2+=16+4=20,=AC2+=48+4=52,∴B7A2+=64=,B1A2+=52=,∴B1A⊥A2B1,B1A⊥B3C1,又A1B4∩B1C1=B2,A1B1、B2C1⊂平面A1B4C1,∴B1A⊥平面A7B1C1.设点A到平面BCC7的距离为d,∵=,∴CC1•AB⋅BC sin∠ABC=BC⋅CC5,即d=AB sin∠ABC=,∴直线AC5与平面CBB1所成的角的正弦值为==.【考点】直线与平面垂直直线与平面所成的角【解析】此题暂无解析【解答】此题暂无解答【答案】证明:取AD的中点H,连接GH,∵G,H分别是AE,∴GH // DE,GH=,∵DE // CF,CF=,∴GH // CF,GH=CF,∴四边形GHCF是平行四边形,∴GF // CH,又GF⊄平面ABCD,∴GF // 平面ABCD.∵DE⊥平面ABCD,CD⊂平面ABCD,∴DE⊥CD,DE⊥AD,∵四边形ABCD是正方形,∴CD⊥AD,又AD∩DE=D,∴CD⊥平面ADE,∵CF // DE,CF⊄平面ADE,∴CF // 平面ADE,∴F到平面ADE的距离等于CD,故V F−ADE=S△ADE⋅CD==,连接AC,则AC=,∴AF=,AE=,EF=,∴AF8+EF2=AE2,∴AF⊥EF,∴S△AEF==5,设D到平面AEF的距离为ℎ,则V D−AEF==,又V F−ADE=V D−AEF,∴=,解得ℎ=,故D点到平面FAE的距离为.【考点】直线与平面平行点、线、面间的距离计算【解析】此题暂无解析【解答】此题暂无解答【答案】(1)证明:连接OM,BD,∵M,O分别为PD和AC中点,∴OM // PB,∵OM⊂平面ACM,PB⊄ACM平面,∴PB // 平面ACM….(2)证明:由已知得PO⊥平面ABCD∴PO⊥AD,∵∠ADC=45∘,AD=AC=1,∴AC⊥AD,∵AC∩PO=O,AC,PO⊂平面PAC,∴AD⊥平面PAC.…..(3)解:取DO中点N,连接MN,则MN // PO,∴MN⊥平面ABCD过点N作NE⊥AC于E,则E为AO中点,连接ME,由三垂线定理可知∠MEN即为二面角M−AC−D的平面角,∵MN=1,NE=12∴tan∠MEN=2…..【考点】与二面角有关的立体几何综合题直线与平面平行的判定直线与平面垂直的判定【解析】(1)连接OM,BD,由M,O分别为PD和AC中点,知OM // PB,由此能够证明PB // 平面ACM.(2)由PO⊥平面ABCD,知PO⊥AD,由∠ADC=45∘,AD=AC=1,知AC⊥AD,由此能够证明AD⊥平面PAC.(3)取DO中点N,连接MN,由MN // PO,知MN⊥平面ABCD.过点N作NE⊥AC于E,由E为AO中点,连接ME,由三垂线定理知∠MEN即为所求,由此能求出二面角M−AC−D的正切值.【解答】(1)证明:连接OM,BD,∵M,O分别为PD和AC中点,∴OM // PB,∵OM⊂平面ACM,PB⊄ACM平面,∴PB // 平面ACM….(2)证明:由已知得PO⊥平面ABCD∴PO⊥AD,∵∠ADC=45∘,AD=AC=1,∴AC⊥AD,∵AC∩PO=O,AC,PO⊂平面PAC,∴AD⊥平面PAC.…..(3)解:取DO中点N,连接MN,则MN // PO,∴MN⊥平面ABCD过点N作NE⊥AC于E,则E为AO中点,连接ME,由三垂线定理可知∠MEN即为二面角M−AC−D的平面角,∵MN=1,NE=12∴tan∠MEN=2…..【答案】证明:(Ⅰ)∵AC=BC,M是AB的中点,又∵EA⊥平面ABC,CM⊥EA,∵EA∩AB=A点,∴CM⊥平面AEM,∵EM⊂平面AEM,∴CM⊥EM.(2)如图,以M为原点,MC为x,建立如图所示的坐标系M−xyz,∴M(0, 0, 4),,0),0,1),B(,0,0),0,2),=(-,0,1),,,0),,,0),=(0, 6, 2),设平面EMC的法向量=(x,y,则,取x=2,得,0,),设平面BCD的法向量=(x,y,则,取x=1,得,8,0),设平面EMC与平面BCD所成的二面角的平面角为θ,则|cosθ|===,sinθ==.∴平面EMC与平面BCD所成的二面角的正弦值为.(Ⅲ)在棱DC上存在一点N,设N(x,y,且=(5≤λ≤1),∴(x−,y,z−6)=λ(−),∴=(,,y=,∵直线MN与平面EMC所成角为60∘,∴cos<>=,解得,∴存在点N符合条件,且N是棱DC的中点.【考点】二面角的平面角及求法直线与平面所成的角【解析】此题暂无解析【解答】此题暂无解答。
武汉大学2020-2021第一学期高等数学B1期末试卷 A 卷1、(9分) 求极限: 011lim e 1x x x →⎛⎫− ⎪−⎝⎭. 2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).5、(9分)求极限lim nn n →∞⎛ ⎪⎝⎭.6、(7分)求不定积分x ⎰.7、(7分)设2()ln(1)f x x =+,计算反常积分20()d ()+2()5f x x f x f x +∞'+⎰.8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由. 12、(6分)求解常微分方程:532e 0x xy y x y '++=.13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰.武汉大学2019-2020第一学期高等数学B1期末试卷 A 卷 参考解答1、(9分) 求极限011lim e 1xx x →⎛⎫− ⎪−⎝⎭. 解: 200011e 1e 1lim lim lim e 1(e 1)x x x xx x x x x x x x →→→⎛⎫⎛⎫−−−−⎛⎫−== ⎪ ⎪ ⎪−−⎝⎭⎝⎭⎝⎭ 5分0e 11lim 22x x x →⎛⎫−== ⎪⎝⎭ 9分2、(9分)已知曲线满足方程2e 0xy x y ++=,求曲线在点(0,1)−处的法线方程. 解:对方程2e 0xy x y ++=两边关于x 求导得:212e ()0xy y y xy ''+++=,4分 代入0,1x y ==−解得0,11x y y ==−'=.7分 因此,法线的斜率为1−,在点(0,1)−处的法线方程为:1y x =−−.9分3、(10分)求由曲线e ,ln ,1,2x y y x x x ====所围成的图形的面积. 解:显然当[1,2]x ∈时有e ln x x >,因此面积()21e ln d x S x x =−⎰5分22221111e d ln d e ln d x x x x x x x =−=−⎰⎰⎰8分 222211e e ln d ln e e 2ln 21x x x x =−−+=−−+⎰10分4、(10分)(1)求齐次线性微分方程20y y y ''''''−−=的通解;(2)求该方程满足初始条件(0)0,(0)(0)3y y y '''===的特解.(3)对于非齐次方程221e x y y y x ''''''−−=+,用待定系数法给出特解的形式(无需求出其中的待定系数的数值).解:(1) 该微分方程的特征方程为:3220λλλ−−=, 4分它有特征根:00,λ=21,λ=−32,λ=故而该齐次线性微分方程的通解为:2123e e x x y C C C −=++6分 (2)代入初值条件得方程组:12323230,23,43C C C C C C C ++=−+=+=,解得:1230,1,1C C C ==−=,得微分方程的特解为:2e e x x y −=−. 8分 (3)特解的形式为:2123()e x y C x x C C x *=++.10分5、(9分)求极限lim nn →∞⎝⎭.解: lim ln lim 1lim een n nn n n n →∞→∞⎫⎪⎪⎝⎭⎝⎭→∞== ⎪⎝⎭5分12eee n n n===9分6、(7分)求不定积分x ⎰.解:()21d arcsin arcsin x x x =⎰4分 1arcsin C x=−+7分7、(7分)设2()ln(1)f x x =+,计算反常积分2()d ()+2()5f x x f x f x +∞'+⎰. 解: 2200()1d d ()()+2()5(()+1)4f x x f x f x f x f x +∞+∞'=++⎰⎰ 3分 2001()11ln(1)1arctan arctan 2222f x x +∞+∞+++==5分 11arctan 222π⎛⎫=− ⎪⎝⎭7分8、(7分) 求极限:2cos 1e d lim (sin )xt x tx x x −→+⎰.解:22cos cos 112e d e d lim lim(sin )2xxt t x x ttx x x x−−→→=+⎰⎰3分2cos 0e sin lim 4x x xx−→−= 5分11e 4−=− 7分9、(7分)等角螺线的极坐标方程为e θρ=,在0θ=附近,其在直角坐标系下可由函数()y y x =表示,试求0d d y x θ=以及220d d yx θ=.解:可以将方程改写成参数方程e cos e sin x y θθθθ⎧=⎪⎨=⎪⎩,则d d d 0d 0e cos e sin cos sin e co 1s e sin cos d n d si y xyx θθθθθθθθθθθθθθθθθθ=======+−−=+4分()()222(cos sin )(cos sin )cos sin (cos sin )2s d d d 2d d d d d d d co s n 0i d c =2e os e sin d y x x x yx θθθθθθθθθθθθθθθθθθθθθθ====−+++−−=−== 7分10、(7分)计算星形线33cos ,sin x a t y a t⎧=⎪⎨=⎪⎩的弧长,其中0,[0,2]a t π>∈. 解:曲线弧长220s t t ππ==⎰⎰4分220312cos sin d 6a t a t t t a ππ===⎰⎰7分11、(7分)计算函数231sin ,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数;并讨论:是否存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增?说明理由.解:当0x ≠时,323131()12sincos f x x x x x'=+−,另一方面, 2301sin(0)lim1x x x x f x→+'==,因此32313112sin cos ,0()1,0x x f x x x x x ⎧+−≠⎪'=⎨⎪=⎩ 3分对任意0δ>,取0x =,显然00x δ<<且01x <,代入()f x '可得: 003()10f x x '=−<,由于导函数()f x '在0x 处连续,存在0ε>使得00[,](,)x x εεδδ−+⊂−,且()f x '在区间00[,]x x εε−+内小于0,即有()f x 在区间00[,]x x εε−+单调递减,因此,不存在0δ>,使得函数()f x 在区间(,)δδ−内单调递增.7分12、(6分)求解常微分方程:532e 0x xy y x y '++=.解:显然0y ≡是方程的特解;当0y ≠时方程两边同除以3xy 的方程:3242e 0x y y y x x−−'++=, 令2z y −=,有3d d 2d d z y y x x−=−,原方程就可化为如下线性方程: 3分2442e x z y x x−'=+,用一阶线性微分方程的求解公式得:24(2e )x y z x C −==+ 6分13、(5分)设函数()f x 在区间[],a b 上有连续的二阶导数,证明:至少存在一点(,)a b ξ∈使得3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 证明:令()()d x aF x f t t =⎰,由于()f x 在区间[],a b 上有连续的二阶导数,因此()F x 在区间[],a b 上有连续的三阶导数,取02a bx +=,由泰勒公式得: 23010000010()()()()()()()(),(,)2!3!F x F F a F x F x a x a x a x a x ξξ''''''=+−+−+−∈ 23020000020()()()()()()()(),(,)2!3!F x F F b F x F x b x b x b x x b ξξ''''''=+−+−+−∈3分利用00()b x a x −=−−,上述两式相减得:31201020()()()()()(),(,),(,)3!2F F b a F b F a F x b a a x x b ξξξξ''''''+−⎛⎫'−=−+∈∈ ⎪⎝⎭即有:312()()()()d ()2242baf f a b b a f x x b a f ξξ''''++−⎛⎫⎛⎫=−+ ⎪ ⎪⎝⎭⎝⎭⎰. 由于()f x ''在区间[],a b 上连续,由介值定理可知至少存在一点(,)a b ξ∈使得12()()()2f f f ξξξ''''+''=. 因此3()()d ()()224baa b b a f x x b a f f ξ+−⎛⎫''=−+⎪⎝⎭⎰. 5分。
绝密★启用前2020年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分. 参考公式:如果事件A 与事件B 互斥,那么()()()⋃=+P A B P A P B . 如果事件A 与事件B 相互独立,那么()()()P AB P A P B =. 球的表面积公式24S R π=,其中R 表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A. {3,3}-B. {0,2}C. {1,1}-D. {3,2,1,1,3}---【答案】C 【解析】 【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.【点睛】本题主要考查补集运算,交集运算,属于基础题.2.设a ∈R ,则“1a >”是“2a a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 3.函数241xy x =+的图象大致为( ) A .B.C.D.【答案】A 【解析】 【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象. 【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47],[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A. 10B. 18C. 20D. 36【答案】B 【解析】 【分析】根据直方图确定直径落在区间[)5.43,5.47之间的零件频率,然后结合样本总数计算其个数即可. 【详解】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=, 则区间[)5.43,5.47内零件的个数为:800.22518⨯=. 故选:B.【点睛】本题主要考查频率分布直方图的计算与实际应用,属于中等题. 5.若棱长为3 ) A. 12π B. 24πC. 36πD. 144π【答案】C 【解析】 【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解. 【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C.【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.6.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A. a b c <<B. b a c <<C. b c a <<D. c a b <<【答案】D 【解析】 【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:xy a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log ay x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D 【解析】 【分析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.8.已知函数()sin 3f x x π⎛⎫=+⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A. ① B. ①③C. ②③D. ①②③【答案】B 【解析】 【分析】对所给选项结合正弦型函数的性质逐一判断即可. 【详解】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确. 故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.9.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.绝密★启用前2020年普通高等学校招生全国统一考试(天津卷)数学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.i 是虚数单位,复数82ii-=+_________. 【答案】32i - 【解析】 【分析】将分子分母同乘以分母的共轭复数,然后利用运算化简可得结果. 【详解】()()()()8281510322225i i i ii i i i ----===-++-. 故答案为:32i -.【点睛】本题考查复数的四则运算,属于基础题.11.在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________. 【答案】10 【解析】 【分析】写出二项展开式的通项公式,整理后令x 的指数为2,即可求出.【详解】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=. 故答案为:10.【点睛】本题主要考查二项展开式的通项公式的应用,属于基础题.12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________. 【答案】5 【解析】 【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =,即可求得r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =可得6==5r . 故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题. 13.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】 (1). 16(2). 23【解析】 【分析】根据相互独立事件同时发生的概率关系,即可求出两球都落入盒子的概率;同理可求两球都不落入盒子的概率,进而求出至少一球落入盒子的概率. 【详解】甲、乙两球落入盒子的概率分别为11,23, 且两球是否落入盒子互不影响, 所以甲、乙都落入盒子的概率为111236⨯=, 甲、乙两球都不落入盒子的概率为111(1)(1)233-⨯-=, 所以甲、乙两球至少有一个落入盒子的概率为23. 故答案为:16;23. 【点睛】本题主要考查独立事件同时发生的概率,以及利用对立事件求概率,属于基础题. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】 【分析】根据已知条件,将所求的式子化为82a b a b+++,利用基本不等式即可求解.【详解】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++ 882422a b a b a b a b++=+≥⨯=++,当且仅当a b +=4时取等号, 结合1ab =,解得23,23a b =-=+,或23,23a b =+=-时,等号成立. 故答案为:4【点睛】本题考查应用基本不等式求最值,“1”的合理变换是解题的关键,属于基础题. 15.如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】 (1). 16 (2). 132【解析】 【分析】可得120BAD ∠=,利用平面向量数量积的定义求得λ的值,然后以点B 为坐标原点,BC 所在直线为x轴建立平面直角坐标系,设点(),0M x ,则点()1,0N x +(其中05x ≤≤),得出DM DN ⋅关于x 的函数表达式,利用二次函数的基本性质求得DM DN ⋅的最小值. 【详解】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为333,22A ⎛⎫ ⎪ ⎪⎝⎭,∵又∵16AD BC =,则533,22D ⎛⎫ ⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()222533321134222222DM DN x x x x x ⎛⎫⎛⎫⎛⎫⋅=--+=-+=-+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【点睛】本题考查平面向量数量积的计算,考查平面向量数量积的定义与坐标运算,考查计算能力,属于中等题.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在ABC 中,角,,A B C 所对的边分别为,,a b c .已知22,5,13a b c ===. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin 24A π⎛⎫+⎪⎝⎭的值. 【答案】(Ⅰ)4Cπ;(Ⅱ)213sin A =(Ⅲ)172sin 2426A π⎛⎫+=⎪⎝⎭.【解析】 【分析】(Ⅰ)直接利用余弦定理运算即可; (Ⅱ)由(Ⅰ)及正弦定理即可得到答案;(Ⅲ)先计算出sin ,cos ,A A 进一步求出sin 2,cos 2A A ,再利用两角和的正弦公式计算即可. 【详解】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4C π;(Ⅱ)在ABC 中,由4Cπ,a c ==sin sin a C A c=== (Ⅲ)由a c <知角A为锐角,由sin 13A =,可得cos A=13, 进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.17.如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)306;(Ⅲ)33. 【解析】 【分析】以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系. (Ⅰ)计算出向量1C M 和1B D 的坐标,得出110C M B D ⋅=,即可证明出11C M B D ⊥;(Ⅱ)可知平面1BB E 的一个法向量为CA ,计算出平面1B ED 的一个法向量为n ,利用空间向量法计算出二面角1B B E D --的余弦值,利用同角三角函数的基本关系可求解结果; (Ⅲ)利用空间向量法可求得直线AB 与平面1DB E 所成角的正弦值.【详解】依题意,以C 为原点,分别以CA 、CB 、1CC 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),可得()0,0,0C 、()2,0,0A 、()0,2,0B 、()10,0,3C 、()12,0,3A 、()10,2,3B 、()2,0,1D 、()0,0,2E 、()1,1,3M .(Ⅰ)依题意,()11,1,0C M =,()12,2,2B D =--, 从而112200C M B D ⋅=-+=,所以11C M B D ⊥; (Ⅱ)依题意,()2,0,0CA =是平面1BB E 的一个法向量,()10,2,1EB =,()2,0,1ED =-.设(),,n x y z =为平面1DB E 的法向量,则100n EB n ED ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x z +=⎧⎨-=⎩,不妨设1x =,可得()1,1,2n =-.6cos ,26C CA n A C nA n ⋅<>===⋅⨯, 230sin ,1cos ,CA n CA n ∴<>=-<>=. 所以,二面角1B B E D --30; (Ⅲ)依题意,()2,2,0AB =-.由(Ⅱ)知()1,1,2n =-为平面1DB E 的一个法向量,于是3cos ,226AB n AB n AB n⋅<>===⨯⋅.所以,直线AB 与平面1DB E所成角的正弦值为3. 【点睛】本题考查利用空间向量法证明线线垂直,求二面角和线面角的正弦值,考查推理能力与计算能力,属于中档题.18.已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】 【分析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+, 整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.19.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n nn n +--+⨯. 【解析】 【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果; (Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211nk k c-=∑和21nkk c=∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1. 从而{}n a 的通项公式为n a n =. 由()15431,4b b b b ==-,又q ≠0,可得2440q q -+=,解得q =2, 从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<, 所以221n n n S S S ++<.(Ⅲ)当n奇数时,()111232(32)222(2)2n n n n n nn n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==, 对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k nn k n n c +=--=+++++∑ ②由①②得22111211312221121441444444414n nk n n n k n n c ++=⎛⎫-⎪--⎝⎭=+++-=---∑,由于11211121221121156544144334444123414nn n n n n n n ++⎛⎫-⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk n k n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 【点睛】本题主要考查数列通项公式的求解,分组求和法,指数型裂项求和,错位相减求和等,属于中等题.20.已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程;(ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析. 【解析】 【分析】(Ⅰ) (i)首先求得导函数的解析式,然后结合导数的几何意义求解切线方程即可;(ii)首先求得()g x '的解析式,然后利用导函数与原函数的关系讨论函数的单调性和函数的极值即可;(Ⅱ)首先确定导函数的解析式,然后令12x t x =,将原问题转化为与t 有关的函数,然后构造新函数,利用新函数的性质即可证得题中的结论.【详解】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-, 整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞); g (x )的极小值为g (1)=1,无极大值.(Ⅱ)证明:由3()ln f x x k x =+,得2()3k f x x x'=+. 对任意的12,[1,)x x ∈+∞,且12x x >,令12(1)x t t x =>,则 ()()()()()()()1212122x x f x f x f x f x ''-+--()22331121212122332ln x k k x x x x x x k x x x ⎛⎫⎛⎫=-+++--+ ⎪ ⎪⎝⎭⎝⎭3322121121212212332ln x x x x x x x x x k k x x x ⎛⎫=--++-- ⎪⎝⎭()332213312ln x t t t k t t t ⎛⎫=-+-+-- ⎪⎝⎭. ①令1()2ln ,[1,)h x x x x x=--∈+∞. 当x >1时,22121()110h x x x x '⎛⎫=+-=-> ⎪⎝⎭,由此可得()h x 在[)1,+∞单调递增,所以当t >1时,()()1h t h >,即12ln 0t t t-->.因为21x ≥,323331(1)0t t t t -+-=->,3k ≥-,所以()()332322113312ln 33132ln x t t t k t t t t t t t tt ⎛⎫⎛⎫-+-+------- ⎪+ ⎪⎝⎭⎝⎭32336ln 1t t t t=-++-. ②由(Ⅰ)(ii)可知,当1t >时,()()1g t g >,即32336ln 1t t t t-++>, 故32336ln 10t t t t-++-> ③ 由①②③可得()()()()()()()12121220x x fx f x f x f x ''-+-->.所以,当3k ≥-时,任意的[)12,1,x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.。
2020-2021学年第一学期 高等数学期末考试南开大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.设)(x f 在0=x 处可导且,0)0(=f 则=→x x f x )(lim 0. )0(f '2.曲线x x y +-=22cos 1在)21,2(ππ+处的切线方程为 .1y x =+ 3.曲线122-=x x y 有垂直渐近线 和水平渐近线. 1±=x ,1=y4.设)(u f 可导,)]([sin 2x e f y =,则=dy .dx e e f e f x x x ⋅'⋅)()]([2sin5.=⎰dx ex 40 . )1(22+e二、单项选择题(本大题共5小题,每小题3分,共15分)1.函数的图形如图示,则().A.是该函数的一个极小值点,且为最小值点B.是该函数的一个极小值点,但不是为最小值点C.是该函数的一个极大值点D.不是该函数的一个极值点2.若函数有一个原函数,则不定积分().A.B.C.D.3.若定积分().A.B.C.2020-2021学年第一学期 高等数学期末考试D.4.定积分A.B.C.D.5.曲线的凸区间是( ). A.B.C.D.三、计算题(本大题共7小题,每小题7分,共49分) 1. 求函数的极值与拐点. 解:函数的定义域(-∞,+∞)。
2. dx t A dy t A t f y e x t f t f t f )()()(cos 0)()(2)(=⎪⎩⎪⎨⎧==≠'使试求若可微且设.3. 已知()x f 的一个原函数为2ln x ,则试求:()⎰'xf x dx .确定2x y e =2(x -2)的单调区间.212x x y +=.4.设方程2290y xy -+=确定隐函数()y y x =,求d d y x 。
天津大学2020~2021 学年第一学期《高等数学》考试试卷重修生的任课教师姓名1 + xf (x ) + 3 f (x ) - 3 f (x )f (x ) - 3 1 + x1 - ⎛ 1- x ⎫2⎝ 1 + x 2 ⎪ ⎭ 2 1 + x (1 + x 2 ) (1 + x 2 )2 - (1 - x )22 21 2 1 + x 2 2 2 3⎪“ ”2020~2021 学年第一学期《高等数学 2A 》期中考试试卷参考答案 e x= 1 + x + 1 x 2 + 1 x 3 + ο (x 3 ), 2! 3! 2(e x -1 - x )- x 2 = 1 x 3 + ο (x 3 ), (考试时间:2020 年 10 月 30 日, 14:00-16:00)一、填空题(共 15 分,每小题 3 分)于是 lim x →0 2sin x - sin 2x = 2e x - 2 - 2x - x 2lim x →0 -x 3 + o (x 3 )1 x 3 + o (x 3 )= 3. 1. π 2. x tan x ⎛sec 2 x ln x + tan x ⎫ ⎪ 3. 34. 1e 2t (2sin t + cos t )35.1 6 ⎝x ⎭ 55t 4 +12. 求极限 lim⎛ 3 + cos x ⎫ x2.二、选择题(共 15 分,每小题 3 分) x →0 ⎝ 4 ⎭4 cos x -1 cos x -1 -sin x 1. B2. A3. D4. D5. C解:原式= lim ⎛1 + cos x -1 ⎫ cos x -1 ⋅⎪ 4 x 2 lim = e x →0 4 x 2 lim = e x →0 - 1 = e 8 . 三、计算题(本题 8 分)x →0 ⎝ 4 ⎭已知 f '(x ) =. 3. 设函数 f (x ) = + arcsin 1- x, 1 + x 2求微分d f x =1 . 解:(1) lim x →2 f (x 2 + 5) - f (9) x - 2 = lim x →2 f (x 2 + 5) - f (9) ⋅ x 2- 4 x 2- 4 x - 2 = 4 f '(9) = 4 ; 9解: f '(x ) = 1 + 12 -(1 + x 2 ) - (1 - x ) ⋅ 2x • (1 + x 2 )2 (2) lim = lim f (x ) - 9 ⋅ 1 = 1 limf (x ) - f (2) = 1f '(2) = 1 . 2x →2 x - 2 x →2 x - 2 6 x →2x - 2 6 12 = 1 + x - 2x -1 ,解法二:(1) 当x → 2时, x 2+ 5 → 9, f (x ), f '(x ) 连续, 这是 0型, 使用洛必达法则, 0 1 1 1 ⎛ 1 ⎫ f (x 2 + 5) - f (9)f '(x 2 + 5) ⋅ 2x 4 代入 x = 1, 得 f '(1) = - = 2 2 2 - , 所以d f 4 2 x =1 = f '(1)d x = 4 - 2 ⎪d x .lim x →2 x - 2 = lim x →2 = 4 f '(9) = ;1 9⎝ ⎭arcsin 1- x - 01 + x2 (2) 当x → 2时,→ 3, 这是“0”型, 使用洛必达法则, 解法二: f '(1) = (1 + x )'+ ⎛arcsin 1- x ⎫' = + lim 0 1 + x 2 ⎪ x →1 x -1 f '(x )1 - x x =1 ⎝ ⎭ x =1x =1 lim= lim 2 f (x ) = 1 f '(2) = 1. = 1 + lim 1 + x 2 = - 1 ,所以 d f = f '(1)d x = ⎛ 2 - 1 ⎫d x . x →2x - 2 x →2 16 12 x →1 x -1 4 2 x =1 4 2 ⎪ 四、计算题(共 35 分,每小题7 分)⎝ ⎭4. 设 y = x 2 cos 2x , 求n 阶导函数 y (n ) 及 y (n) (0).1. 求极限 lim x →0 2sin x - sin 2x 2e x - 2 - 2x - x 2 .解:(cos 2x )(n )= 2n cos ⎛2x + n π ⎫ ,由莱布尼茨公式,2 ⎪2 c os x - 2 c os 2x-2sin x + 4sin 2x-2 c os x + 8cos 2x⎝ ⎭解:原式= limx= lim= lim= 3(n ) nk2 (k )( n - k )x →02e - 2 - 2xx →02e - 2x →02ey = ∑ C n( x k =0 )(cos 2x )解法二:由泰勒公式, sin x = x - 1 x 3 + ο (x 3), sin 2x = 2x - 1 (3x )3 + ο (x 3 ), 3! 3!= x 2(cos 2x )( n )+ C 1 (x 2 )' (cos 2x )( n -1)+ C 2 (x 2 )'' (cos 2x )( n -2)nn2sin x - sin 2x = - 2 x 3 + 1 (3x )3+ ο (x 3 ) = -x 3 + ο (x 3 ),3! 3!x8x 1, f (2) = 9. 求极限: (1) lim f (x 2 + 5) - f (9) ; (2) lim f (x ) - 3 xx →2 x - 2 x →2 x - 2 xd 2y d x 2 2 = n 2 ⎛ n π ⎫ ( ) ( ) ( ) , y = -1; ⎝ ⎭ ⎨ +' 2 x 于是 f ( x ) = ⎨= = x 2 2n cos ⎛2x + n π ⎫ + n (2x )2n -1 cos ⎛ 2x + (n -1) π ⎫ + n (n -1) ⨯ 2 ⨯ 2n -2 cos ⎛ 2x + (n - 2) π ⎫ 五、解答题(共 16 分,每小题 8 分)33d y2 ⎪2 ⎪ 22⎪ 1.设由方程 x + y = 6xy 确定了函数 y = f (x ), 求 及 .⎝⎭ ⎝⎭ ⎝ ⎭⎡ ⎛n -1 π ⎫ n n -1 ⎛n - 2 π ⎫⎤ 2 x cos 2x + + nx c os 2x + + cos 2x + d x 解:方程两端对变量 x 求导, 得 3x 2 + 3y 2 y ' = 6 ( y + xy '),x =3, y =3 2⎪ 2 ⎪ 4 2 ⎪ 2 2⎣⎝ ⎭ ⎝ ⎭ ⎝ ⎭⎦ 整理得 ( y- 2x )y ' = 2 y - x ,① y(n )(0) = n (n -1) 2 n -2cos(n - 2) π= - n (n -1) 2 n cos n π.24 2于是 y ' = 2 y - x 2 y 2 - 2x ,且 ' x =3, y =3 5. 设函数 f (x ) = limx . (1) 求函数 f (x ) 的表达式; (2) 求 f '(x ); (2 y ' - 2x )(y 2 - 2x ) - (2 y - x 2)(2 y y ' - 2)t →+∞2 + x 2 - e txy '' = ( 2)2(3) 当 x < 0 时曲线 y = f ( x ) 有一条水平切线, 求该切线的方程.y - 2x代入 x = 3, y = 3, y ' = -1, 得 y ''= - 16 . 解:(1) 当 x = 0 时, f (x ) = 0 ; 当x > 0 时, f (x ) = lim x= 0;x =3, y =33 t →+∞2 + x 2 - e tx方法二: 由①式再对变量 x 求导, 得当 x < 0 时, f (x ) = limx = x . 综上, ⎧ 0, f (x ) = ⎪x x ≥ 0, ( y 2 - 2x ) y '' + (2 y y ' - 2) y ' = 2 y ' - 2x ,t →+∞2 + x 2 - e tx2 + x 2 ⎨ ⎪⎩ 2 + x 2x < 0. 代入 x = 3, y = 3, y ' = -1, 得 y '' x =3, y =3 = -16 .3'' ⎛ x⎫'2 - x 2(2) 当 x > 0 时, f (x ) = 0; 当 x < 0 时,f (x ) = 2 + x2 ⎪ (2 + x 2 )2 ; ⎧ 2. 设函数 f (x ) = ⎨e x cos x , x ≤ 0,在点 x = 0 存在二阶导数, 试确定a ,b , c 的值. x- 0⎩ ax 2 + b x + c , x > 0 f ' (0) = lim 0 - 0 = 0, f ' (0) = lim 2 + x 2 = 1 , 由于 f ' (0) ≠ f ' (0), 解:(1) f (x ) 在x = 0 连续, f (0 + 0) = lim (ax 2 + b x + c )= c = f (0) = 1, 即c = 1; + x →0+x - 0- x →0-x - 0 2 + - x →0+⎧ 故 f (x ) 在点 x = 0 处不可导. 综上, f '(x ) = ⎪0, 2 - x 2 x > 0,, x < 0.(2) 因为 f (x ) 在 x = 0 点可导,f ' (0) = limx →0+(ax 2+ bx +1) -1 x - 0= b ,⎪(2 + x 2 )2f ' (0) = lim e cos x -1=im e (cos x - sin x )⎩-x →0-x - 0lx →0-1= 1, 所 以 b = 1;(3) x < 0, - 2 f (x ) = = 0 ⇒ x = - 2, f (-2) = - , (3) 当 x > 0 时, f '( x ) = 2ax +1, 当 x < 0 时, f '( x ) = e x (cos x - sin x ),(2 + x 2 )24 ' ⎧e x (cos x - sin x ), x ≤ 0,⎩2ax +1, x > 0. 所以当 x < 0 时曲线 y = f ( x ) 的水平切线为: y = - 2. 4f '' (0) = lim e x (cos x - sin x ) -1 e x (-2 s in x ) lim = 0, -x →0- x - 0 x →0-1 f '' (0) = lim (2ax +1) -1= 2a , 又因为 f ''(0) 存在, 所以a = 0. +x →0+x - 0x x , = ,。