第4章图形的初步认识教案
- 格式:doc
- 大小:373.32 KB
- 文档页数:19
第四章基本平面图形1.线段、射线、直线一、学生起点状况分析本节课是教材第四章的第一课时.学生在小学对本节内容已有初步认识,他们对生活中的线段、射线、直线现象也有一定的经验,但还没有从数学的角度去认识,研究这些几何元素.处于这一阶段的学生思维已具备了一定的符号感,但还不能完全脱离具体事物的支持,仍然是以形象思维为主,所以立足于学生实际,从他们的生活背景和已有经验出发,从现实生活中的具体实物抽象出这些基本的几何元素,通过具体问题的指引,鼓励他们积极参与,观察对比,动手实践,让他们充分列举生活中随处可见的实例来解释数学问题,让学生动手画图,亲自操作,同时借助计算机演示,有利于学生对线段、射线、直线有较深刻的理解和掌握,从而达成教学目标.二、教学任务分析本课时的教学内容安排,首先提供了几个生活中所熟知的情景,激发学生的兴趣,让学生充分感受生活中所蕴含的三种基本的几何图形,并提出定义和表示方法.然后通过辨析线段、射线、直线的联系与区别,让学生充分动手实践,合作交流探寻出直线的性质.最后运用所学知识解释和解决实际问题.本节内容是图形认识中非常重要的内容.从知识上讲,直线、射线、线段是最简单、最基本的图形,是研究复杂图形如三角形、四边形等的基础.从本节开始出现的几何图形的表示方法、几何语言等,也是今后系统学习几何所必需的知识.本节课的学习起着奠基的作用,重点训练学生动手操作及学会用规范的几何语言边实践边叙述的能力,逐步适应几何的学习及研究方法,从思想方法上讲,直线的得出经历了由感性到理性,由具体到抽象的思维过程,同时线段、射线的表示方法是由直线类比得到,渗透了类比的数学思想.根据以上分析,确定本节课的教学目标如下:1.在现实情境中了解线段、射线、直线的描述性定义和表示方法,理解直线的性质,充分感受生活中所蕴含的丰富多彩的几何图形.(知识与技能)2.通过识图、辨析、观察、猜测、验证等数学探究过程,发展几何意识、合情推理和探究意识.(过程与方法)3.在解决问题的过程中发展类比、联想、猜想等思维能力,培养解决问题的积极性和主动性.(情感与态度)三、教学过程设计本节课由六个教学环节组成,它们是:①创设情景,引入新课;②师生互动,学习新知;③巩固练习,深化概念;④动手操作,再探新知;⑤思维拓展,知识升华;⑥归纳小结,布置作业.其具体教学过程与分析如下:第一环节创设情景,引入新课内容:1.老师用多媒体展示一组生活中的图片,有绷紧的琴弦、筷子图、手电光束、城市夜景射灯图,笔直铁轨、延伸的公路等,让学生观察,并提问:你们能从中找出我们所熟知的几何图形吗?(图片来自教材或全景网站)2.学生自由发言.3.教师点明课题.(板书课题:线段、射线、直线)目的:利用生活中熟知的情境,使学生感受到数学与生活的紧密联系,让学生经历从实际问题中抽象几何图形的过程,激发学生的学习热情.效果:在呈现生活中的图片,请学生从中寻找熟悉的几何图形时,由于生活中的素材和几何中抽象的概念有差别,因此学生的回答,有时不完全是教师想要的线段、射线和直线,可能会出现一些其它的词汇,如长方形等,教师要予以肯定.学生回答完毕后,教师可用一些过渡的语言将课题带回,如:“同学们从图片中发现了大量的几何图形,我们今天的研究和学习就从其中最简单的图形——线段、射线、直线开始”.第二环节师生互动,学习新知内容:1.讲明线段、射线、直线的描述性概念,并指明端点.2.学生讨论交流:(1)生活中,有哪些物体可以近似的看作线段、射线、直线?(2)线段、射线、直线的区别和联系.(教师用多媒体演示)3.教师借助图形,讲明线段、射线、直线的表示方法.4.教师利用表格,帮助学生辨析线段、射线、直线之间的区别与联系.目的:经过老师讲解,师生交流,目的在于让学生从数学的角度了解线段、射线、直线的概念,掌握线段、射线、直线的规范性表示方法,并加深对线段、射线、直线的本质性的理解.效果:作为平面几何的第一节课,介绍相关概念和它们的表示方法,对学生而言尤为基础.同样的两个字母A、B,当在前面加上不同的词汇时,它的意义就发生了变化,如线段AB、射线AB、直线AB,借助具体的图形,学生可以获得较好的理解.第三环节巩固练习,深化概念内容:1.请表示出下图中的线段、射线、和直线:2.判断下列说法是否正确: (1)直线、射线、线段都有两个端点;( )(2)直线和射线可以延伸,线段不能延伸; ( )请观察图形作出判断:(3)直线AB 和直线AC 表示的不是同一条直线; ( )(4)线段BC 和线段CB 表示的是同一条线段; ( )(5)射线AC 和射线CA 表示的是同一条射线. ( )3.比一比看谁画的好.已知平面上四个点A 、B 、C 、D ,读下列语句,并画出相应的图形:(1)画线段AC ;(2)画直线AB ;(3)画射线AD 、DC 、CB.目的:本环节设计了一组练习,目的是为了帮助学生理解线段、射线、直线的概念,联系和区别,同时巩固对其表示方法的掌握.题目设置的出发点在于检测本节课所学,所以鼓励学生独立完成、鼓励他们独自接受挑战的信心,期望能达到80—90%.效果:练习的结果表明通过前面环节的学习与辨析,学生掌握情况比较好,突出了本节课的重点.第四环节 动手操作,探索新知内容:1.动手操作:(1)过一点O 可以画几条直线?(2)过两点A 、B 可以画几条直线?2.归纳:(1)经过一点有无数条直线;(2)经过两点有一条直线,并且只有一条直线.教师应鼓励学生自己描述从实际动手操作中得到的结论.3.应用:(1)教师拿出一根木条和几颗钉子和相关工具,要求用尽可能少的钉子把木条固定在木板上,问至少要几颗?A C D(2)建筑工人在砌墙时,为了使每行砖在同一水平线上,经常在两个墙角分别立一根标志杆,在两根标志杆的同一高度处拉一根绳,沿这根绳就可以砌出直的墙.你能说出其中的道理吗?(3)植树时,怎么样才能使所种的树在同一条直线上?目的:让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生相互协作、猜想验证.几何事实的应用充分的展现了数学与生活的紧密联系,体现了数学的价值.效果:在活动和实践中获得相应的结论,对学生而言是很有意义的学习形式,学生对知识的产生体验深刻,理解深刻,课堂气氛达到高潮.第五环节思维拓展,知识升华内容:1.三条直线两两相交,有多少个交点?四条支线两两相交呢?n条直线呢?2.中国地域辽阔,有很多纵横交错的铁路线.其中某条线路上有重庆—宜昌—武汉—上海四站,已知每两站之间的票价不同(两站之间往返票价相同),请问有多少种票价?目的:本环节为学有余力的学生设置了稍具难度和有创新思维的问题,以满足不同学生在数学发展方面的需要.效果:问题1需要让学生经历从特殊到一般的过程,总结规律;问题2实质上需要数出线段的条数,对于初学几何的七年级学生,需要教师进行恰当、适时的引导和帮助.第六环节归纳小结,布置作业1.请学生说出这节课自己的收获.学生在教师的引导下畅言所学所获所感.2.美图欣赏(书上p136),教师用计算机演示形成过程.3.布置作业.目的:师生交流、归纳小结的目的是让学生学习表述自己的收获,培养及时归纳知识的习惯和归纳总结的能力.美图欣赏让同学们感受基本的线条在构图中的魅力.效果:全部利用“直的”线,可以画出“曲的”效果,让学生兴奋不已,大大激发了学生的学习兴趣.四、教学设计反思《线段、射线、直线》是新世纪教科书(北师大版)七年级上学期的内容,本节课的教学设计力图突出教学中学生的主动探究地位,并展现知识的发生、发展和形成过程,并体现大众数学中“所有人学习有价值的数学、不同的人在数学上获得不同的发展|”的价值理念.从创设学生熟知的生活情境中提出问题,自然的就把实际问题转化为数学问题;教师和学生一起抽象出数学问题后让学生交流讨论生活中基本图形大量存在的事实,让学生体验生活和数学的紧密相接;教师引导对线段、射线、直线作进一步的研究;接着用一组辨析问题让学生加深理解;在让学生反复动手操作去主动获得直线性质,并学习用语言描述出事实结论;小结交流所学所获所感.整节课呈现一种层层推进的节奏,环环相扣的衔接,也让学生经历了“情景导入-建立模型-解释运用与拓广”的数学过程.整节课的设计中既注重了平面几何的起步,立足于学生的知识经验水平,降低起点,让学生从生活实际出发,去认识存在我们生活中的简单几何图形,让学生在简单的又不可替代的动手操作中去发现几何事实,并试着说出结论等等是照顾到学生现有的知识水平,以及平面几何刚刚起步的基础性工作,做好中小学的衔接教育.整节课的设计中同时又注重了思维水平的发展与提升,比如练习中规律性的问题探究,并注重学生的数学语言的强化表达等等.反思整节课的设计亮点,第一,不拘泥于教材,广泛挖掘生活中的背景素材,由“生活原型—抽象几何图形—操作探究—解释运用”这条主线贯穿始终,过渡自然,衔接自如流畅.第二,问题设计合理,易调动学生.比如让学生广泛挖掘生活中蕴含基本图形的例子、让学生动手操作“钉木条”,让学生交流运用性质的例子,以及练习题和反馈题组的设计.学生都能主动积极参与,自觉应用数学知识解决问题.第三,在设计中关注学生的人文价值和情感态度.强调知识的主动获得,鼓励学生的积极参与与探究信心的扶植,照顾到学生的年龄特点和已有经验水平.2. 比较线段的长短一、学生起点状况分析本节课是教材第四章的第二节,是平面图形的重要的基础知识。
几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。
2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。
3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。
4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。
6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
第4章图形的认识4.1 几何图形【知识与技能】1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形.2.能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.【过程与方法】经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力.【情感态度】积极参与教学活动,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感.【教学重点】从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点.【教学难点】立体图形与平面图形之间的转化是难点.一、情景导入,初步认知1.观察下列图片,你能抽象出哪些图形?2.观察教师四周,看看有哪些你熟悉的图形?【教学说明】通过图片展示,激发学生的学习兴趣,引领学生步入丰富的几何世界.二、思考探究,获取新知1.前面同学们列举出了一些我们常见的图形,这些图形都是什么图形呢?【归纳结论】从物体外形中抽象出来的图形称为几何图形.各部分不在同一平面内的几何图形叫做立体图形.2.观察下面的图形.这些图形与下面的哪个立体图形对应?【教学说明】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富对几何形状的感性认识.3.想一想:长方形、正方形、三角形、圆等图形有什么共同特点呢?这些图形是什么图形呢?【归纳结论】各部分都在同一平面内的几何图形是平面图形.4.观察下列交通标志,这些标志中含有哪些平面图形呢?虽然立体图形和平面图形是两类不同的几何图形,但它们是相互联系的,立体图形中某些部分是平面图形,如正方体的每个侧面都是正方形.从不同方向观察立体图形,往往会看到不同形状的平面图形.如图,整体上看,我们看到的是长方体;看不同侧面,看到的是长方形或正方形;从长方形或正方形中,我们还可以看到点、线段.有些立体图形是由一些平面图形围成的,将它们的表面适当断开,可以展开成平面图形(如图所示).由此,我们可以发现虽然立体图形与平面图形是两类不同的几何图形,但它们是相互联系的.立体图形中某些部分是平面图形.5.观察下列长方体.(1)从不同方向看,然后说出得到的各种平面图形.(2)你能从这个立体图形中得到哪些平面图形.【教学说明】教师启发,引导,帮助学生完成.6.操作:将一个正方体沿着它的棱剪开,但不剪断,你能得到一个什么形状的平面图形.请相互交流.【归纳结论】有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,展开后是一个平面图形.【教学说明】培养了学生参与意识和合作交流的意识.三、运用新知,深化理解1.下列各组图形都是平面图形的一组是(C)A.三角形、圆、球、圆锥B.线段、角、梯形、长方体C.角、三角形、四边形、圆D.直线、圆柱、长方形、圆2.如图的圆锥是下面(B)平面图形绕轴旋转一周得到的.3.生活中有许多立体图形,想象下列物体分别与哪些图形相类似?(1)易拉罐;(2)铅笔盒;(3)一堆沙子;(4)足球;(5)螺母;(6)金字塔.答案:(1)圆柱(2)长方体(3)圆锥(4)球体(5)棱柱(6)棱锥4.如下图所示,把下面几何体的标号分别写在相对应的括号里面.长方体:{ };棱柱体:{ };圆柱体:{ };球体:{ };圆锥体:{ }.答案:长方体:{②⑤⑧};棱柱体:{②④⑤⑧};圆柱体:{①③⑥};球体:{⑦⑨};圆锥体:{⑩}.【教学说明】巩固提高.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题4.1”中第1、2、4题.通过本节课的学习使我感触很深,我认真的备课,制作课件,设计教学活动,使同学们在轻松愉快的氛围下学习,学生反应热烈,学习效果很好.不足之处是自己的语言不够简练.第4章直线与角【知识与技能】对本章的内容进行回顾和总结,熟练掌握线段、角的概念和表示方法,能运用线段、角的相关性质解决问题.【过程与方法】釆用讨论法、练习法、尝试指导法,反思线段、角的概念、性质和基本事实,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力.【情感态度】通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.通过本章知识的学习,进一步发展学生的几何直观能力和合情推理的能力.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用性质求线段与角.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识框图,使学生系统了解本章知识及它们之间的关系.教学时,边回顾边建立知识框图.二、释疑解惑,加深理解1.对于本章概念的理解:(1)对于线段、射线和直线概念的理解可以从端点的个数,是否能测量和表示方法对比进行记忆.(2)角从静态可以看成是由两条有共同端点的射线组成的图形,从动态可以看成是一条射线绕端点旋转所成的图形.2.性质的说明:(1)线段的中点和角的平分线:是说明线段与线段、角与角的关系的依据.(2)两个基本事实:两点确定一条直线,连接两点的所有线中线段最短.在实际生活中的应用很广泛.(3)补(余)角的性质:同角(或等角)的补角相等,同角(或等角)的余角相等,是说明角相等的依据.3.关于本章的数学方法:本章初步认识图形,使学生经历把事物体抽象出几何图形的过程,体验了数学的抽象,渗透了逻辑的思想,发展了推理能力,知道了归纳方法的作用.三、典例精析,复习新知例1下列说法中,正确的是()A.画出A、B两点间的距离B.连接两点之间的直线的长度叫做这两点之间的距离C.线段的大小关系与它们的长度的大小关系是一致的D.若AC=BC,则点C必定是线段AB的中点【分析】A项错在误将两点间的距离看成是线段本身,距离是指线段的长度而不是线段本身,所以是画不出来的;D项忽略线段的中点必须首先在线段上这一条件.如图所示,当AC=BC时,C却不是线段AB的中点.【答案】C例2如图所示,以O点为端点的5条射线OA,OB,OC,OD,OE一共组成______个角.【分析】每条射线都能与其它4条射线组成4个角,共能组成4×5=20个角,其中有12是重复的,所以这5条射线能组成10个角.【答案】10【点评】确定有公共端点的射线所组成角的个数,与线段上的点分线段的条数的问题解法类似.例3如图所示,线段AD=10cm,点B,C都是线段AD上的点,且AC=7 cm,BD=4 cm,若E,F分别是AB,CD的中点,求线段E,F.【点评】结合图形,利用线段的中点解决问题.例4如图所示,已知OC是∠AOD的平分线,OE是∠BOD的平分线.(1)请你猜想∠COE与∠AOB的关系并说明道理;(2)当∠AOB是平角时,请你判断∠DOE与∠DOC关系.【分析】观察图形,结合图形猜测出∠COE与∠AOB的关系,利用角平分线的性质推理.【点评】利用第(1)题的结论来说明第(2)题.【教学说明】这一环节是本节课重点所在,这4个例题层次递进,对本章重要知识点进行有效复习和巩固,强化学生对本章重点知识理解与运用.四、复习训练,巩固提高1.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()交点A.21个B.18个C.15个D.10个2.已知∠A=65°,则∠A的补角等于()A.125°B.105°C.115°D.95°3.在8:30时,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°4.线段AB=14cm,C是AB上一点,且AC=9cm,O为AB中点,求线段OC的长度.5.如下图,从直线AB上任一点引一条射线,已知OD平分∠BOC,若∠EOD=90°,那么OE 一定是∠AOC的平分线,请说明理由.【答案】1.C 2.C 3.B 4.2 cm5.解:∵AB是直线,∴∠1+∠2+∠3+∠4=180°.∵OD平分∠BOC,∴∠3=∠4∵∠EOD=∠2+∠3=90°∴∠1+∠4=180°-∠EOD=90°=∠2+∠3.∴∠1=∠2.即OE平分∠AOC.五、师生互动,课堂小结本堂课你能系统地回顾本章所学有关线与角的知识吗?你会求线段或角吗?你还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,尽可能让学生自主交流与反思,对于学生的困惑与疑问,教师应予以补充和点评.1.布置作业:从教材第158、159页“复习题”中选取.2.完成同步练习册中本课时的练习.本节复习是首先通过知识框图整体把握,引导学生对本章知识点梳理,构建本章知识体系,通过典型例题探究加深学生对主要思想方法的理解,掌握常用解题方法.在教学中,关注学生是否认真思考,相互交流与合作,以及学生对问题的理解情况,使学生在反思和交流的基础上构建合理的知识体系.通过典型例题强化图形中的相关运算,训练学生的计算能力和分析解决问题的能力,从而提高他们应用数学的意识.第六章实数6.1 平方根课时2 用计算器求一个正数的算术平方根1. 了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2. 了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.3. 通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.理解算术平方根的概念.根据算术平方根的概念正确求出非负数的算术平方根.教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时, 2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D本节课应掌握:1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?从教材“习题6.1”中选取.。
第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
《认识图形》优秀教案(通用8篇)《认识图形》优秀教案篇1教学目标①通过观测、操作,使同学初步认识长方体、正方体、圆柱体、球。
初步感知其特征。
会辨别这几种外形的物体和图形。
②培育同学动手操作和观测事物的技能,初步建立空间观念。
③通过数学活动,培育同学用数学进行沟通,合作探究和创新意识。
④使同学感受到数学与现实生活的亲密联系,渗透美育和德育教育。
教学重难点:学会辩认和区分长方体、正方体、圆柱和球。
教学预备:多媒体课件,外形为长方体、正方体。
圆柱和球的生活用具,学习用具和玩具、图形卡片。
教学过程一、设景与激趣课程类型:综合探究教学目标:1、了解图形标识、常识。
2、通过绘画、表演等多种形式了解图形标识、常识,懂得要遵守公共规章。
3、要留意安全,遵守交通规章,做一名文明的小市民。
教具预备:课件:常见的图形标识图片教学过程一、组织教学,做好课前预备检查同学学具预备状况,稳定同学心情。
二、导入新课1、说一说:在公路上、杂志里、电视里你都见到过哪些图形标识。
2、同学们看几幅交通标识图。
提问:谁能说出这些标识在哪里见过?它们是什么意思?3、出更多的图形标识——斑马线、禁止鸣喇叭、单行道等要求:让同学自由选择画其中的图形标识。
4、每一个同学找一个伙伴,协作他画的标识,表演其含义。
剪一剪:让同学们剪下画好的图形标识相互辨别是什么标记?活动演一演:谁能当交警〔1〕扮演交警的可以戴上大盖帽。
〔2〕也可以利用手中的标识进行表演。
三、作业要求画一组或一幅生活中常见的标识。
四、同学作业同学作业,老师巡回指导。
速度快的同学画完标识之后可以相互沟通自己画完的交通标识。
课堂延展:可以画想象中的汽车,可以自己设计汽车。
五、课堂小结通过这节课的学习,同学们认识、了解了各种图形标识、常识,今后同学们肯定要遵守公共规章,遵守社会公德,做一名文明的小市民。
《认识图形》优秀教案篇2教学目标1、通过操作活动,使同学体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。
【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.公式法第一课时重点:用平方差公式分解因式难点:灵活运用平方差公式分解因式,正确判断因式分解的彻底性.实施建议:1.让学生一起来计算(a+b)(a-b)= _______ 探究新的问题:(x2-1) a2-b2=__________。
一年级数学图形的认识教学设计(5篇)一年级数学图形的认识教学设计(篇1)一、理解教材《认识物体和图形》是学生学习“空间与图形”知识的开始,主要从形状这一角度来使学生初步认识物体和图形。
这一单元包括:立体图形的初步认识和平面图形的初步认识。
因为现实生活中孩子们接触的大多是立体图形,所以教材把认识立体图形排在平面图形之前。
教材在这部分内容的编排上体现了新课标的两大理念:注重知识与生活的联系;注重在活动中学习知识,通过学生亲自动手操作,自然地完成学习过程,掌握知识。
二、了解学生儿童对形状的知觉是通过视觉、触觉、运动觉协同运动的,这有利于增进他们对所处环境的认识,为将来学习几何知识打下良好的基础。
其实儿童在很小的时候就开始接触各种形状的物体,关于形状,他们已经有了较多的的感知经验,只是这些经验太感性,需要进一步抽象化,形成简单的几何概念,发展初步的空间观念。
我的学生大多是五六岁,年龄偏小,合作意识和合作能力还非常弱,加上班上人数多(56人),分组活动不容易组织。
另外,据我课前调查,学前班虽然也认识过这些图形,但很多孩子将“长方体”说成“长方形”,将“正方体”说成“正方形”,也有将“圆柱”说成“长方形”的,将“球”说成“圆”的更多,所以教学目标不能定得太高。
三、拟定目标根据教材的编排特点、课程标准的要求和学生已有的认知水平,将教学目标定为:1、通过操作、观察,使学生初步认识长方体、正方体、圆柱和球,知道它们的名称,会辨认这几种物体和图形(这是知识与技能方面的目标);2、培养学生动手操作及观察能力,建立初步的空间观念(这是数学思考方面的目标);3、通过学生活动,激发学习兴趣,培养学生的合作探究和创新意识。
(这是情感与态度方面的目标)教学重点与难点是:初步认识长方体、正方体、圆柱和球的实物与图形,建立空间观念。
四、学法与教法根据以上分析,我认为学生应采用这样的学法:一、积极投入到活动中,仔细观察,更要多动手操作;二、和其他同学一起合作学习,共同探究;三、将知识与生活紧密联系起来,学以致用。
图形初步认识教案初中课程目标:1. 了解和掌握基本图形的特征和性质。
2. 能够识别和分类常见图形。
3. 能够运用图形的基本知识解决实际问题。
教学重点:1. 基本图形的特征和性质。
2. 图形分类和识别。
教学难点:1. 图形分类和识别。
教学准备:1. 教学课件或黑板。
2. 各种图形卡片或实物。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的各种图形,如窗户、桌子、椅子等。
2. 提问:你们能说出这些图形的名称吗?它们有什么特征?二、新课(20分钟)1. 介绍基本图形的名称和特征,如圆形、方形、三角形、矩形等。
2. 通过课件或黑板展示各种图形,让学生观察和记忆它们的特征。
3. 讲解图形的性质,如圆形的周长和面积公式,方形的对角线长度等。
4. 举例说明如何运用图形的基本知识解决实际问题,如计算面积、周长等。
三、练习(15分钟)1. 发放图形卡片或实物,让学生进行观察和分类。
2. 要求学生说出每个图形的名称和特征,并进行分类。
3. 让学生尝试解决一些实际问题,如计算图形的面积、周长等。
四、总结(5分钟)1. 回顾本节课所学的图形名称和特征。
2. 强调图形分类和识别的重要性。
3. 鼓励学生在日常生活中观察和运用图形知识。
教学反思:本节课通过引导学生观察教室里的各种图形,激发学生的学习兴趣。
通过展示课件和黑板,让学生直观地了解基本图形的特征和性质。
在练习环节,通过发放图形卡片或实物,让学生进行观察和分类,巩固所学知识。
在总结环节,回顾本节课所学的图形名称和特征,并强调图形分类和识别的重要性。
通过本节课的学习,学生能够识别和分类常见图形,并能够运用图形的基本知识解决实际问题。
第四章 图形的初步认识 第1课时
教学目的: 1、通过学习能认识常见的图形,并能对常见的图形进行分类、分辨; 2、能够对实际中的物体进行抽象化为图形; 3、能了解多面体中的欧拉公式。 教学分析: 重点:基本图形的认识与分辨; 难点:欧拉公式的应用与认识。 教具准备:每个小组准备相关的立体图形及实际生活物品。 教学设想:强调几何学与实际生活的理论联系实际。 教学过程: 教学过程设计 分析备注 一、知识导向: 本节从学生的生活周围入手,通过观察认识到生活以生活的周围存在着规则的和不规则的物体,规则物体是我们进一步学习和研究的对象。对于教材中出现的一些概念,如圆柱、棱柱等,都不是定义,仅是描述性的说法。教学中不要求学生掌握严格的概念,只要求能通过具体图形进行识别或判断。在教学中注意引导学生观察、体验数学概念的抽象和形成的过程。 二、新课讲授: 1、知识基础: 我们都知道,我们的生活空间是一个三维的世界,我们生活中的生活中的物体都是立体的物体,而这些物体中有一部分是较有规则的,如: 生活物体 苹果、球 天坛顶端 塔顶 粉笔盒 笔筒 类似图形 球体 圆锥 棱锥 棱柱 圆柱 2、知识形成: 图1 图2 图3 图4 图5 在上面的图形中: (1) 图1所表示的立体图形是柱体(圆柱体); (2) 图2所表示的立体图形是柱体(棱柱体); (3) 图3所表示的立体图形是锥体(圆锥体); (4) 图4所表示的立体图形是球体; (5) 图5所表示的立体图形是锥体(棱锥体); 另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱„„等; 棱锥有三棱锥、四棱锥、五棱锥、六棱锥„„等; 数学的学习应是与实际相联系的数学,才是有用的数学,如何从实际物体中抽象出几何图形是重要的第一步。 如: 三棱柱 四棱柱 五棱柱 六棱柱 三棱锥 四棱锥 五棱锥 六棱锥 3、知识拓展: 从下面的多个多面体: 正四面体 正方体 正八面体 „„ 经过我们数图中每一个多面体所具有的顶点数(V)、棱数(E)、和面数(F): 多面体 顶点数(V) 面数(F) 棱数(E) V+F-E 正四面体 4 4 6 2 正方体 正八面体 正十二面体 正二十面体 „„ 从上面的结果,伟大的数学家欧拉证明了: 概括:欧拉公式 顶点数+面数-棱数=2 三、巩固训练:P122 exc1、2、3 四、知识小结:本节课主要学习了实际物体与图形间的关系,知道了棱柱、棱锥、圆柱、圆锥的分类及分辨。 五、课后作业:P123 exc1、2、3 六、每日预题: 1、各小组准备好各种规则的图形; 2、一个物体是否从各个方向看都是一样的? 对于立体图形的认识只需学生懂得如何为分辨即可,不必对其所具的定义进行了解。
对于欧拉公式,只是作为学生的一个课外的知识进行了解,但是公式的研究方法是我们必须学会的。
在练习与习题中还需培养学生会画出常见的立体图形。
教学后记
第2课时 教学目的: 1、通过学习使学生能知道物体是有多个方面,从不同方面来观察物体是不一样的; 2、能画出简单立体图形的三视图。 教学分析: 重点:如何确定物体的三视图; 难点:转化思想的培养。 教具准备:各小组与老师都准备一些简单的立体图形。 教学设想:以学生的独立思考,老师的启发为主。 教学过程: 教学过程设计 分析备注 一、知识导向: 视图法是画立体图形的一种方法,在生产实际中经常用到,因为学生的空间思维还处于形成阶段,所以对本部分的要求不能过高,仅要求学生认识到视图法是一种在生产实际中常用的方法,能描述简单立体图形的视图,如球、圆柱、圆锥、棱柱、棱锥及立方体的简单组合等,棱柱仅限于直棱柱,棱锥限于正棱锥,能画出草图,仅要求学生能识别所见到的视图形状与类别。 二、新课讲授: 1、知识形成: 在平面上画空间的物体不是一件简单的事,因为必须把它画得从各个方面看都很清楚。为了解决这个问题,创造了三视图法。 概括:(1)三视图指的是从正面、上面和侧面(左面或右面)三个不同的方向看一个物体; (2)根据上面的过程, 然后描绘三张所看到的图,即视图。 如: 从正面看: 从正面看到的图形,称为正视图; 从左面看: 从侧面看到的图形,称为侧视图,依观看方向不同,有左视图、右视图; 从上面看: 从上面看到的图形,称为俯视图。 2、例解讲解: 视图法在生活中有着较广泛的应用,特别对于要涉及到立体图形的工作。
三视图其实也就是由俯、前、侧(左右)的分别三图的综合说法。
画三视图,应抓住的关键是从哪一个角度来观察,另外很重要的是一个把立体图形转化为平面图形的过程,应观察出所得的有关线条与轮廓。 例:1、画出如图所示的正方体和圆柱的三视图。 2、画出如图所示的四棱锥的三视图。 三、巩固训练:P126 exc1、2 四、知识小结: 本节课学习了常见立体图形的三视图,在画三视图的过程中,我们要掌握我们所选择看图形的角度。 五、课后作业:P129 exc1、2、3 六、每日预题: 1、 如何把三视图转化为立体图形? 2、一个三视图是不是只能转化成一个立体图形? 对一常见的简单图形及简单图形的组合图形都必须引导学生能准确迅速地画出其三视图。
教学后记
第3课时 教学目的: 1、通过学习使学生继续感受数学的转化思想,认识事物的不一定性,使学生能充分分析不同的情况; 2、使学生能利用三视图来描述出实际的立体图形。 教学分析: 重点:如何概括三视图画出正确的立体图; 难点:如何认识到实际立体图形的不唯一性。 教具准备:准备一些常见的立体图形及一些可组合的正方体。 教学设想:充分运用启发性教学,培养学生的发散性思维。 教学过程: 教学过程设计 分析备注 一、知识导向: 本节课的学习其实是前堂课的延续,从立体图形到三视图是一个从立体到平面的过程,而由视图到立体图形是一个从平面到立体的过程,所以两者间的关系是非常紧 密的,在教材的处理上要注意到两者间的有机结合。另外,在本节的学习中,仍然只要求学生能描述实际的立体图形,说出它是由哪些基本图形构成的。 二、新课讲授: 1、知识设疑: 如果你看到右图, 你会想到什么立体图形: (1) (2) „„ 2、例题讲解: 从引例中,可以发现,一个平面图形可以转化成很多种的立体图形,如上图中的长方形,可以是圆柱、正方体、其他的棱柱等。 例:1、如图中所示的是一些立体图形的三视图,请根据视图说出立体图形的名称,并画出相应的实际立体图形。 (1) 正视图 左视图 俯视图 (2) 正视图 左视图 俯视图 2、如图是一个物体的三视图,试说出物体的形状 正视图 左视图 俯视图 三、巩固训练:P128 exc1、2 四、知识小结: 本节课只学习了由视图到立体图形,要充分认识到角度的转化,这也是一个非常抽象思维过程。 五、课后作业:P129 exc4 六、每日预题: 1、立体图形是由什么组成的? 2、一个立体图形的展开图是唯一吗? 由三视图到立体图形更需要学生具有空间想象能力,或者说如何使学生对一些基本图形更加熟悉,所以培养学生的图感仍是重中之重。
图中只是从一个方向所见得的平面图形,所以在此必须引导学生从多个方面去思考,逐渐培养学生的发散性思维。
抽象思维及平面图形如何相互组合成立体图形,这一过程是了一个充分思维的过程。
练习中有必要对一些常见的立体所展示出的三视图进行练习。
第4课时 1、让学生通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一步认识立体图形与平面图形的关系; 2、会判断所给定的平面图形能否折成立体图形(多面体) 3、给出一些多面体的展开图,能说出相应多面体的名称; 4、会判断给定的平面图形是否某多面体的展开图,并会把一个简单的多面体展开成平面图形; 5、培养学生的观察、实践操作能力和空间想象能力。 教学分析: 重点:根据多面体研究其展开图和根据展开图判别多面体; 难点:研究一个简单多面体的展开图。 教学设想: 启发式地教学,促进学生的实践能力。 教学过程: 教学过程设计 分析备注 一、知识导向: 本节课立体图形与平面图形的直接转化,在这里体现着事物间的相互转化思想,在教学中教师应在学生动手做上多做文章,在教学中突出学生的自主性。在知识上,如何确定一个立体图形的展开图,并明白其展开图的非唯一性。另外,应能认识到一个展开图能否转化成一个立体图形。在应用中应抓住转化时的判断力,并能对其有一个强烈的图感。 二、新课讲授: 1、知识回顾: 观察生活的周围,就会发现物体的形状千资百态„„,这其中蕴含着许多图形的知识。 (引例)圆柱、圆锥的侧面展开图分别是什么? 2、知识形成: 在实际生活中常常需要了解了解整个立体图形展开的形状,如包装一个长方体的物体,需要根据它的平面展开图来裁剪纸张。为此我们本节课要讨论的是一些简单多面体的平面展开图。 (1)根据给定的一些平面图形,判断能否折成立体图形。 “做一做”:12个一样大的等边三角形,粘贴成如下图所示的三种形状,你能想象哪一个可以折叠成多面体?动手做做看。 图(1) 图(2) 图(3) 从学生动手的结果,我们易知,图(1)、图(3)可折叠想多面体,图(2)不能折叠成多面体。 概括:多面体是由平面图形围成的立体图形,设想沿着多面体的一些棱将它剪开,可以把多面体展开成一个平面图形。 上面的图(1)、图(2)实际上是由三棱锥展开而成的平面图形,我们把它叫做 本节知识以基本立体图形和图形的侧面展开图为基础,需要具备一定的空间想象力。