时变电磁场的矢量位和标量位
- 格式:pdf
- 大小:173.53 KB
- 文档页数:8
二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很大的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有 体电荷,,面电荷,线电荷和点电荷常用的电流分布模型有体电流模型,面电流模型和线电流模型他们是根据电荷和电流的密度分布来定义的2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比。
电偶极子的电场强度与距离r 的立方成反比2.4 简述ερ=•∇E 和0E =⨯∇所表征的静电场特性ερ0=•∇E 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
0 =⨯∇E 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以0ε与闭合面外的电荷无关,即dV dS E V S ρε⎰⎰=⋅01在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
2.6 简述0=•∇B 和J B 0μ=⨯∇所表征的静磁场特性0=⋅∇B 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,J B 0μ=⨯∇表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和0μ倍,即I dl B C0μ=⋅⎰如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
电磁场与波模拟题一、填空题1.矢量分析中的散度定理(或高斯公式)是 ,斯托克斯定理(或斯托克斯公式)是 。
2.空间位场()+()()x y z R e x x e y y e z z '''=--+-,||R R =。
则R ∇= ,1R ⎛⎫∇= ⎪⎝⎭,R ∇⨯= 。
3.真空中静电场的基本方程的微分形式为 , ,静电场用静电位表示为 。
静电位满足的泊松微分方程为____________________。
4.导体中稳恒电流场的基本方程的微分形式为 , ,稳恒电流场用静电位表示为 。
静电位满足的拉普拉斯微分方程为____________________。
5.真空中恒定磁场的基本方程的微分形式为 , ,恒定磁场用矢量磁位表示为 。
若引入库伦规范条件___________,则矢量磁位满足的微分方程为__________。
6.在时变电磁场中,定义动态矢量位A 和标量位ϕ,则磁场B =__________,电场E =__________。
若引入洛仑兹规范条件___________,则动态位满足的微分方程为_____________、______________。
7.在理想介质分界面上磁场强度H 满足的关系是 ,磁感应矢量B 满足的关系 。
8.在理想介质分界面上电场强度E 满足的关系是 ,电位移矢量D 满足的关系 。
9.应用分离变量法在解矩形二维场的问题时,位函数所满足的拉普拉斯方程为_______,其第一步是令(,)x y ϕ=________,然后可将此偏微分方程分解为两个_____微分方程。
10.复数形式的麦克斯韦方程组是___________、______________、_____________、______________。
11.无源空间的电磁场波动方程为_____________、______________;时谐场的波动方程的复数形式即亥姆霍兹方程是_______________、________________。
特性:1)电场和磁场互为对方的涡旋(旋度)源。
在空E和§6-3 坡印廷定理及坡印廷矢量1、坡印廷定理能量的流动是时变场中出现的一个重要现象 流动的能量同空间媒质所消耗的能量以及电磁储能之间应满足能量守 恒定律,即Poynting定理,也称能流定理v v v ⎛ ∂ B ⎞ v ⎛ v ∂D ⎞ v v v v v v Q ∇ ⋅ (E × H ) = H ⋅ (∇ × E ) − E ⋅ (∇ × H ) = H ⋅ ⎜ − ⎜ ⎟ ⎜ ∂t ⎟ − E ⋅ ⎜ J + ∂t ⎟ ⎟ ⎝ ⎠ ⎝ ⎠ v v v ∂H v v v ∂E = − μH ⋅ − E ⋅ σ E − εE ⋅ ∂t ∂t 1 ω m = μH 2 ∂ ⎛1 ∂ ⎛1 ⎞ ⎞ 2 = − ⎜ μH 2 ⎟ − σE 2 − ⎜ εE 2 ⎟ ∂t ⎝ 2 ∂t ⎝ 2 1 ⎠ ⎠ ω e = εE 2 ∂ 2 v v = − (ω m + ω e ) − p p = E ⋅ J = σE 2 ∂t假定:媒质是线性、各向同性的,且不随时间变化;无外加源Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量v v ∂ ∇ ⋅ (E × H ) = − (ωm + ωe ) − p ∂t v v v v ∂ 令 S = E × H,得 − ∇ ⋅ S = (ω m + ω e ) + p ∂t单位时间内流入单 位体积中的能量坡印廷定理微分形式 单位体积内焦耳热损耗单位体积内电场能量和磁场能量的增加率 坡印廷定理积分形式取体积分,应用高斯定律得:v v d − ∫ S ⋅ ds = s dt∫ (ωVm+ ω e )dv + ∫ pdvV体积V内变为焦耳 热损耗的功率体积V内电场能量和磁场能量每秒的增加量 由于假设体积V内无外加源,根据能量守恒定律,等式左 端即为单位时间内穿过闭合面S进入体积V中的能量Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量坡印廷定理物理意义: v ∂ 微分形式: − ∇ ⋅ S = ∂t (ω m + ω e ) + p外界向电磁场某点提供的电磁功率密度,等于该点电磁场能量密 度的时间增加率,与对这点自由电荷提供的功率密度之和v v d 积分形式: − ∫s S ⋅ ds = dt ∫V (ω m + ω e )dv + ∫V pdv 某时刻外界通过闭合面进入其所包围体积V中的电磁功率,等于V 内电磁场能量的时间增加率与体积内焦耳热损耗的瞬时功率之和Poynting定理是电磁场中的能量守恒与转换定律 它清楚地表明电磁场是能量的携带者与传播者Chap.6 时变电磁场 —— §6-3 坡印廷定理及坡印廷矢量2、坡印廷矢量v v v v v 由坡印廷定理可知, S ⋅ ds = ∫ (E × H )⋅ ds表示通过闭合面S的总瞬时功率 ∫s s定义:v v v S = E×H为坡印廷矢量,也称能流密度矢量。