高考数学二轮复习 课时跟踪检测(四)理
- 格式:doc
- 大小:56.00 KB
- 文档页数:3
课时跟踪检测(十二)A 组——12+4提速练一、选择题1.(2017·云南统考)在⎝ ⎛⎭⎪⎫x -1x 10的二项展开式中,x 4的系数为( )A .-120B .-60C .60D .120解析:选A ⎝⎛⎭⎪⎫x -1x 10的展开式的通项T r +1=Cr 10x 10-r ·⎝⎛⎭⎪⎫-1xr =(-1)r Cr 10x 10-2r,令10-2r =4,得r =3,所以该二项展开式中x 4的系数为-C310=-120.2.(2017·长沙调研)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20解析:选A ⎝ ⎛⎭⎪⎫12x -2y 5展开式的通项T r +1=Cr 5⎝ ⎛⎭⎪⎫12x 5-r ·(-2y )r =Cr 5·⎝ ⎛⎭⎪⎫125-r ·(-2)r ·x5-r·y r ,令r =3,得x 2y 3的系数为C35·⎝ ⎛⎭⎪⎫122·(-2)3=-20.3.旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方案有( )A .24种B .18种C .16种D .10种解析:选D 若甲景区在最后一个体验,则有A33种方案;若甲景区不在最后一个体验,则有A12A22种方案.所以小李旅游的方案共有A33+A12A22=10(种).4.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( )A .288种B .144种C .72种D .36种解析:选B 首先选择题目,从4道题目中选出3道,选法有C34种;其次将获得同一道题目的2位教师选出,选法有C24种;最后将选出的3道题目分配给3组教师,分配方式有A33种.由分步乘法计数原理,知满足题意的情况共有C34C24A33=144(种).5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种解析:选A 甲、乙两人从4门课程中各选修2门有C24C24=36种选法,甲、乙所选的课程中完全相同的选法有C24=6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30(种).6.(x 2-2)⎝ ⎛⎭⎪⎫1+2x 5的展开式中x -1的系数为( )A .60B .50C .40D .20解析:选A 依题意,⎝ ⎛⎭⎪⎫1+2x 5的展开式的通项T r +1=Cr 5·2r ·x -r,⎝ ⎛⎭⎪⎫1+2x 5的展开式中含x -1(当r =1时),x -3(当r =3时)项的系数分别为2C15,23C35,所以(x 2-2)⎝⎛⎭⎪⎫1+2x5的展开式中x -1的系数为23C35-2×2C 15=60.7.⎝⎛⎭⎪⎫ax +1x (2x -1)5的展开式中各项系数的和为2,则该展开式中的常数项为( )A .-20B .-10C .10D .20解析:选C 令x =1,可得a +1=2,所以a =1,所以⎝ ⎛⎭⎪⎫ax +1x (2x -1)5=⎝ ⎛⎭⎪⎫x +1x (2x -1)5,则展开式中常数项为2C45(-1)4=10.8.学校组织学生参加社会调查,某小组共有5名男同学,4名女同学.现从该小组中选出3名同学分别到A ,B ,C 三地进行社会调查,若选出的同学中男女均有,则不同的安排方法有( )A .70种B .140种C .840种D .420种解析:选D 从9名同学中任选3名分别到A ,B ,C 三地进行社会调查有C39A33种安排方法,3名同学全是男生或全是女生有(C35+C34)A33种安排方法,故选出的同学中男女均有的不同安排方法有C39A33-(C34+C35)A33=420(种).9.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( )A .945B .-945C .1 024D .-1 024解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C1315×32×(-1)13=-945.10.(2017·合肥质检)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )。
1 / 4课时追踪检测 ( 十九 ) 不等式选讲1.(2019 ·广州模拟 ) 已知定义在 R 上的函数 f ( x ) = | x -m | + | x | , m ∈ N * ,存在实数x使 f ( x )<2 建立.(1) 务实数 m 的值;41(2) 若 α≥1, β≥1, f ( α) + f ( β) = 4,求证: α+β≥3.解: (1) 由于 | x - m | + | x | ≥|m - x + x | = | m |.因此要使不等式 | x - m | +| x |<2 有解,则 | m |<2 ,解得- 2<m <2. 由于 m ∈ N * ,因此 m = 1.(2) 证明:由于 α≥1, β≥1,因此 f ( α) + f ( β) = 2α- 1+ 2β -1= 4,即 α+ β= 3,41 1 4 1因此 α+ β= 3 α+ β ( α+ β )14β α= 3 5+ α + β15+ 24β α = 3.≥ 3 α ·β4βα当且仅当 α = β,即 α= 2, β= 1 时等号建立,41故 α+ β≥3.2.(2019 ·福州四校联考 )(1) 求不等式- 2<| x - 1| -| x + 2|<0 的解集;(2) 设 a , b 均为正数, h = max2+222 , ab , ,证明: h ≥2.aab b3, x ≤- 2,解: (1) 记 f ( x ) = | x - 1| - | x + 2| = - 2x - 1,- 2<x <1,- 3, x ≥1,11由- 2<- 2x - 1<0,解得- 2<x <2,1 1则不等式的解集为 - 2, 2 .2a 2+b 22(2) 证明:∵ h ≥, h ≥, h ≥,aabb22∴ h 3≥ 4 a + b≥4×2ab= 8,当且仅当 a = b 时取等号,abab12 / 4∴ h ≥2.3.(2019 ·广东省化州市一模 ) 已知函数f ( x ) = | x - |-2.a (1) 若 a = 1,求不等式 f ( x ) + |2 x - 3|>0 的解集;(2) 对于 x 的不等式 f ( x )>| x - 3| 有解,务实数 a 的取值范围.解: (1) 当 a = 1 时,原不等式等价于| x - 1| + |2 x - 3|>2.当 x ≥3时, 3x -4>2,解得 x >2; 23当 1<x <2时, 2-x >2,无解;当x ≤1时, 4-3 >2,解得x 2< .x3∴原不等式的解集为2 .x x >2或 x <3(2) f ( x )>| x - 3| ? | x - a | - | x - 3|>2.令 g ( x ) = | x - a | - | x - 3| ,依题意知, g ( x ) max >2.∵ g ( x ) = | x - a | - | x -3| ≤|( x - a ) - ( x - 3)| = | a -3| , ∴ g ( x ) max = | a - 3| , ∴|a -3|>2 ,解得 a >5 或 a <1,∴实数 a 的取值范围是 ( -∞, 1) ∪ (5 ,+∞ ) .4.(2019 ·蓉城名校高三联考) 设函数 f ( x ) =| x + 1| + |2 x - 1|.(1) 求不等式 f ( x ) ≥2的解集;29(2) 若对于 x 的不等式 f ( x ) ≤- m + 2m + 2的解集非空,务实数 m 的取值范围.- 3x , x ≤- 1,- + 2,-1解: (1) 由题意知 f ( x ) =1<<,xx 213x , x ≥ 2,∴原不等式等价于x ≤- 1,-3 ≥2x11或 - 1<x <2,或 x ≥ 2,- x +2≥23x ≥2,2解得 x ≤- 1 或- 1<x ≤0或 x ≥ 3,22∴原不等式的解集为( -∞, 0] ∪3,+∞.- 3x,x≤- 1,1 (2) 由 (1) 知,f ( x) =- x+2,-1<x<2,13x,x≥,23因此 f ( x)min=2.29要使不等式 f ( x)≤- m+2m+2的解集非空,只要f (x) min≤- 29 3 2 9+ 2 +,即≤-+2+,m m 2 2 m m 2 2化简得 m-2m-3≤0,解得-1≤ m≤3,因此实数的取值范围是 [ - 1,3] .m5.(2019 ·湖南省岳阳市第一中学高三二检) 已知f ( x) = |2 x-3| +ax-6( a是常数 ) .(1)当 a=1时,求不等式 f ( x)≥0的解集;(2) 假如函数y=f ( x) 恰有两个不一样的零点,求 a 的取值范围.3解: (1) 当a= 1 时,f ( x) = |2 x- 3| +x- 6=3x-9,x≥2,3 - 3-x, < ,x 23 3则原不等式等价于x≥2,或 x<2,解得 x≥3或 x≤-3,3x-9≥0- 3-x≥0,则原不等式的解集为{ x| x≥3或x≤- 3} .(2) 由f ( x) = 0,得 |2 x-3| =-ax+ 6.令 y=|2 x-3|, y=- ax+6,作出它们的图象,如图.明显,当- 2<a<2 时,这两个函数的图象有两个不一样的交点,因此函数 y= f ( x)恰有两个不一样的零点时,a 的取值范围是(-2,2).6.(2019 ·全国卷Ⅲ) 设x,y,z∈R,且x+y+z= 1.33 / 44 / 4(1) 求 ( x - 1) 2+ ( y + 1) 2+ ( z + 1) 2 的最小值;2221(2) 若 ( x - 2) + ( y - 1) + ( z - a ) ≥ 3建立,证明: a ≤- 3 或 a ≥- 1. 2解: (1) 由于 [( x - 1) + ( y + 1) + ( z +1)]= ( x -1) 2+ ( y + 1) 2+ ( z + 1) 2+ 2[( x -1)( y + 1) + ( y + 1)( z + 1) + ( z + 1)( x -1)]≤ 3[( x - 1) 2+ ( y +1) 2+ ( z +1) 2] ,2224因此由已知得 ( x - 1) + ( y + 1) + ( z + 1) ≥ ,511当且仅当 x = 3, y =- 3,z =- 3时等号建立.2224因此 ( x - 1) + ( y +1) + ( z +1) 的最小值为.(2) 证明:由于 [( x - 2) +( y - 1) +( z - a )] 2= ( x -2) 2+ ( y - 1) 2+ ( z - a ) 2+ 2[( x -2)( y - 1) + ( y - 1)( z - a ) + ( z - a )( x -2)]≤3[( x - 2) 2+ ( y -1) 2+ ( z -a ) 2] ,22222+ a因此由已知得 ( x - 2) + ( y - 1) + ( z - a ) ≥,4- a 1- a2a - 2当且仅当 x =3 , y = 3, z =3 时等号建立.因此 ( x - 2) 2+ ( y -1) 2+ ( z -a ) 2 的最小值为 2+ a 2 .3 由题设知 2+ a 2 1或 a ≥- 1.≥ ,解得 a ≤- 33 34。
课时跟踪检测(三)A 组——12+4提速练一、选择题1.(2017·沈阳质量检测)已知△ABC 中,A =π6,B =π4,a =1,则b =( )A .2B .1C.3D .2解析:选D 由正弦定理a sin A =b sin B ,得1sin π6=b sinπ4,即112=b22,∴b =2,故选 D.2.(2017·张掖模拟)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sinB -a sin A =12a sin C ,则sin B =( )A.74B.34 C.73D.13解析:选A 由b sin B -a sin A =12a sin C ,得b 2-a 2=12ac ,∵c =2a ,∴b =2a ,∴cos B =a2+c2-b22ac =a2+4a2-2a24a2=34,则sin B =1-⎝ ⎛⎭⎪⎫342=74.3.已知sin β=35⎝ ⎛⎭⎪⎫π2<β<π,且sin(α+β)=cos α,则tan(α+β)=( )A .-2B .2C .-12D .12解析:选A ∵sin β=35,且π2<β<π,∴cos β=-45,tan β=-34.∵sin(α+β)=sin αcos β+cos αsin β=cos α,∴tan α=-12,∴tan(α+β)=tan α+tan β1-tan α·tan β=-2.4.若△ABC 的三个内角A ,B ,C 对应的边分别为a ,b ,c ,且a cos C ,b cos B ,c cosA 成等差数列,则B =( )A .30°B .60°C .90°D .120°解析:选B 由题意知2b cos B =a cos C +c cos A ,根据正弦定理可得2sin B cos B =sin A cos C +cos A sin C ,即2sin B cos B =sin(A +C )=sin B ,解得cos B =12,所以B =60°.5.(2018届高三·贵州七校联考)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( )A .-7210B.7210C .-210D.210解析:选D 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210,故选D.6.(2017·青岛模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2sin B +sin C )b +(2c +b )sin C ,则A =( )A .60°B .120°C .30°D .150°解析:选B 由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A ,得cos A =-12,又A 为三角形的内角,故A =120°.7.(2017·惠州调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.2+1B.3+1C .2 D.5解析:选B 由正弦定理b sin B =c sin C ,得sin B =bsin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.。
(通用版)2019年高考数学二轮复习 课时跟踪检测(二十三)理一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A 由题意得,f (1)=3,所以f (x )>f (1),即f (x )>3.当x <0时,x +6>3,解得-3<x <0;当 x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).2.在R 上定义运算:x ⊗y =x (1-y ).若不等式(x -a )⊗(x -b )>0的解集是(2,3),则a +b =( )A .1B .2C .4D .8解析:选C 由题知(x -a )⊗(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.3.已知正数a ,b 的等比中项是2,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6解析:选C 由正数a ,b 的等比中项是2,可得ab =4,又m =b +1a ,n =a +1b,所以m+n =a +b +1a +1b =a +b +a +b ab =54(a +b )≥54×2ab =5,当且仅当a =b =2时等号成立,故m +n 的最小值为5.4.(2017·合肥质检)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤4,y ≥2,则目标函数z =x +2y 的最大值为( )A .5B .6 C.132D .7解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,由图易知,当直线z =x +2y 经过直线x -y =-1与x +y=4的交点,即⎝ ⎛⎭⎪⎫32,52时,z 取得最大值,z max =32+2×52=132,故选C. 5.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3, 所以z =x -y 的取值范围是[-3,2].6.(2017·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( )A .-15B .-9C .1D .9解析:选A 作出不等式组表示的可行域如图中阴影部分所示.易求得可行域的顶点A (0,1),B (-6,-3),C (6,-3),当直线z =2x +y 过点B (-6,-3)时,z 取得最小值,z min =2×(-6)-3=-15.7.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( ) A .8 B .4 C .2D .1解析:选B ∵a 2+b 2+c 2=4,∴2ab +2bc +2ac ≤(a 2+b 2)+(b 2+c 2)+(a 2+c 2)=2(a 2+b 2+c 2)=8,∴ab +bc +ac ≤4(当且仅当a =b =c =233时等号成立),∴ab +bc +ac 的最大值为4.8.(2017·惠州调研)已知实数x ,y 满足:⎩⎪⎨⎪⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8解析:选B 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,故选B.9.当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx-y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选D 作出不等式组表示的平面区域,如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧ x +2y =2,y -4=x ,得⎩⎪⎨⎪⎧x =-2,y =2,即B (-2,2),由⎩⎪⎨⎪⎧x +2y =2,x -7y =2,得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0),由⎩⎪⎨⎪⎧y -4=x ,x -7y =2,得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1),要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0,故选D.10.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线z =3x +4y 过点B (2,3)时,z 取最大值18,故该企业每天可获得的最大利润为18万元.11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞) 解析:选B 由题可知,1=1x +4y ≥24xy=4xy,即xy ≥4,于是有m 2-3m >x +y4≥xy≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,解得m <-1或m >4,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.(2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x +3,x ≤1,x +2x,x >1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-4716,2 B.⎣⎢⎡⎦⎥⎤-4716,3916 C .[-23,2]D.⎣⎢⎡⎦⎥⎤-23,3916 解析:选A 法一:根据题意,作出f (x )的大致图象,如图所示.当x ≤1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,结合图象,只需x 2-x +3≥-⎝ ⎛⎭⎪⎫x 2+a ,即x 2-x 2+3+a ≥0,故对于方程x 2-x 2+3+a =0,Δ=⎝ ⎛⎭⎪⎫-122-4(3+a )≤0,解得a ≥-4716;当x >1时,若要f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 恒成立,结合图象,只需x +2x ≥x 2+a ,即x 2+2x ≥a ,又x 2+2x ≥2,当且仅当x 2=2x,即x =2时等号成立,所以a ≤2. 综上,a 的取值范围是⎣⎢⎡⎦⎥⎤-4716,2.法二:关于x 的不等式f (x )≥⎪⎪⎪⎪⎪⎪x 2+a 在R 上恒成立等价于-f (x )≤a +x2≤f (x ),即-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立,令g (x )=-f (x )-x2.若x ≤1,则g (x )=-(x 2-x +3)-x2=-x 2+x2-3=-⎝ ⎛⎭⎪⎫x -142-4716,当x =14时,g (x )max =-4716;若x >1,则g (x )=-⎝ ⎛⎭⎪⎫x +2x -x 2=-⎝ ⎛⎭⎪⎫3x 2+2x ≤-23,当且仅当3x 2=2x ,且x >1,即x =233时,等号成立,故g (x )max =-2 3. 综上,g (x )max =-4716.令h (x )=f (x )-x2,若x ≤1,则h (x )=x 2-x +3-x 2=x 2-32x +3=⎝ ⎛⎭⎪⎫x -342+3916, 当x =34时,h (x )min =3916;若x >1,则h (x )=x +2x -x 2=x 2+2x≥2,当且仅当x 2=2x,且x >1,即x =2时,等号成立,故h (x )min =2. 综上,h (x )min =2.故a 的取值范围为⎣⎢⎡⎦⎥⎤-4716,2. 二、填空题13.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a+2a ≥2 2x -a ·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.答案:3214.若2x +4y=4,则x +2y 的最大值是________. 解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y,所以2x +2y≤4=22,即x +2y ≤2,所以当且仅当2x=22y=2,即x =2y =1时,x +2y 取得最大值2.答案:215.如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =yx +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z 取最小值12,即11+a =12,所以a =1.答案:116.对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式kx +a +x +b x +c <0的解集为⎝⎛⎭⎪⎫-1,-13∪⎝ ⎛⎭⎪⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kx ax +1+bx +1cx +1<0,可化为k a +1x +b +1xc +1x<0,故得-1<1x <-13或12<1x<1,解得-3<x <-1或1<x <2,故kx ax +1+bx +1cx +1<0的解集为(-3,-1)∪(1,2). 答案:(-3,-1)∪(1,2)B 组——能力小题保分练1.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116 D.132解析:选D 不等式组表示的平面区域如图中阴影部分所示,而z=8-x·⎝ ⎛⎭⎪⎫12y =2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x-y最小,最小值为132.故选D.2.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,4x -y -4≤0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为6,则1a +2b的最小值为( )A .1B .3C .2D .4解析:选B 依题意画出不等式组表示的平面区域,如图中阴影部分.∵a >0,b >0,∴当直线z =ax +by 经过点(2,4)时,z 取得最大值6, ∴2a +4b =6,即a +2b =3.∵1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +2b )×13=53+2b 3a +2a3b ≥3,当且仅当a =b =1时等号成立, ∴1a +2b的最小值为3.故选B.3.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点(横坐标和纵坐标均为整数的点)个数为a n (n ∈N *),若m >1a 1a 2+1a 2a 3+…+1a n a n +1对于任意的正整数恒成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫19,+∞B.⎝ ⎛⎭⎪⎫19,+∞C.⎝⎛⎦⎥⎤-∞,19D.⎝⎛⎭⎪⎫-∞,19解析:选A 不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n表示的平面区域为直线x =0,y =0,y =-nx+3n 围成的直角三角形(不含直角边),区域内横坐标为1的整点有2n 个,横坐标为2的整点有n 个,所以a n =3n ,所以1a n a n +1=13n ·3n +3=19⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1a 2+1a 2a 3+…+1a n a n +1=19⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=19⎝ ⎛⎭⎪⎫1-1n +1,数列⎩⎨⎧⎭⎬⎫19⎝⎛⎭⎪⎫1-1n +1为单调递增数列,故当n 趋近于无穷大时,19⎝ ⎛⎭⎪⎫1-1n +1趋近于19,所以m ≥19.故选A. 4.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域上的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP ―→+OQ ―→|的最小值为( )A.255B.55 C.233 D.33解析:选B 作出不等式组对应的可行域,如图中阴影部分所示.设P (x ,y ),Q (a ,-2a ),则OP ―→+OQ ―→=(x +a ,y -2a ),则|OP ―→+OQ ―→|=x +a2+y -2a2,设z =|OP ―→+OQ ―→|,则z 的几何意义为可行域内的动点P 到动点M (-a,2a )的距离,其中M 也在直线2x +y =0上,由图可知,当点P 为(0,1),M 为P 在直线2x +y =0上的垂足时,z 取得最小值d =122+1=15=55.5.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A.6+2 B .6-2 C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝ ⎛⎭⎪⎫ca -12⎝ ⎛⎭⎪⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0<6-2,故b 2a 2+2c 2的最大值为6-2,故选B.6.(2017·福州模拟)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ; ②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的平面区域D 如图中阴影部分(△ABC 及其内部)所示.由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax ,由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2.综上可知,实数a 的取值范围为[-2,1].答案:[-2,1]。
课时跟踪检测(二)A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x<k π2+5π12(k ∈Z),所以函数f(x)=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12 (k ∈Z),故选B. 2.函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( )A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4C .f(x)=sin ⎝⎛⎭⎪⎫4x +π4 D .f(x)=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f(x)的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f(x)=sin(2x +φ).又函数f(x)的图象经过点⎝⎛⎭⎪⎫π8,1,所以sin ⎝ ⎛⎭⎪⎫π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎪⎫2x +π4,故选A.3.(2017·天津高考)设函数f(x)=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k′π(k′∈Z),②由①②得ω=-23+43(k′-2k).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f(x)的最小正周期大于2π, ∴f(x)的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f(x)=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f(x)=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f(x)=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x→π2时,y<0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m(m>0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m>0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f(x)的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k),k ∈ZD .(-3+8k,1+8k),k ∈Z解析:选D 由题图,知函数f(x)的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f(x)=sin ⎝⎛⎭⎪⎫π4x +φ.把(1,1)代入,得sin ⎝ ⎛⎭⎪⎫π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f(x)=sin ⎝ ⎛⎭⎪⎫π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k∈Z),得8k -3≤x≤8k+1(k ∈Z),所以函数f(x)的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f(x)=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:选 A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f(x)=65sin ⎝⎛⎭⎪⎫x +π3,于是f(x)的最大值为65.8.(2017·武昌调研)若f(x)=cos 2x +acos ⎝ ⎛⎭⎪⎫π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f(x)=1-2sin 2x -asin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g(t)=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f(x)在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a≤-4,故选D. 9.已知函数f(x)=sin(2x +φ)(0<φ<π),若将函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3D.π6解析:选D 函数f(x)的图象向左平移π6个单位长度后所得图象对应的函数解析式为y=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f(x)=sin ωx +3cos ωx(ω>0)满足f(α)=-2,f(β)=0,且|α-β|的最小值为π2,则函数f(x)的解析式为( )A .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π3B .f(x)=2sin ⎝ ⎛⎭⎪⎫x -π3C .f(x)=2sin ⎝ ⎛⎭⎪⎫x +π6D .f(x)=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f(x)=sin ωx +3cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.因为f(α)=-2,f(β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f(x)的最小正周期),故ω=2πT=1,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f(x)=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移3π4个单位长度后得到函数g(x)的图象,则函数g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( ) A .-2 B .-1C .- 2D .- 3解析:选B f(x)=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g(x)=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin ⎝ ⎛⎭⎪⎫2x -π6,则g(x)在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f(x)=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f(x)在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f(x)=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,因为0<φ<π且f(x)为奇函数,所以φ=3π4,即f(x)=-2sin ωx ,又直线y =2与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f(x)的最小正周期为π2,由2πω=π2,可得ω=4,故f(x)=-2sin 4x ,由2k π+π2≤4x≤2k π+3π2,k ∈Z ,得k π2+π8≤x≤k π2+3π8,k ∈Z ,令k =0,得π8≤x≤3π8,此时f(x)在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.二、填空题13.(2017·全国卷Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:依题意,f(x)=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝ ⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f(x)max =1. 答案:114.已知函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6=________.解析:函数f(x)=2sin(ωx +φ)对任意的x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则其图象的一条对称轴为x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.答案:±215.(2017·深圳调研)已知函数f(x)=cos xsin x(x ∈R),则下列四个结论中正确的是________.(写出所有正确结论的序号)①若f(x 1)=-f(x 2),则x 1=-x 2; ②f(x)的最小正周期是2π;③f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上是增函数;④f(x)的图象关于直线x =3π4对称. 解析:因为f(x)=cos xsin x =12sin 2x ,所以f(x)是周期函数,且最小正周期为T =2π2=π,所以①②错误;由2k π-π2≤2x≤2k π+π2(k ∈Z),解得k π-π4≤x≤k π+π4(k ∈Z),当k =0时,-π4≤x≤π4,此时f(x)是增函数,所以③正确;由2x =π2+k π(k ∈Z),得x =π4+k π2(k ∈Z),取k =1,则x =3π4,故④正确.答案:③④16.已知函数f(x)=Acos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,f(x)的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+…+f(2 016)+f(2 017)=________.解析:∵函数f(x)=Acos 2(ωx +φ)+1=A·1+ωx +2φ2+1=A2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A>0,ω>0,0<φ<π2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f(x)的图象与y 轴的交点坐标为(0,2),可得cos 2φ+1+1=2,∴cos 2φ=0,又0<φ<π2,∴2φ=π2,φ=π4.故函数f(x)的解析式为f(x)=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f(1)+f(2)+…+f(2016)+f(2017)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 016π2+sin 2 017π2+2×2 017=504×0-sin π2+4034=0-1+4 034=4 033.答案:4 033B 组——能力小题保分练1.曲线y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4和直线y =12在y 轴右侧的交点的横坐标按从小到大的顺序依次记为P 1,P 2,P 3,…,则|P 3P 7|=( )A .πB .2πC .4πD .6π解析:选B y =2cos ⎝⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4=cos 2x -sin 2x =cos 2x ,故曲线对应的函数为周期函数,且最小正周期为π,直线y =12在y 轴右侧与函数y =2cos ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x -π4在每个周期内的图象都有两个交点,又P 3与P 7相隔2个周期,故|P 3P 7|=2π,故选B.2.已知函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,则φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤-π3,π6C.⎣⎢⎡⎭⎪⎫-π4,0 D.⎣⎢⎡⎦⎥⎤-π3,0 解析:选D 因为函数f(x)=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2在区间⎝ ⎛⎦⎥⎤-π12,π6上单调且最大值不大于3,又-π6+φ<2x +φ≤π3+φ,所以2×π6+φ≤π3,且2×⎝ ⎛⎭⎪⎫-π12+φ≥-π2,解得-π3≤φ≤0,故选D.3.已知函数f(x)=Asin(ωx +φ)⎝ ⎛⎭⎪⎫A>0,ω>0,|φ|<π2的部分图象如图所示,则( )A .f(x)的图象关于直线x =-2π3对称B .f(x)的图象关于点⎝ ⎛⎭⎪⎫-5π12,0对称 C .若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m 的取值范围是(-2,- 3 ]D .将函数y =2sin ⎝ ⎛⎭⎪⎫2x -π6的图象向左平移π6个单位长度得到函数f(x)的图象解析:选C 根据题中所给的图象,可知函数f(x)的解析式为f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴当x =-2π3时,2×⎝ ⎛⎭⎪⎫-2π3+π3=-π,f ⎝ ⎛⎭⎪⎫-2π3=2sin(-π)=0,从而f(x)的图象关于点⎝ ⎛⎭⎪⎫-2π3,0对称,而不是关于直线x =-2π3对称,故A 不正确;当x =-5π12时,2×⎝ ⎛⎭⎪⎫-5π12+π3=-π2,∴f(x)的图象关于直线x =-5π12对称,而不是关于点⎝ ⎛⎭⎪⎫-5π12,0对称,故B 不正确;当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,2x +π3∈⎣⎢⎡⎦⎥⎤-2π3,π3,f(x)∈[-2, 3 ],结合正弦函数图象的性质,可知若方程f(x)=m 在⎣⎢⎡⎦⎥⎤-π2,0上有两个不相等的实数根,则实数m的取值范围是(-2,- 3 ],故C 正确;根据图象平移变换的法则,可知应将y =2sin ⎝⎛⎭⎪⎫2x -π6的图象向左平移π4个单位长度得到f(x)的图象,故D 不正确.故选C.4.如果两个函数的图象平移后能够重合,那么称这两个函数互为生成函数.给出下列四个函数:①f(x)=sin x +cos x ;②f(x)=2(sin x +cos x); ③f(x)=sin x ;④f(x)=2sin x + 2. 其中互为生成函数的是( ) A .①② B .①④ C .③④D .②④解析:选B 首先化简题中①②两个函数解析式可得:①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4,②f(x)=2sin ⎝⎛⎭⎪⎫x +π4,可知③f(x)=sin x 的图象要与其他函数的图象重合,只经过平移不能完成,还必须经过伸缩变换才能实现,∴③f(x)=sin x 不与其他函数互为生成函数;同理①f(x)=2sin ⎝ ⎛⎭⎪⎫x +π4(④f(x)=2sin x +2)的图象与②f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象也必须经过伸缩变换才能重合,而④f(x)=2sin x +2的图象向左平移π4个单位长度,再向下平移2个单位长度即可得到①f(x)=2sin ⎝⎛⎭⎪⎫x +π4的图象,∴①④互为生成函数,故选B.5.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正常数)的最小正周期为π,且当x =2π3时,函数f(x)取得最小值,则( ) A .f(1)<f(-1)<f(0) B .f(0)<f(1)<f(-1) C .f(-1)<f(0)<f(1) D .f(1)<f(0)<f(-1)解析:选C 因为函数f(x)=Asin(ωx +φ)的最小正周期为π,所以ω=2ππ=2,故f(x)=Asin(2x +φ),因为当x =2π3时,函数f(x)取得最小值,所以2×2π3+φ=2k π-π2,k ∈Z ,解得φ=2k π-11π6,k ∈Z ,又φ>0,故可取k =1,则φ=π6,故f(x)=Asin ⎝ ⎛⎭⎪⎫2x +π6,所以f(-1)=Asin ⎝ ⎛⎭⎪⎫-2+π6<0,f(1)=Asin ⎝ ⎛⎭⎪⎫2+π6>0,f(0)=Asin π6=12A>0,故f(-1)最小.又sin ⎝ ⎛⎭⎪⎫2+π6=sin ⎝ ⎛⎭⎪⎫π-2-π6=sin ⎝ ⎛⎭⎪⎫5π6-2>sin π6,故f(1)>f(0).综上可得f(-1)<f(0)<f(1),故选C.6.若函数f(x)=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,则φ=________. 解析:因为函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象的对称轴与函数g(x)=cos(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f(x)=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f(x)的图象的对称轴为x =k π2+π8,k ∈Z.令2x +φ=m π,m ∈Z ,则x =m π2-φ2,m∈Z ,故函数g(x)的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,m ,n ,k ∈Z ,即φ=(m +n -k)π-π4,m ,n ,k ∈Z ,又|φ|<π2,所以φ=-π4.答案:-π4。
第一部分高考层级专题突破层级二7个能力专题师生共研专题四立体几何第二讲点、直线、平面之间的位置关系课时跟踪检测(十一)点、直线、平面之间的位置关系一、选择题1.(2019·陕西西安模拟)下列命题正确的是()A.若直线l⊥平面α,直线l⊥平面β,则α∥βB.若直线l∥平面α,直线l∥平面β,则α∥βC.若两直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α解析:选A对于A选项,垂直于同一直线的两平面互相平行,故A选项正确;对于B选项,若直线l∥平面α,直线l∥平面β,则两平面可能相交或平行,故B选项错误;对于C选项,若两直线l1,l2与平面α所成的角相等,则l1,l2可能相交、平行或异面,故C选项错误;对于D选项,若直线l上两个不同的点A,B到平面α的距离相等,则直线l与平面α可能相交或者平行,故D选项错误.故选A.2.(2019·昆明市高三调考)设l,m是两条不同的直线,α,β是两个不同的平面,且l⊂α,m⊂β.下列结论正确的是()A.若α⊥β,则l⊥βB.若l⊥m,则α⊥βC.若α∥β,则l∥βD.若l∥m,则α∥β解析:选C若α⊥β,l⊂α,则l垂直于α与β的交线时,才有l⊥β,所以A选项错误;若l⊥m,l⊂α,m⊂β,则α与β平行或相交,所以B选项错误;若α∥β,l⊂α,则l∥β,所以C选项正确;若l∥m,l⊂α,m⊂β,则α与β平行或相交,所以D选项错误.故选C.3.(2019·辽宁丹东二模)已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.判断正确的是()A.①②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是假命题解析:选B若b⊂α,a⊄α,a∥b,则由线面平行的判定定理可得a∥α,反过来,若b⊂α,a⊄α,a∥α,则a,b可能平行或异面,所以,若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件,①是真命题;若a⊂α,b⊂α,α∥β,则由面面平行的性质可得a∥β,b∥β,反过来,若a⊂α,b⊂α,a∥β,b∥β,则α,β可能平行或相交,所以,若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充分不必要条件,②是假命题,故选B.4.(2019·河北唐山模拟)如图,在正方形ABCD中,E,F分别是BC,CD 的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF解析:选B根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,∴B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥平面AEF,过点H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;设AB=22,则AG=3,在△AHG中,AH=AB=22,HG=CG=1,如果HG ⊥平面AEF成立,则HG⊥AG,则HG2+AG2=AH2,代入数据与之矛盾,∴D 不正确.故选B.5.如图,在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为()A.452B.4532C.45 D.45 3解析:选A取AC的中点G,连接SG,BG(图略),易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF═∥12AC═∥DE,所以四边形DEFH为平行四边形.因为AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=12AC·12SB=452.6.(2019·恩施州模拟)如图,在长方体ABCD-A1B1C1D1中,AD=AA1,则下列结论不正确的为()A.平面A1B1CD⊥平面BC1DB.存在平面A1B1CD上的一点P使得D1P∥平面BC1DC.存在直线A1C上的一点Q使得D1Q∥平面BC1DD.存在直线A1C上的一点R使得D1R⊥平面BC1D解析:选D在A中,由题意得BC1⊥平面A1B1CD,又BC1⊂平面BCD,∴平面A1B1CD⊥平面BC1D,故A正确;在B中,设A1D∩AD1=P,则P为平面A1B1CD上的一点,满足D1P∥平面BC1D,故B正确;在C中,设B1C∩BC1=O,连接DO,过P点作PQ∥DO,连接D1Q,由题意推导出平面PQD1∥平面BC1D,∴存在直线A1C上的一点Q使得D1Q∥平面BC1D,故C正确;在D中,过A1作A1S⊥OD于S,∵平面A1B1CD⊥平面BC1D,平面A1B1CD∩平面BC1D=OD,∴A1S⊥平面BC1D,设R为直线A1C上任意一点,连接PR,D1R,则A1S,D1R一定为异面直线,∴不存在直线A1C上的一点R,使得D1R⊥平面BC1D,故D错误.二、填空题7.已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:(1)若m⊥α,n⊥β,m⊥n,则α⊥β;(2)若m∥α,n∥β,m⊥n,则α∥β;(3)若m⊥α,n∥β,m⊥n,则α∥β;(4)若m⊥α,n∥β,α∥β,则m⊥n.其中正确的命题是________.解析:借助于长方体模型来解决本题,对于(1),可以得到平面α,β互相垂直,如图①所示,故(1)正确;对于(2),平面α,β可能垂直,如图②所示,故(2)不正确;对于(3),平面α,β可能垂直,如图③所示,故(3)不正确;对于(4),由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图④所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故(4)正确.答案:(1)(4)8.(2019·菏泽一模)如图,在正四面体A-BCD中,E是棱AD上靠近点D 的一个三等分点,则异面直线AB和CE所成的角的余弦值为________.解析:如图,取棱BD上靠近点D的一个三等分点F,∵E是棱AD上靠近点D的一个三等分点,∴EF∥AB,∴∠CEF(或其补角)是异面直线AB和CE所成的角,设正四面体A-BCD的棱长为3,则DE=13AD=1,EF=13AB=1,DF=13BD=1,在△CDE中,由余弦定理得:CE2=DE2+CD2-2DE·CD·cos ∠CDE=12+32-2×1×3×12=7,∴CE=7,同理,在△CDF中,由余弦定理得CF=7,在△CEF中,由余弦定理得cos ∠CEF=EF2+CE2-CF22EF·CE=12+(7)2-(7)22×1×7=714.答案:7 149. (2019·福建泉州模拟)如图,一张A4纸的长、宽分别为22a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.解析:由题意得该多面体是一个三棱锥,故①正确;∵AP⊥BP,AP⊥CP,BP∩CP=P,∴AP⊥平面BCD.又∵AP⊂平面ABD,∴平面BAD⊥平面BCD,故②正确;取AC的中点为M点,∵AB=BC=3a,∴BM=2·a,且BM⊥AC.在△BMD中,BD=2a,∴BM2+MD2=BD2,∴BM⊥MD.AC∩MD=M,∴BM⊥平面ACD.又∵BM⊂平面BAC,∴平面BAC⊥平面ACD,故③正确;∵DM⊥AC,DM∩BM=M,∴AC⊥平面BMD.连接MP,MP=a,则对于MP上任意一点N,都有NB=ND,NA=NC.假设其上一点O为外接球球心,在Rt△AMO和Rt△DOP中,根据勾股定理得a2+NP2=(a-NP)2+a2,得O点为MP的中点,即外接球半径R=52a,所以该多面体外接球的表面积为5πa2,故④正确.综上,正确命题的序号为①②③④.答案:①②③④三、解答题10.(2019·长春二模)在四棱锥P-ABCD中,底面ABCD为直角梯形,AB ∥CD,∠BAD=90°,CD=2AB=2,P A⊥平面ABCD,P A=AD=2,M为PC 的中点.(1)求证:平面PBC⊥平面BMD;(2)求点B到平面PCD的距离.解:(1)证明:在直角梯形中,BD=3,cos ∠BDC=cos ∠DBA=13,在△BCD中,由余弦定理得BC=3,在Rt△P AB中,由勾股定理得PB=3,同理PD=2,所以△PCD,△PCB是等腰三角形,所以PC⊥MD,PC⊥MB.因为MD∩MB=M,所以PC⊥平面BMD,又因为PC⊂平面PBC,则平面PBC⊥平面BMD.(2)如图,取PD的中点N,连接AN,MN,在△PCD中,MN═∥12CD=BA,则ABMN为平行四边形,所以BM∥AN,BM=AN=1.由P A=AD,所以AN⊥PD,由题意得CD⊥平面P AD,所以CD⊥AN,又CD∩PD=D,所以AN⊥平面PCD,所以BM⊥平面PCD,所以B到平面PCD的距离为1.11. (2019·河北三市联考)在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F分别是A1C1,BC的中点.(1)证明:平面AEB⊥平面BB1C1C;(2)证明:C 1F ∥平面AEB ;(3)设P 是BE 的中点,求三棱锥P -B 1C 1F 的体积.解:(1)证明:在△ABC 中,∵AC =2BC =4,∠ACB =60°,∴AB =23,∴AB 2+BC 2=AC 2,∴AB ⊥BC ,由已知AB ⊥BB 1,且BC ∩BB 1=B ,可得AB ⊥平面BB 1C 1C ,又AB ⊂平面AEB ,∴平面AEB ⊥平面BB 1C 1C . (2)证明:取AB 的中点M ,连接EM ,FM ,在△ABC 中,M ,F 分别为AB ,BC 的中点,∴MF ∥AC ,MF =12AC .∵A 1C 1∥AC ,A 1C 1=AC ,E 为A 1C 1的中点,∴MF ∥EC 1,MF =EC 1, ∴四边形EC 1FM 为平行四边形,∴C 1F ∥EM ,∵EM ⊂平面AEB ,C 1F ⊄平面AEB ,∴C 1F ∥平面AEB .(3)取B 1C 1的中点H ,连接EH ,则EH ∥AB ,且EH =12AB =3,又AB ⊥平面BB 1C 1C ,∴EH ⊥平面BB 1C 1C .∵P 是BE 的中点,∴V P -B 1C 1F =12V E -B 1C 1F =12×13S △B 1C 1F ·EH =12×13×2×3=33. 12.如图①,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图②.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:在△ABC中,因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.即DE⊥A1D,DE⊥CD,因为A1D∩CD=D,所以DE⊥平面A1DC,而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形A1DC底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。
课时跟踪检测(五) 导数的简单应用一、选择题1.(2019·某某模拟)已知直线2x -y +1=0与曲线y =a e x+x 相切,其中e 为自然对数的底数,则实数a 的值是( )A .eB .2eC .1D .2解析:选C ∵y =a e x+x ,∴y ′=a e x+1,设直线2x -y +1=0与曲线y =a e x+x 相切的切点坐标为(m ,n ),则y ′|x =m =a e m+1=2,得a e m=1.又n =a e m+m =2m +1,∴m =0,n =1,a =1,故选C .2.(2019·某某调研)若函数f (x )=(x +a )e x在(0,+∞)上不单调,则实数a 的取值X 围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,+∞)解析:选A f ′(x )=e x(x +a +1),由题意,知方程e x(x +a +1)=0在(0,+∞)上至少有一个实数根,即x =-a -1>0,解得a <-1.3.(2019·某某模拟)若函数f (x )=13x 3-⎝ ⎛⎭⎪⎫1+b 2x 2+2bx 在区间[-3,1]上不是单调函数,则f (x )在R 上的极小值为( )A .2b -43B .32b -23C .0D .b 2-16b 2解析:选A 由题意得f ′(x )=(x -b )(x -2).因为f (x )在区间[-3,1]上不是单调函数,所以-3<b <1.由f ′(x )>0,解得x >2或x <b ;由f ′(x )<0,解得b <x <2.所以f (x )的极小值为f (2)=2b -43.故选A .4.(2019·某某模拟)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 由题意知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率为f ′(x 0)=3x 20+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎪⎨⎪⎧3x 20+2ax 0=-1,x 0+x 30+ax 20=0,所以当⎩⎪⎨⎪⎧x 0=1,a =-2时,点P 的坐标为(1,-1);当⎩⎪⎨⎪⎧x 0=-1,a =2时,点P 的坐标为(-1,1),故选D .5.(2019·某某息县第一高级中学段测)函数f (x )=x 3-3x -1,若对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 对于区间(-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,等价于在区间(-3,2]上,f (x )max -f (x )min ≤t ,∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1).∵x ∈(-3,2],∴函数f (x )在(-3,-1),(1,2)上单调递增,在(-1,1)上单调递减,∴f (x )max =f (2)=f (-1)=1,f (x )min =f (-3)=-19,∴f (x )max -f (x )min =20,∴t ≥20,即实数t 的最小值是20.6.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值X 围是( )A .⎝ ⎛⎭⎪⎫-∞,-12B .(-∞,0)C .⎝⎛⎭⎪⎫-1,-12 D .(-∞,-1)解析:选D f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减.g ′(x )=e x +(x +a )e x =(x +a +1)·e x,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为 (-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值X 围是(-∞,-1),故选D .二、填空题7.(2019·某某五个一名校联考)函数f (x )=x 2-2ln x 的单调递减区间是________.解析:函数f (x )=x 2-2ln x 的定义域为(0,+∞),令f ′(x )=2x -2x =2(x +1)(x -1)x<0,得0<x <1,∴f (x )的单调递减区间是(0,1). 答案:(0,1)8.(2019·某某某某模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值X 围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)9.(2019·某某模拟)若曲线y =ln x +ax 2-2x (a 为常数)不存在斜率为负数的切线,则实数a 的取值X 围是________.解析:f ′(x )=1x +2ax -2=2ax 2-2x +1x(x >0),由题意得f ′(x )≥0在x >0时恒成立, 所以2ax 2-2x +1≥0在x >0时恒成立,即2a ≥2x -1x 2=-⎝ ⎛⎭⎪⎫1x 2-2x +1+1=-⎝ ⎛⎭⎪⎫1x -12+1,所以a ≥12,所以a 的取值X 围为⎣⎢⎡⎭⎪⎫12,+∞.答案:⎣⎢⎡⎭⎪⎫12,+∞三、解答题10.(2019·某某某某检测)已知函数f (x )=x 2+ln x -ax . (1)当a =3时,求f (x )的单调增区间;(2)若f (x )在(0,1)上是增函数,某某数a 的取值X 围.解:(1)函数f (x )的定义域为(0,+∞).当a =3时,f (x )=x 2+ln x -3x ,∴f ′(x )=2x +1x -3.由f ′(x )>0,解得0<x <12或x >1,∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞). (2)由题意得f ′(x )=2x +1x-a ,∵f (x )在(0,1)上是增函数,∴f ′(x )=2x +1x -a ≥0在(0,1)上恒成立,即a ≤2x +1x在(0,1)上恒成立.∵2x +1x ≥22当且仅当2x =1x ,即x =22时,等号成立,∴2x +1x的最小值为22,所以a ≤22,故实数a 的取值X 围为(-∞,22].11.(2019·某某红色七校第一次联考)已知函数f (x )=e x (x 2-2x +a )(其中a ∈R ,a 为常数,e 为自然对数的底数).(1)讨论函数f (x )的单调性;(2)设曲线y =f (x )在(a ,f (a ))处的切线为l ,当a ∈[1,3]时,求直线l 在y 轴上截距的取值X 围.解:(1)f ′(x )=e x (x 2-2x +a )+e x (2x -2)=e x (x 2+a -2),当a ≥2时,f ′(x )≥0恒成立,故函数f (x )在区间(-∞,+∞)上单调递增; 当a <2时,f ′(x )≥0⇔x 2≥2-a ⇔x ≤-2-a 或x ≥2-a ,f ′(x )<0⇔x 2<2-a ⇔-2-a <x <2-a .故函数f (x )在区间(-∞,-2-a ],[2-a ,+∞)上单调递增,在区间(-2-a ,2-a )上单调递减.(2)f (a )=e a (a 2-a ), f ′(a )=e a (a 2+a -2),所以直线l 的方程为y -e a (a 2-a )=e a (a 2+a -2)(x -a ).令x =0,得直线l 在y 轴上的截距为e a (-a 3+a ),记g (a )=e a (-a 3+a )(1≤a ≤3), 则g ′(a )=e a (-a 3-3a 2+a +1),记h (a )=-a 3-3a 2+a +1(1≤a ≤3), 则h ′(a )=-3a 2-6a +1<0(1≤a ≤3),所以h (a )在[1,3]上单调递减,所以h (a )≤h (1)=-2<0,所以g ′(a )<0,即g (a )在区间[1,3]上单调递减,所以g (3)≤g (a )≤g (1),即直线l 在y 轴上截距的取值X 围是[-24e 3,0].12.(2019·某某省某某四中二模)已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值X 围. 解:(1)当a =1时,f (x )=x 2-3x +ln x (x >0), 所以f ′(x )=2x -3+1x =2x 2-3x +1x,所以f (1)=-2,f ′(1)=0.所以曲线y =f (x )在点(1,f (1))处的切线方程为y =-2. (2)函数f (x )=ax 2-(a +2)x +ln x 的定义域为(0,+∞),当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x,令f ′(x )=0,解得x =12或x =1a.①当0<1a≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值为f (1)=-2,符合题意;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增. 所以f (x )在[1,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不符合题意;③当1a ≥e,即0<a ≤1e时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值为f (e)<f (1)=-2,不符合题意. 综上,实数a 的取值X 围是[1,+∞).。
课时跟踪检测(二十六)一、选择题1.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2B .2 2C .4D .4 2解析:选B 因为直线ax +by =1经过点(1,2),所以a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当a =2b =12时等号成立.2.(2018届高三·某某五市十校联考)已知函数f (x )=x +sin x (x ∈R),且f (y 2-2y +3)+f (x 2-4x +1)≤0,则当y ≥1时,yx +1的取值X 围是( )A.⎣⎢⎡⎦⎥⎤14,34B.⎣⎢⎡⎦⎥⎤14,1 C .[1,32-3] D.⎣⎢⎡⎭⎪⎫13,+∞ 解析:选A 函数f (x )=x +sin x (x ∈R)为奇函数,又f ′(x )=1+cos x ≥0,所以函数f (x )在其定义域内单调递增,则f (x 2-4x +1)≤f (-y 2+2y -3),即x 2-4x +1≤-y 2+2y -3,化简得(x -2)2+(y -1)2≤1,当y ≥1时表示的区域为上半圆及其内部,如图所示.令k =y x +1=yx --1,其几何意义为过点(-1,0)与半圆相交或相切的直线的斜率,斜率最小时直线过点(3,1),此时k min =13--1=14,斜率最大时直线刚好与半圆相切,圆心到直线的距离d =|2k -1+k |k 2+1=1(k >0),解得k max=34,故选A. 3.(2017·某某质检)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( ) A .-1 B .-52+17C.13D .-75解析:选 D 作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75,故选D.4.(2017·某某质检)已知函数f (x )=⎩⎪⎨⎪⎧2x+22,x ≤1,|log 2x -1|,x >1,则函数F (x )=f [f (x )]-2f (x )-32的零点个数是( )A .4B .5C .6D .7解析:选A 令f (x )=t ,则函数F (x )可化为y =f (t )-2t -32,则函数F (x )的零点问题可转化为方程f (t )-2t -32=0的根的问题.令y =f (t )-2t -32=0,即f (t )=2t +32,如图①,由数形结合得t 1=0,1<t 2<2,如图②,再由数形结合得,当f (x )=0时,x =2,有1个解,当f (x )=t 2时,有3个解,所以y =f [f (x )]-2f (x )-32共有4个零点.故选A.5.(2018届高三·某某七市(州)联考)已知函数f (x )=x 2+(a +8)x +a 2+a -12(a <0),且f (a 2-4)=f (2a -8),则f n -4a n +1(n ∈N *)的最小值为( )A.374 B.358 C.283 D.485解析:选A 二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a =1,又a <0,∴a =-4,f (x )=x 2+4x ,∴f n -4a n +1=n 2+4n +16n +1=n +12+2n +1+13n +1=n +1+13n +1+2≥2n +1·13n +1+2=213+2,当且仅当n +1=13n +1,即n =13-1时等号成立,又n ∈N *,∴当n =4时,f n -4a n +1=485,n=3时,f n -4a n +1=374<485,∴最小值为374,故选 A.6.(2018届高三·某某省五校联考)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f (x )g ′(x )>f ′(x )g (x ),f (x )=a x ·g (x )(a >0,a ≠1),f 1g 1+f -1g -1=52.在有穷数列⎩⎨⎧⎭⎬⎫fn gn (n =1,2,…,10)中,任意取正整数k (1≤k ≤10),则前k 项和大于1516的概率是( ) A.15 B.25 C.35 D.45解析:选C 由f (x )=a x·g (x ),可得a x=f xg x,⎣⎢⎡⎦⎥⎤f x g x ′=f ′xg x -f x g ′x[g x ]2<0,所以f xg x为减函数,所以0<a <1.由f 1g 1+f -1g -1=52,可得a +1a =52,解得a =12或a =2,又0<a <1,所以a =12.当a =12时,f ng n=⎝ ⎛⎭⎪⎫12n 是以12为首项,12为公比的等比数列,则前k 项和为12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12k =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 1-12=1-⎝ ⎛⎭⎪⎫12k .由1-⎝ ⎛⎭⎪⎫12k >1516可得k >4,即当5≤k ≤10时,前k 项和大于1516,故所求的概率为10-410=610=35,故选C. 二、填空题7.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R)使得f (x +λ)+λf (x )=0对任意实数x 都成立,则称f (x )是一个“λ伴随函数”.有下列关于“λ伴随函数”的结论:①f (x )=0是常数函数中唯一的“λ伴随函数”; ②f (x )=x 不是“λ伴随函数”; ③f (x )=x 2是一个“λ伴随函数”; ④“12伴随函数”至少有一个零点.其中不正确的是________.(填序号)解析:对于①,若f (x )=c ≠0,则取λ=-1,此时f (x +λ)+λf (x )=f (x -1)-f (x )=c -c =0,则f (x )=c ≠0是“-1伴随函数”,①错误;对于②,当f (x )=x 时,若f (x )是“λ伴随函数”,则f (x +λ)+λf (x )=0,即(x +λ)+λx =0对任意x 成立,易知不存在这样的λ,所以f (x )=x 不是“λ伴随函数”,②正确;对于③,若f (x )=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=0对任意实数x 都成立,易知不存在这样的λ,所以f (x )=x 2不是“λ伴随函数”,③错误;对于④,若f (x )是“12伴随函数”,则f ⎝ ⎛⎭⎪⎫x +12+12f (x )=0,取x =0,有f ⎝ ⎛⎭⎪⎫12+12f (0)=0,若f (0),f ⎝ ⎛⎭⎪⎫12均为0,则函数有零点,若f (0),f ⎝ ⎛⎭⎪⎫12均不为零,则f (0),f ⎝ ⎛⎭⎪⎫12异号,由零点存在定理知,函数在⎝ ⎛⎭⎪⎫0,12上一定有零点,④正确.答案:①③8.(2017·某某模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧3x -2y -3≤0,x -3y +6≥0,2x +y -2≥0,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为________.解析:设在这两个实数x ,y 之间插入三个实数a 1,a 2,a 3,即x ,a 1,a 2,a 3,y 构成等差数列,所以这个等差数列后三项的和为a 2+a 3+y =x +y2+x +y2+y2+y =34(x +3y ),令z =x +3y ,作出不等式组表示的可行域,如图中阴影部分所示,将直线x +3y =0平移至A 处时,z 取最大值.由⎩⎪⎨⎪⎧3x -2y -3=0,x -3y +6=0,解得A (3,3),所以z max =3+3×3=12.所以(a 2+a 3+y )max =34(x+3y )max =34×12=9.答案:99.设定义在(0,+∞)上的单调函数f (x ),对任意的x ∈(0,+∞)都有f [f (x )-log 2x ]=3.若方程f (x )+f ′(x )=a 有两个不同的实数根,则实数a 的取值X 围是________.解析:由于函数f (x )是单调函数,因此不妨设f (x )-log 2x =t ,则f (t )=3,再令x =t ,则f (t )-log 2t =t ,得log 2t =3-t ,解得t =2,故f (x )=log 2x +2,f ′(x )=1x ln 2.构造函数g (x )=f (x )+f ′(x )-a =log 2x +1x ln 2-a +2,∵方程f (x )+f ′(x )=a 有两个不同的实数根,∴g (x )有两个不同的零点.g ′(x )=1x ln 2-1x 2ln 2=1ln 2⎝ ⎛⎭⎪⎫x -1x 2,当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又当x →0时,g (x )→+∞,当x →+∞时,g (x )→+∞,则若使g (x )有两个零点,必有g (x )min =g (1)=1ln 2-a +2<0,得a >1ln 2+2,∴实数a 的取值X 围是⎝ ⎛⎭⎪⎫1ln 2+2,+∞.答案:⎝⎛⎭⎪⎫1ln 2+2,+∞三、解答题10.(2017·某某模拟)已知函数f (x )=e x-ax +b (a ,b ∈R). (1)若f (x )在x =0处的极小值为2,求a ,b 的值;(2)设g (x )=f (x )+ln(x +1),当x ≥0时,g (x )≥1+b ,试求a 的取值X 围. 解:(1)f ′(x )=e x-a , ∵f (x )在x =0处的极小值为2,∴⎩⎪⎨⎪⎧f ′0=0,f 0=2,即⎩⎪⎨⎪⎧1-a =0,1+b =2,解得⎩⎪⎨⎪⎧a =1,b =1.(2)∵g (x )=f (x )+ln(x +1)=e x-ax +b +ln(x +1), ∴g ′(x )=1x +1+e x-a , 设h (x )=1x +1+e x -a ,则h ′(x )=e x-1x +12,当x ≥0时,e x≥1,1x +12≤1,∴h ′(x )=e x-1x +12≥0,∴h (x )=1x +1+e x-a 在[0,+∞)上为增函数. ∴h (x )≥h (0)=2-a ,即g ′(x )=1x +1+e x-a ≥2-a . ∴当a ≤2时,g ′(x )≥0,∴g (x )=e x-ax +b +ln(x +1)在[0,+∞)上为增函数, ∴当x ≥0时,g (x )≥g (0)=1+b ,符合题意;当a >2时,有h (0)=2-a <0,h (ln a )=11+ln a>0,h (0)·h (ln a )<0,则存在x 0∈(0,ln a ),使得h (x 0)=0,于是g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,则有g (x 0)<g (0)=1+b , 此时g (x )≥1+b 不恒成立,不符合题意. 综上,可得实数a 的取值X 围为(-∞,2]. 11.(2017·某某模拟)设函数f (x )=x 22-a ln x .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间和极值;(3)若函数f (x )在区间(1,e 2]内恰有两个零点,试求a 的取值X 围. 解:(1)当a =1时,f (x )=x 22-ln x ,则f ′(x )=x -1x ,所以f ′(1)=0,又f (1)=12,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -12=0×(x -1),即y =12.(2)由f (x )=x 22-a ln x ,得f ′(x )=x -a x =x 2-ax(x >0).①当a ≤0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增,函数既无极大值,也无极小值;②当a >0时,由f ′(x )=0,得x =a 或x =-a (舍去). 于是,当x 变化时,f ′(x )与f (x )的变化情况如下表:x (0,a ) a(a ,+∞)f ′(x ) -+f (x )a 1-ln a2所以函数f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞). 函数f (x )在x =a 处取得极小值f (a )=a 1-ln a2,无极大值.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞),函数f (x )既无极大值也无极小值;当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞),函数f (x )有极小值a 1-ln a2,无极大值.(3)当a ≤0时,由(2)知函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(1,e 2]内至多有一个零点,不合题意.当a >0时,由(2)知,当x ∈(0,a )时,函数f (x )单调递减;当x ∈(a ,+∞)时,函数f (x )单调递增,函数f (x )在(0,+∞)上的最小值为f (a )=a 1-ln a2.若函数f (x )在区间(1,e 2]内恰有两个零点,则需满足⎩⎪⎨⎪⎧1<a <e 2,fa <0,f 1>0,fe2≥0,即⎩⎪⎨⎪⎧1<a <e 4,a 1-ln a2<0,12>0,e 42-2a ≥0,整理得⎩⎪⎨⎪⎧1<a <e 4,a >e ,a ≤e 44,所以e<a ≤e44.故所求a 的取值X 围为⎝ ⎛⎦⎥⎤e ,e 44. 12.(2017·某某质检)已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试某某数m 的值. 解:(1)F ′(x )=f ′(x )-g ′(x )=mx +1-1x +12=m x +1-1x +12(x >-1).当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m,函数F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减;令F ′(x )>0,得x >-1+1m,函数F (x )在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增.(2)函数f (x )=m ln(x +1)的图象在点(a ,m ln(a +1))处的切线方程为y -m ln(a +1)=m a +1(x -a ),即y =m a +1x +m ln(a +1)-ma a +1.函数g (x )=xx +1的图象在点⎝ ⎛⎭⎪⎫b ,b b +1处的切线方程为y -bb +1=1b +12(x -b ),即y =1b +12x +b 2b +12.因为y =f (x )与y =g (x )的图象有且仅有一条公切线,所以⎩⎪⎨⎪⎧m a +1=1b +12, ①m ln a +1-ma a +1=b2b +12, ②有唯一一对(a ,b )满足这个方程组,且m >0.由①得:a +1=m (b +1)2,代入②,消去a ,整理得: 2m ln(b +1)+2b +1+m ln m -m -1=0,关于b (b >-1)的方程有唯一解. 令g (b )=2m ln(b +1)+2b +1+m ln m -m -1, 则g ′(b )=2m b +1-2b +12=2[m b +1-1]b +12,因为m >0,所以g (b )在⎝ ⎛⎭⎪⎫-1,-1+1m 上单调递减,在⎝⎛⎭⎪⎫-1+1m,+∞上单调递增,所以g (b )min =g ⎝ ⎛⎭⎪⎫-1+1m =m -m ln m -1,因为b →+∞时,g (b )→+∞,b →-1时,g (b )→+∞, 所以只需m -m ln m -1=0.令σ(m )=m -m ln m -1,则σ′(m )=-ln m 在(0,+∞)上为单调递减函数,且m =1时,σ′(m )=0,即σ(m )max =σ(1)=0,所以m =1时,关于b 的方程2m ln(b +1)+2b +1+m ln m -m -1=0有唯一解,此时a =b =0,公切线方程为y =x .。
课时跟踪检测(二十五)1.(2016·全国卷Ⅱ)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1),f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a x -1x +1>0.设g (x )=ln x -a x -1x +1,则g ′(x )=1x-2a x +12=x 2+21-a x +1x x +12,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-a -12-1,x 2=a -1+a -12-1.由x 2>1和x 1x 2=1得0<x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<g (1)=0.综上,a 的取值范围是(-∞,2].2.(2017·全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞).f ′(x )=(1-2x -x 2)e x .令f ′(x )=0,得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)f (x )=(1+x )(1-x )e x. ①当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x<0(x >0). 因此h (x )在[0,+∞)上单调递减, 又h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1. ②当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x-1>0(x >0), 所以g (x )在[0,+∞)上单调递增,而g (0)=0, 故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2, (1-x )(1+x )2-ax -1=x (1-a -x -x 2), 取x 0=5-4a -12, 则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0, 故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12, 则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).3.(2017·长春质检)已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R.(1)若f (x )存在极值点1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.解:(1)由已知得f ′(x )=x +1-a -ax(x >0),因为f (x )存在极值点1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)证明:f ′(x )=x +1-a -a x=x +1x -ax(x >0),①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意. ②当a >0时,由f ′(x )=0得x =a , 当x >a 时,f ′(x )>0,f (x )单调递增, 当0<x <a 时,f ′(x )<0,f (x )单调递减, 所以当x =a 时,f (x )取得极小值f (a ).又f (x )存在两个不同的零点x 1,x 2,所以f (a )<0, 即12a 2+(1-a )a -a ln a <0,整理得ln a >1-12a , 取y =f (x )关于直线x =a 对称的曲线g (x )=f (2a -x ),令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -xx,则h ′(x )=-2+2a 22a -xx=-2+2a 2-x -a2+a2≥0,所以h (x )在(0,2a )上单调递增,不妨设x 1<a <x 2,则h (x 2)>h (a )=0, 即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.4.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意;②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e.而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2, 所以m 的最小值为3.5.(2018届高三·湖南湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解:(1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0, 故f (x )在(0,+∞)上单调递增. ③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. 综上所述,当a ≤2时,f (x )在(0,+∞)上单调递增;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递减.(2)由(1)知,若使f (x )有两个极值点,必须a >2. 因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x 1-ln x 2=x 1-x 2. 亦即x 2-1x 2-2ln x 2=0(x 2>1).(*)再由(1)知,函数h (t )=t -1t-2ln t 在(0,+∞)上单调递增,而x 2>1,所以x 2-1x 2-2ln x 2>h (1)=1-11-2ln 1=0.这与(*)式矛盾.故不存在a ,使得k =2-a .。
课时追踪检测 ( 十)空间几何体一、选择题1.(2019 ·合肥市高三二检 ) 在正方体 ABCD - A 1B 1C 1D 1 中, E , F , G 分别为棱CD , CC 1,A 1B 1 的中点,用过点 E , F ,G 的平面截正方体,则位于截面以下部分的几何体的侧( 左 ) 视图为( )分析: 选 C 用过点 E , F ,G 的平面截正方体,获得的截面为正六边形,即如下图的 正六边形 EFHGMN ,则位于截面以下部分的几何体的侧 ( 左 ) 视图为选项 C .2.(2019 ·陕西模拟 ) 把边长为 1 的正方形 ABCD 沿对角线 BD 折起,使得平面 ABD ⊥平 面,形成的三棱锥-ABD 的正视图与俯视图如下图,则侧视图的面积为()CBD C1 2 A . 2B . 2 2 1C . 4D . 4分析:选 D 由三棱锥 C - ABD 的正视图, 俯视图得三棱锥 C - ABD 的侧视2图为直角边长是2 的等腰直角三角形,其形状如下图,因此三棱锥C - ABD的侧视图的面积为1,应选 D.43.(2019 ·龙岩一模 ) 母线长为 5 的圆锥的侧面睁开图的圆心角等于8π5,则该圆锥的体积为()A.16πB.8πC. 16πD.8π3 3分析:选 A 母线长为 5 的圆锥的侧面睁开图的圆心角等于8π,58π因此侧面睁开图的弧长为l =5×5=8π,由弧长=底面周长,即8π= 2πr,r= 4,因此圆锥的高为=52- 42= 3,h因此圆锥体积为1 2 1 2 =×π×r×=×π×4 ×3=16π. V 3 h 3应选 A.4.(2019 ·唐山市高三摸底) 已知某几何体的三视图如下图( 俯视图中曲线为四分之一圆弧 ) ,则该几何体的表面积为( )ππA.1-4 B.3+2πC.2+4 D. 4分析:选 D 由题设知,该几何体是棱长为 1 的正方体被截去底面半径为11的圆柱后4获得的,如下图,因此该几何体的表面积=2×1×1-1 ×π×12+2×(1 ×1) + 1S 4 4 ×2π× 1×1= 4. 应选 D.5. (2019 ·江西红色七校第一次联考 ) 一个半径为 1 的球对称削去了三部分,其俯视图如下图,那么该立体图形的表面积为()A .3πB .4πC .5πD .6π分析: 选 C 由题中俯视图可知该球被均匀分红6 部分,削去了 3 部分,节余的 3 部分为该几何体,因此该立体图形的表面积为2×π×12+3×π×12=5π,应选C .6.(2019 ·三湘名校联考 ) 在正方体 ABCD -A 1B 1 C 1D 1 中,三棱锥 A 1- BC 1D 内切球的表面积为 4π,则正方体外接球的体积为( )A . 8 6πB .36πC . 32 3πD . 64 6 π6分析: 选 B 设正方体的棱长为a ,由题意得 12 × 2a = r = 1,∴ a =2 3,∴正方体外222接球的半径为23 + 23 + 23= 3,其体积为 4π×33=36π.237. (2019 ·惠州市一调 ) “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中结构的一个和睦优美的几何体. 它由完整同样的四个曲面组成, 相对的两个曲面在同一个圆柱的侧面上, 恰似两个扣合 ( 牟合 ) 在一同的方形伞 ( 方盖 ) .其直观图如图, 图中四边形是为表现其直观性所作的协助线.当其正视图和侧视图完整同样时,它的俯视图可能是( )分析: 选 B 由于相对的两个曲面在同一个圆柱的侧面上,恰似两个扣合在一同的方形伞,因此其正视图和侧视图完整同样时,都是一个圆,俯视图是从上向下看,因此俯视图是有 2 条对角线且均为实线的正方形,应选B .8.(2019 ·湖南四校联考 ) 已知四棱锥 S - ABCD 的三视图如下图,则围成四棱锥S -ABCD 的五个面中的最大面积是 ( )A . 3B . 6C . 8D . 10分析:选 C由三视图得四棱锥 -的直观图如下图,平面 ⊥平面 ,四S ABCDSAD ABCD 边形 ABCD 是矩形.记 E ,F 分别是 AD ,BC 的中点, 连结 SE ,SF , EF ,易得 SE ⊥ AD ,EF ⊥ BC ,⊥ ,又= = 3, = = = 2,= = 4,因此= 5, = 5+ 4= 3,侧面BC SFSA SDAB CD EFAD BCSESF的面积为 2 5,侧面, 的面积均为 3,侧面的面积为 1×4×3= 6,底面ABCD SADSAB SCDSBC 2的面积为 2×4= 8. 综上,四棱锥 S - ABCD 的五个面中的最大面积是8,应选 C .9.如图为一个半球挖去一个圆锥后的几何体的三视图,则节余部分与挖去部分的体积之比为()A . 1∶2B .1∶3C . 2∶1D .1∶1分析:选D由三视图可知半球的半径为 2,圆锥底面圆的半径为 2,高为 2,因此 V 圆1 281 4 3= 168 锥=×π×2 ×2= π, V半球= × ×π×2π,因此 V 节余= V 半球 - V 圆锥 = π,故节余332 333部分与挖去部分的体积之比为1∶ 1.面上,则球 O 的表面积为 ()32 3π B .4πA . 2716πC . 3D .12π分析:选 C如图,△为圆锥的轴截面, O 为其外接球的球心,ABC设外接球的半径为 R ,连结 OB , OA ,并延伸 AO 交 BC 于点 D ,则 AD ⊥ BC ,由题意知,= =,=1,= 3,则在 Rt △中,有 2= ( 3-AOBORBDADBODR222 3的表面积 =4π216π ) +1 ,解得 =. 因此外接球OR =,应选 C .RR3S311.(2019 ·唐山模拟 ) 把一个皮球放入如下图的由8 根长均为 20 cm 的铁丝接成的四棱锥形骨架中, 使皮球的表面与 8 根铁丝都有接触点 ( 皮球不变形 ) ,则皮球的半径为 ()A . 10 3 cmB . 10 cmC . 10 2 cmD . 30 cm分析: 选 B 依题意,在四棱锥-中,全部棱长均为 20 cm ,连结 , 交于点S ABCDAC BDO ,连结 SO ,则 SO = AO =BO = CO = DO = 10 2 cm ,易知点 O 到 AB , BC , CD , AD 的距离均为10 cm ,在等腰三角形中, = =10 2 cm , = 20 cm ,因此 O 到的距离 =10 cm ,OAS OA OS ASSAd同理可证 O 到 SB , SC , SD 的距离也为 10 cm ,因此球心为四棱锥底面ABCD 的中心,因此皮球的半径 r = 10 cm ,应选 B .12.(2019 ·陕西模拟 ) 已知正三棱柱 ABC - A 1B 1C 1 的三视图如下图, 一只蚂蚁从极点 A出发沿该正三棱柱的表面绕行两周祥达极点A 1,则该蚂蚁走过的最短路径为 ( )5A. 193 B. 25C. 2 193 D. 31分析:选B 将正三棱柱 ABC- A B C 沿侧棱睁开,如下图:1 1 1在睁开图中,最短距离是 6 个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为 23= 4,32因此矩形的长等于 4×6= 24,宽等于7,由勾股定理求得2 2d=24+7=25.应选B.二、填空题13.(2019 ·南京模拟 ) 在四棱锥P-ABCD中,底面ABCD是边长为 2 的菱形,∠BAD=60°,侧棱⊥底面,=2,E 为的中点,则三棱锥-的体积为 ________.PA ABCD PA AB P BCE3 1 3分析:由题意知 S 底面ABCD=2×2sin 60°= 2 3,因此S△EBC=2 ,故 V P-EBC=3×2× 2=33.3答案: 314.正四周体ABCD的外接球半径为2,过棱AB作该球的截面,则截面面积的最小值为________.分析:由题意知,面积最小的截面是以AB为直径的圆,设AB的长为 a,由于正四周体外接球的半径为2,因此 6 = 2,解得=4 6,故截面面积的最小值为π26 2=8π.a答案:8π315.(2019 ·河北六校第一次联考) 在正三棱锥S-ABC中,AB=2,M是SC的中点,AM⊥SB,则正三棱锥S- ABC 的外接球的表面积为________.分析:取的中点,连结,,由于=,因此⊥ .AC N BN SN SA SC AC SN 又△ ABC是等边三角形,因此AC⊥ BN,又 SN∩BN= N,AC⊥平面 BSN,因此 AC⊥ SB.又 AM⊥SB,AC∩ AM= A,故 SB⊥平面 SAC,则 SB⊥SA且⊥,故,,两两垂直,能够看作是从一个棱长为 1 的正SB SC SA SB SC方体上切下来的一个正三棱锥,如下图,故正三棱锥S- ABC的外3 ,因此半径为3S- ABC的外接球的表面积为4×π×3 2接球的直径为 2,故正三棱锥 2=3π.答案: 3π16.(2019 ·全国卷Ⅲ ) 学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体 ABCD- A1B1C1D1挖去四棱锥 O- EFGH后所得的几何体.此中 O为长方体的中心, E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm 3,不考虑打印消耗,制作该模型所需原料的质量为________g.分析:由题知挖去的四棱锥的底面是一个菱形,对角线长分别为 6 cm 和 4 cm,故 V 挖去的四棱锥=1×1×4×6×3=12(cm3).3 2又 V 长方体=6×6×4=144(cm3),因此模型的体积为V长方体-V 挖去的四棱锥=144-12=132(cm3),因此制作该模型所需原料的质量为132×0.9 = 118.8(g) .答案: 118.8。
课时跟踪检测(四)
1.(2018届高三·西安八校联考)已知△ABC内接于单位圆,角A,B,C的对边分别为
a,b,c,且2acos A=ccos B+bcos C
.
(1)求cos A的值;
(2)若b2+c2=4,求△ABC的面积.
解:(1)∵2acos A=ccos B+bcos C,
∴2sin Acos A=sin Ccos B+sin Bcos C,
即2sin Acos A=sin(B+C)=sin A.