中职数学期末考试试卷(模拟)
- 格式:doc
- 大小:237.00 KB
- 文档页数:2
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a 则向量b a,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( )A .63B .1008C .1023D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^2 - 4x + 3,其图像的对称轴是:A. x = 2B. x = -2C. y = 2D. y = -22. 下列各数中,属于有理数的是:A. √3B. πC. 2.5D. 无理数3. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差是:A. 2B. 3C. 4D. 54. 在△ABC中,a=5,b=7,c=8,则△ABC的面积是:A. 14B. 21C. 28D. 355. 若sinα = 3/5,且α为锐角,则cosα的值是:B. 3/5C. 2/5D. 1/56. 已知复数z = 3 + 4i,其模长是:A. 5B. 7C. 8D. 97. 已知函数f(x) = |x - 2| + 1,当x≤0时,f(x)的值域是:A. [1, +∞)B. [0, +∞)C. (-∞, 0]D. (-∞, 1]8. 下列各函数中,属于指数函数的是:A. f(x) = 2^xB. f(x) = (1/2)^xC. f(x) = x^2D. f(x) = log2x9. 已知数列{an}的通项公式为an = n^2 - n + 1,则数列的前n项和S_n是:A. n(n^2 + n)/2B. n(n^2 - n)/2C. n(n^2 + n + 1)/2D. n(n^2 - n - 1)/210. 下列各不等式中,正确的是:A. 2x > 3x - 1B. 2x ≤ 3x - 1C. 2x < 3x - 1D. 2x ≥ 3x - 1二、填空题(本大题共10小题,每小题5分,共50分。
)11. 已知函数f(x) = 2x - 1,若f(x) = 3,则x = ________。
12. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差是 ________。
一、选择题(每题2分,共20分)1. 下列各数中,有理数是()。
A. √2B. πC. 3.14D. -1/22. 如果a < b,那么下列不等式中正确的是()。
A. a + 2 < b + 2B. a - 2 > b - 2C. a + 3 < b + 3D. a - 3 > b - 33. 下列各式中,正确的是()。
A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^24. 下列函数中,y = x^2 是()。
A. 一次函数B. 二次函数C. 反比例函数D. 指数函数5. 下列图形中,是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 长方形D. 等边三角形6. 在直角坐标系中,点A(2,3)关于y轴的对称点是()。
A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)7. 下列各式中,能化简为最简二次根式的是()。
A. √18B. √27C. √32D. √458. 下列各式中,正确的是()。
A. (a + b)(a - b) = a^2 - b^2B. (a + b)(a + b) = a^2 + 2ab + b^2C. (a - b)(a - b) = a^2 - 2ab + b^2D. (a + b)(a - b) = a^2 + 2ab - b^29. 如果a、b是方程x^2 - 5x + 6 = 0的两个根,那么a + b的值是()。
A. 2B. 3C. 4D. 510. 下列各式中,正确的是()。
A. (a + b)^3 = a^3 + b^3B. (a - b)^3 = a^3 - b^3C. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3二、填空题(每题2分,共20分)11. 3 + 5 - 2 = ________。
第1篇一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,那么f(-1)的值为()A. -5B. -1C. 1D. 5答案:A解析:将x = -1代入函数f(x) = 2x - 3中,得到f(-1) = 2(-1) - 3 = -5。
2. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°答案:B解析:在三角形中,三个内角的和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 45° - 60° = 75°。
3. 下列哪个数是无理数?()A. √2B. √9C. √16D. √25答案:A解析:无理数是不能表示为两个整数比的数,√2是一个无理数,而√9 = 3,√16 = 4,√25 = 5都是整数。
4. 若方程x^2 - 5x + 6 = 0的两个根为a和b,则a+b的值为()A. 5B. -5C. 6D. -6答案:A解析:根据韦达定理,方程x^2 - 5x + 6 = 0的两个根之和等于系数b的相反数,即a + b = -(-5) = 5。
5. 下列哪个函数是奇函数?()A. y = x^2B. y = x^3C. y = x^4D. y = x^5答案:B解析:奇函数满足f(-x) = -f(x),只有y = x^3满足这个条件。
6. 已知数列{an}的前n项和为Sn,且a1 = 1,an = an-1 + 2n,那么S5的值为()A. 50B. 55C. 60D. 65答案:B解析:根据数列的递推公式,我们可以计算出前5项的值:a1 = 1,a2 = a1 + 22 = 5,a3 = a2 + 23 = 11,a4 = a3 + 24 = 19,a5 = a4 + 25 = 29。
一、选择题(每题2分,共20分)1. 下列各数中,是负数的是()A. -3B. 3C. 0D. -5.52. 在下列各式中,正确的是()A. 5 × 3 = 15B. 5 ÷ 3 = 15C. 5 + 3 = 8D. 5 - 3 = 23. 下列各数中,能被3整除的是()A. 14B. 21C. 36D. 494. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 18cmB. 20cmC. 22cmD. 24cm5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)6. 下列各函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = 4x7. 下列各数中,是偶数的是()A. 13B. 14C. 15D. 168. 下列各图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 等腰梯形9. 一个圆的半径增加了50%,那么圆的面积增加了()A. 50%B. 75%C. 100%D. 125%10. 下列各方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 4C. 4x - 2 = 0D. 5x + 6 = 0二、填空题(每题2分,共20分)11. 3的平方根是______。
12. 下列各数中,绝对值最小的是______。
13. 下列各图形中,是中心对称图形的是______。
14. 下列各数中,是质数的是______。
15. 下列各方程中,x的值是2的是______。
16. 下列各数中,是立方数的是______。
17. 下列各图形中,是全等图形的是______。
18. 下列各数中,是正数的是______。
19. 下列各方程中,x的值是-3的是______。
20. 下列各数中,是偶数的是______。
中职升学文化素质模拟测试科目:数学1、设{}a M =,则下列写法正确的是( )A .M a = B.M a ∈ C.M a ⊆ D.a ⊂≠M 2、若a>b,则下列正确的是( )A .a-3>b+3 B.ac<bc C. b a 11< D.4a>4b3、x=2是x 2-x-2=0的( )条件.A .充分不必要 B. 必要不充分 C.充要 D.既不充分也不必要 4、函数)(x f =1-3x 是( )A. 奇函数B. 偶函数C .既是奇函数又是偶函数 D.既不是奇函数也不是偶函数 5、函数()1log 2-=x y 的定义域为( )A .()∞+,0 B .R C .()∞+,1 D .[)∞+,1 6、已知21sin -=α,⎪⎭⎫⎝⎛∈23ππα,,则=αcos ( ). A. 21 B.23- C.23 D. 21-7、已知向量),3(),2-,1(a b a ==,若a ∥b ,则a =( )A. 6B.-6 C .23 D. 23-8、一个盒子中装有黑球8个,红球12个,绿球20个,从中任取一球取到红球的 概率为( )A. 101B. 51 C .103D. 549、若2sin 3-=αy ,则函数的最大值为 ;10、过点(1,-2)且与直线0432=--y x 平行的直线方程是 ;11、圆042-422=-++y x y x 的圆心坐标是 ;12、如图,在正方体ABCD-A 1B 1C 1D 1中,直线A 1D 113、(8分)已知集合{}2>=x x A ,B={}71<<-x x ,求B A ,B A ;学校: 班级: 姓名:一、选择题(每小题5分,只有1个正确答案,共8题合计40分)(注意:请同学们把答案写到下面的表格里)二、填空题(每小题5分,4题,共20分) 三、解答题(共40分)14、(12分)有一个神秘的地方,那里有很多雕塑,每个雕塑都是由蝴蝶组成的,第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,后面的雕塑按照这样的规律一直延伸到很远的地方,思思和乐乐看不到这排雕塑的尽头在哪里,请问第98个雕塑是由多少只蝴蝶组成?由999只蝴蝶组成的雕塑是第几个雕塑?15、(20分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明,单价每上涨1元,该商品每月的销量就减少10件,(1)请写出每月销售该商品的利润y (元)与单价x (元)的函数关系(销售单价不低于80元); (2)该商品单价定为多少元时,每月的利润最大?最大利润是多少?学校: 班级: 姓名:中职升学《数学》统一测试 参考答案二、填空题(4小题,每小题5分,共20分)9、1 10、0832=--y x 11、(-2,1) 12、45o 三、解答题(40分): 13、(8分){}{}71,2<<-=>=x x B x x A 解:{}{}{}72712<<=<<->=∴x x x x x x B A (4分) {}{}{}1712->=<<->=∴x x x x x x B A (4分) 说明:不写过程直接写答案扣2分。
中职中专职一年级数学期末考卷一、选择题(每题5分,共25分)1. 下列哪个数是实数?A. √1B. 3.14C. log2(3)D. 4/02. 已知集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8},则A∩B 的结果是?A. {1, 3, 5}B. {2, 4}C. {1, 2, 3, 4, 5, 6, 8}D. 空集3. 若a=3,b=2,则a+b的值是?A. 5B. 5C. 6D. 64. 已知函数f(x)=2x+1,则f(3)的值是?A. 6B. 7C. 8D. 95. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 圆二、填空题(每题5分,共25分)1. 已知等差数列{an}的公差为2,首项为1,则第10项的值为______。
2. 若两个角的和为90°,其中一个角为30°,则另一个角的度数为______。
3. 已知三角形ABC,AB=5,BC=8,AC=10,则三角形ABC的周长为______。
4. 一辆汽车以60km/h的速度行驶,行驶了3小时,则汽车行驶的路程为______。
5. 在平面直角坐标系中,点A(2, 3)关于原点的对称点坐标为______。
三、解答题(每题10分,共50分)1. 解方程:2x 5 = 32. 已知函数f(x) = x² 2x + 1,求f(x)在x=2时的函数值。
3. 计算下列各式的值:(1)(3²)³(2)4² × 2³(3)9 ÷ 3 + 2²4. 在直角三角形ABC中,∠C=90°,AB=10,BC=6,求AC的长度。
5. 已知数列{an}的通项公式为an = 2n + 1,求前5项的和。
四、应用题(每题20分,共40分)1. 某商店举行打折活动,原价为200元的商品,打8折后售价为多少元?2. 一辆汽车行驶了200公里,前一半路程的平均速度为60km/h,后一半路程的平均速度为80km/h,求全程的平均速度。
2023-2024学年江苏省徐州市职业学校职教高考班高二(下)期末数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分)A .(1)B .(2)C .(2)(3)D .(1)(3)1.(4分)下列随机变量是离散型随机变量的是( )(1)某人的手机在一天内被拨打的次数ξ;(2)某水文站观察到一天中的水位高度ξ(单位:cm );(3)某首歌曲被点播的次数ξ.A .B .1C .0D .2.(4分)已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为( )4512A .-2B .4C .0D .13.(4分)已知集合M ={1,3},N ={a +4,3},若M ∪N ={1,2,3},则a 的值是( )A .A +B B .A •BC .A •BD .A •B4.(4分)逻辑表达式A +B 等于( )A .最大值为10B .最小值为10C .最大值为11D .最小值为115.(4分)某项工程的流程图如图所示(单位:天),若仅有一条关键路径为:A →E→F .则整数x 取值的情况为( )A .B .2C .-1D .6.(4分)已知数组a =(2,-3,2),b =(3,1,log 2x ),若a •b =1,则x 的值为( )→→→→M 212二、填空题(本大题共5小题,每小题4分,共20分)A .(-3,1)B .[-3,1]C .(-∞,-3]∪[l ,+∞)D .(-∞,-3)∪(1,+∞)7.(4分)函数y =的定义域为( )M 3-2x -x 2A .3B .5C .7D .98.(4分)已知函数f (x )=,则f [f (-1)]=( ){-1,x >0-2x ,x ≤02xx 2A .-1B .-C .D .19.(4分)已知f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤时,f (x )=,则f (-等于( )32√x M 2M 2A .1B .2C .4D .810.(4分)已知函数f (x )=a x +2-2(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中m ,n 均大于+的最小值为( )1m 2n11.(4分)设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a = .12.(4分)如图是一个程序框图,若输入m 的值是21,则输出的m 值是 .三、解答题(本大题共8小题,共90分)13.(4分)平移坐标轴,将坐标原点移到(m ,n ),若曲线y =x 2+1的顶点在新坐标系中的坐标为(2,-2),则m -n =14.(4分)已知随机变量X 服从正态分布N (2,σ2),且P (2<X ≤2.5)=0.36,则P (X >2.5)= .15.(4分)若直线y =x +b 与曲线,θ∈(-π,0)恰好有一个公共点,则实数b 的取值范围是 .{x =cosθy =sinθ16.(8分)已知函数f (x )=lo (-ax +)的定义域是R .(1)求实数a 的取值范围;(2)解关于x 的不等式>.g a x 2a 4a -4x -14x 21a 217.(10分)已知实数a 满足不等式|2a -3|<1.(1)求实数a 的取值范围;(2)解关于x 的不等式lo (x +4)≤lo (-2x ).g a g a x 218.(12分)已知函数f (x )=(a +2)x 2+(b -1)x +c 是定义在[a -1,b +3]上的偶函数,且f (1)=3.(1)求函数f (x )的解析式;(2)若不等式f (x )≥2x +m 恒成立,求实数m 的取值范围.19.(12分)已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,点(2,6)在函数f (x )的图象上,当x <0时(x )=x 2+bx .(1)求实数b 的值;(2)求函数f (x )的解析式;(3)若f (a )=6,求实数a 的值.20.(12分)习总书记指出:“绿水青山就是金山银山”.某市一乡镇响应号召,因地制宜地将该镇打造成“生态水果特色小调研过程中发现:某珍稀水果树的单株产量W (单位:kg )与肥料费用10x (单位:元)满足如下关系:W (x )=,其他成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价为10元/kg ,且供不应求.记该单株水果树获得的利润为f (x )(单位:元).(1)求f (x )的函数关系式;(2)当投入的肥料费用为多少元时,该单株水果树获得的利润最大?最大利润是多少元?{5(+2),0≤x ≤248-,2<x ≤5x 248x +121.(12分)某职业学校毕业生小王参加某公司招聘考试,共需回答4个问题.若小王答对每个问题的概率均为,且每个答正确与否互不影响.(1)求小王答对问题个数ξ的数学期望E (ξ)和方差D (ξ);(2)若每答对一题得10分,答错或不答得0分,求小王得分η的概率分布;(3)在(2)的条件下,若达到24分被录用,求小王被录用的概率.2322.(10分)医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10g 含5单位蛋白质和10单位铁质,售价3元;乙料每10g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙料,才能既满足营养,又使费用最省?23.(14分)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2(1)求证:函数f (x )恒有f (x +4)=f (x )成立;(2)求当x ∈[2,4]时,f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2024)的值.。
2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题2分,共50分)(在每小题列出的四个案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)A .{2,0}B .{-2,4}C .{0,4}D .{-2,0,2,4}1.(2分)已知全集U ={-2,0,2,4},集合A ={2,0},则如图中阴影部分表示的集合为( )A .(-4,8)B .(2,8)C .(8,2)D .(2,2)2.(2分)点A (4,0)关于点B (0,4)的对称点的坐标为( )A .B .C .D .3.(2分)直线x -y =0的倾斜角是( )M 3π6π32π35π6A .充分条件B .必要条件C .充要条件D .既不充分又不必要条件4.(2分)设x ∈R ,则“x >2”是“x 3>8”的( )A .(x -1)(4-x )>0B .|x -1|<4C .D .≤05.(2分)函数y =f (x )的图像如图所示,下列不等式中,解集与f (x )<0相同的是( ){x <1x >4x -1x -46.(2分)函数y =•lgx 的定义域为( )M 1-xA .(0,1]B .(0,1)C .(1,+∞)D .(0,1)⋃(1,+∞)A .30°B .168°C .πD .47.(2分)已知sinαcos 168°>0,则α的值可能为( )A .6种B .12种C .24种D .48种8.(2分)有4名同学参加演讲比赛,甲第一位出场的排法有( )A .f (-4)=f (4)B .函数在[3,6]上的最大值为f (3)C .f (4)>f (5)D .函数在[-6,-3]上单调递减9.(2分)函数f (x )关于y 轴对称,且f (x )在[3,6]上是减函数,下列不正确的选项是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)10.(2分)已知圆x 2+y 2+Dx -3=0经过点A (-1,2),则圆的圆心坐标为( )A .B .-C .D .-11.(3分)已知tanα=,且tan (α+β)=1,则tanβ的值为( )3417173434A .7B .6C .5D .412.(3分)抛物线y 2=8x 上点M 到直线x =-1的距离为5,F 为焦点,则|MF |=( )13.(3分)已知函数y =x 2-1与x 轴交于A 、B 两点,点P 为圆(x -3)2+y 2=8上一动点,则△PAB 面积的最大值是(A .3B .2C .3D .4M 2M 2M 2A .平行B .相交C .异面且垂直D .异面但不垂直14.(3分)如图所示,正四棱锥P -ABCD 中,点E 为PB 中点,则AC 与DE 的位置关系为( )A .36B .37C .38D .3915.(3分)已知数列{a n }中,a 1=1,a 2=4,a 3=9,且{a n +1-a n }是等差数列,则a 6=( )A .B .C .D .16.(3分)为了弘扬“孝心文化”,台州市某职业学校开展为父母捶背活动,要求同学们在某周的周一至周五任选两天为父母背,则该校的甲同学连续两天为父母捶背的概率为( )710352512A .(-4,-2)B .(-4,0)C .(2,4)D .(4,2)17.(3分)已知点N (0,1),MP =(-1,1),MN =(3,2),则点P 的坐标为( )→→A .B .C .D .18.(3分)已知tan (θ+)=2,则co (θ+)=( )π6s 2π6453107101519.(3分)已知F 1、F 2是椭圆+=1(a >b >0)的两个焦点,过点F 2的直线与椭圆交于A ,B 两点.若|AF 1|:|ABF 1|=5:12:13,则该椭圆的离心率为( )x 2a 2y 2b2二、填空题(本大题共7小题,每小题4分,共28分)三、解答题(本大题共8小题,共72分)(解答需写出文字说明及演算步骤)A .B .C .D .M 52M 32M 53M 22A .36分钟B .37分钟C .41分钟D .46分钟20.(3分)某学校组织团员举行“江南长城文化节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了5分钟,然后下坡到乙地又宣传了5分钟返回,上坡和下坡均按原来速度保持不变,行程情况如图所示.若返回时,在甲地仍要宣传5分钟,那么他们从乙地原路返回学校所用的时间是( )21.(4分)已知数列-1,-2,x ,y 前三项成等比,后三项成等差,则xy = .22.(4分)直线y =x +1与双曲线x 2-y 2=1的交点个数为.23.(4分)的展开式中,记二项式系数之和为m ,常数项的值为n ,则m +n =.(-)√x 1x624.(4分)已知α∈(0,π),2sinαcosα=cos 2α,则α= .M 325.(4分)将边长为2的正三角形绕着它一边上的高旋转一周,所得几何体的侧面积为 .26.(4分)折扇轻摇,清风徐来,炎炎夏日尽收眼底.如图所示,一把折扇完全展开后,得到的扇形OAB 的面积为900cm 2,当该折扇的周长最小时,OA 的长度为.27.(4分)某研究机构通过研究学生的“日能力值”来激励学生.假设甲和乙刚开始的“日能力值”相同,在往后的学习过程勤奋学习,乙疏于学习.通过研究发现,经过n 天之后,甲的“日能力值”是乙的T 倍,n 与T 有如下关系:n =.若“日能力值”是乙的20倍,则至少需要经过天.(参考数据:lg 102≈2.0086,lg 99≈1.9956,lg 2≈0.3010)lgT lg 102-lg 9928.(5分)计算:-lg 4-2lg 5+++2sin .()169-12M (1-)M 23C 2024202411π429.(5分)如图所示,已知△ABC 为等腰三角形,∠A =120°,AC =2,点E 为AB 延长线上一点,且B E =AB .(1)求CE 的长;(2)求∠BCE 的正弦值.30.(10分)已知圆C 的圆心坐标为(1,-2),且过点(2,-2).(1)求圆C 的标准方程;(2)过点P (5,0)作斜率为1的直线l 交圆C 于A 、B 两点,与点P 较近的点为B ,求线段PB 的长.M 331.(10分)如图所示,已知四棱锥P -ABCD ,底面ABCD 为菱形,AC ,BD 交于点O ,PD ⊥平面ABCD ,且PD =AD =2,∠ABC =120°.(1)求四棱锥P -ABCD 的体积;(2)求半平面PAC 与底面ABCD 所成二面角的余弦值.32.(10分)函数f (x )=Asin (ωx +φ)(ω>0,|φ|<)的部分图像如图所示,且|MN |=2.(1)求函数f (x )的解析式;(2)若点P 为图像上一点,且锐角△MNP 的面积为,求点P 的坐标.π2M 233.(10分)某公司生产一类电子芯片,且该芯片的年产量不超过35万件,每万件电子芯片的计划售价为16万元.已知生产电子芯片的固定成本为30万元/年,每生产x (万件)电子芯片需要投入的流动成本为y (万元)的部分数据如下:x (万件)34562025y (万元)184828036180311033根据市场调查分析,当0≤x ≤14时,流动成本y (万元)与年生产x (万件)之间满足函数模型y =ax 2+bx ;当14<x ≤35时动成本y (万元)与年生产x (万件)之间满足函数模型y =kx +-80.假设该公司每年生产的芯片都能售完.(1)求流动成本y (万元)关于年生产x (万件)的函数关系式;(2)写出年利润g (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(3)为使公司获得的年利润最大,每年应生产多少万件该芯片?400x34.(10分)如图所示,已知双曲线C :-=1(a >0,b >0)的一个顶点为(1,0),离心率为2,直线l :y =x +2与双曲线C 交于A 、B 两点.(1)求双曲线的标准方程;(2)若在x 轴上存在点P ,使△PAB 是以P 为顶点的等腰三角形,求点P 的坐标;(3)在(2)的条件下,求△PAB 的面积.x 2a 2y 2b21235.(12分)已知数列{a n }满足=2(n ∈),a 1=1,a 2=2.(1)求a 3,a 4,a 5的值;(2)求{a n }的通项公式;(3)设=,求数列{b n }的前n 项和为S n .a n +2a n N *b n log 2a2na 2n -1。
.第 1 页 共 2 页中职数学基础模块上册期末考试试题(附答案)一、选择题(每小题3分,共30分)1.设集合A={x |x <4} ,B={x |x ≥1},则A ∪B = ( ). A.R B.{x |1<x <4} C.∅ D.{x |1≤x <4}2.下列结论正确的是( )A.若am 2>cm 2,则a >c B.若a >b ,则1a<1bC.若a >b 且c <d ,则a+c >b+dD.若a 2>a ,则a >1 3.一元二次不等式-x 2-3x+4<0的解集是( )A.(-∞,-4)∪(1,+∞)B.(-∞,-4)C.(-∞,-4)D.(-4,1) 4.不等式|x-2|>-2 的解集是( ) A.(-∞,0)∪(3,+∞) B.(0,+∞) C.(-∞,+∞) D.∅ 5.函数f (x )=√x+2A.(-∞,-2)B.(-2,+∞)C.(-∞,-2)∪(-2,+∞)D.(-∞,0)∪(0,+∞)6.下列函数是奇函数的是( )A.y=-2x 2B.y=x+4C.y=3xD.y=x 3+x 27.若sinx=35,且cosx=-45,则角x 是( )A .第一象限角B.第二象限角C .第三象限角 D.第四象限角 8.sin30°+sin150°-tan45°的值为( ) A.0 B.√3-1 C.2-√22 D.√3-√229. 如果α+β=π,那么下列等式正确的是( )A.sin α=sin βB.sin α=-cos βC.cos α=cos β D .tan α=tan β 10.函数y=3+2sinx 的最小值是( ) A.3 B.2 C.5D.1 二、填空题(每空2分,共20分)1.f (x )=x 3+1 ,则f (-1)= 。
2. 函数f (x )=-x+1在(-∞,+∞)上是 函数。
(填“增”或“减”)3.把下列各角由角度转换为弧度。
(1)-120°= 。
第1页 第2页
2012春数学期中考试试卷
班级______________ 姓名______________ 成绩_____________
一、选择题(只有一项答案符合题意,共15题,每题2分,共30分)
1、x>5是x>3的( )条件。
A 充分不必要条件 B 必要不充分条件 C 充要条件 D无法判断
2、已知x
A (-1,+∞) B [-1,+∞) C (-∞,-1) D (-∞,-1]
4、下列一元一次不等式组的解集用区间表示为( )。
A. (-∞, 25 ) B. ( -23 , +∞) C. (-∞, -23 ) ∪( 25 , +∞) D. ( -23 , 25 )
5、| x−2 |>0的解集为( )。
A. (-2,2) B. (-∞,-2)∪ (2,+∞) C. (-∞,-2) D. (2,+∞)
6、| x |−3<0的解集为( )。
A. (-3,3) B. (-∞,-3) ∪(3,+∞) C. (-∞, -3) D. (3, +∞)
7、函数y=3x+5 的定义域用区间表示为( )。
A. (-35 ,35 ) B. (-∞, -35 ) ∪( 35 ,+∞) C. (-∞, -35 ) D. (-35 , +∞)
8、下列函数是偶函数的是( )。
A. y=x+2 B. y=x2 C. y= 2x D. y=2x
9、已知二次函数f(x)=x2+2x-3,则f(2)=( )。
A. 5 B. -3 C. -5 D. 3
10、二次函数y=3x2的对称轴方程为( )。
A. x=3 B. x=2 C. x=0 D. x=-3
11、一元二次不等式x2-5>0的解集为( )。
A. (-5 ,5 ) B. (-∞, -5 ) ∪(5 ,+∞) C. (-∞, -5 ) D. (5 , +∞)
12、若函数logayx的图像经过点2,1,则底a=( ).
A. 2 B. −2 C. 12 D. 12
13、 下列对数函数在区间(0,+)内为减函数的是( ).
A. lgyx B.12logyx C. lnyx D.2logyx
14、在下列图象中,二次函数y=ax2+bx+c与函数y=(ab)x的图象可能是 ( )
15、当x∈[-2,2)时,y=3-x-1的值域是 ( )
A.[-98,8] B.[-98,8] C.(91,9) D.[91,9]
二、填空题(每空1分,共10分)
1、210319)41()2(4)21( = .
2、8的平方根可以表示为 ,其中根指数为 ,被开方数为 .
第3页 第4页
3、(1)设36x,则 x ;(2)设151x,则 x . 4、用、、填空 x>0_____x>3 | x |=3_____x=±3 5、在平面坐标系中,P(2,1)关于O点的对称点坐标为______________。 6、用区间表示函数y=1 3x-5 的定义域为______________。 三、解答题(共40分) 1、求下列函数的定义域: (1)24fxx; 2、判定点11,2M,22,6M是否在函数13yx的图像上。 3、 已知分段函数 0 ,20 ,12)(2xxxxxf (1) 求定义域。 (2) 求f(2),f(0),f(-2)的值。 4、判断下列函数的奇偶性:
(1)3fxx; (2)221fxx
5、解下列各一元二次不等式:
(1)260xx;
6、证明:已知0ab,0cd,求证acbd.
四、应用题(共20分)
小明从家里出发,去学校取书,顺路将自行车送还王伟同学.小明骑了30分钟自行车,
到王伟家送还自行车后,又步行10分钟到学校取书,最后乘公交车经过20分钟回到家.这
段时间内,小明离开家的距离与时间的关系如下图所示.请指出这个函数的单调性.