当前位置:文档之家› 2-3 1.2排列组合

2-3 1.2排列组合

2-3  1.2排列组合
2-3  1.2排列组合

排列组合(1)

分类计数原理(加法原理):做一件事,完成它可以有n 类办法,第一类办法中有m 1种不同的方法,第二办法中有m 2种不同的方法……,第n 办法中有m n 种不同的方法,那么完成这件事共有N=m 1+m 2+m 3+…m n 种不同的方法. 分步计数原理(乘法原理):做一件事,完成它需要分成n 个步骤,做第一 步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,.那么完成这件事共有N=m 1?m 2?m 3?…?m n 种不同的方法.

排列

1.定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....

排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....

此定义包含两个基本内容:一是“取出元素”;二是“有一定顺序”.当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.元素完全不同或元素部分相同或元素相同而顺序不同的排列,都不是同一个排列.另外,定义规定给出的n 个元素各不相同,并且只研究被取出的元素也各不相同的情况.也就是说,如果某个元素已被取出,则这个元素就不能再取了.

2.排列数即为不同排列的个数,就是所有排列的总数,用符号m n A 表示.公式的两种表示形式为:

①(1)(2)

(1)m n A n n n n m =---+;

②!()!m n n A n m =-. 3.全排列!12)2)(1(n n n n A n n =?--=

规定 0!=1

【同步习题】

1、8名学生站成两排,前排4人,后排4人,则不同站法种数为( )

A. 442A

B. 424()A

C. 88A

D. 8812

A 2、有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有( )

A. 88A

B. 48A

C. 4444A A

D. 44

2A 3、A 、B 、C 、D 、E 五人站成一排,如果A 必须站在B 的左边(A 、B 可以不相邻),则不同排法有( )

A. 24种

B. 60种

C. 90种

D. 120种

4、6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为( )

A. 66A

B. 333A

C. 3333A A

D. 4!3!?

5、某科研所从4种不同蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,共有不同种植方法_______种。

6、有4位男生、3位女生排队拍照,根据下列要求,各有多少种不同的排列结果?

(1)分成两排照相,前排3人,后排4人。(2)七个人排成一列,四个男生必须排一起。

(3)七个人排成一列,且女生不能相邻。

7、用1,2,3,4,5,6,7这7个数字组成没有重复数字的四位数。

(1)这些四位数中偶数有多少个?能被5整除的有多少个?

(2)这些四位数中大于6500的有多少个?

8、(1)从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同送书方法?

(2)有5种不同的书,从中买3本送给3名同学,每人一本,共有不同送书方法多少种?

9、某信号兵用红、黄、绿三面旗从上到下挂在旗杆上表示信号,每次可以挂一面、两面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号。

10、用1,2,3,4,5这5个数字,组成没有重复数字的三位数,其中偶数的个数为___________.

11、(1)用1,2,3,4,5这5个数字,可组成不同的三位偶数_________个;

(2)用0,1,2,3,4这5个数字可组成没有重复数字的三位偶数__________个。

12、星期一共排六节不同的课,若第一节排数学或第六节排体育,问有多少种不同的课程排法?

13、6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有( )种。

A. 720

B. 360

C. 240

D. 120

14、5名男生与2名女生排成一排照相,如果其中男生甲在正中间,两女生相邻的排法有_________种?

15、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少种不同的排法?

16、4名男生和4名女生站成一排(1)男生不相邻的站法有多少种?(2)女生不相邻的站法有多少种?

(3)男、女生相间的站法有多少种?(可不必计算出数值)

17、计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有( )种。

A. 4545A A

B. 343345A A A

C. 145345A A A

D. 2452

45A A A 18、7名学生站成一排,求下列情形下各有多少不同排法:(1)甲不在排头;(2)甲不在排头,乙不在排尾;

(3)甲、乙不相邻且不在两头;(4)甲、乙之间隔一人。

19、三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为____________.

20、用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?

(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1325大的四位数?

21、8个人排成一队,A,B,C 三人互不相邻,D,E 两人也互不相邻的排法共有多少种?

22、3名男生和3名女生排成一排,男生不相邻的排法有多少种( )

A. 144

B. 90

C. 260

D. 120

23、六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法数为( )

A. 44A

B. 36A

C. 46A

D. 33A

24、用数字1,2,3,4,5这五个数字可以组成比20000大,且百位数字不是3的没有重复数字的五位数( )

A. 96个

B. 78个

C. 72个

D. 64个

25、6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )

A. 720

B. 360

C. 240

D. 120

26、5个人排成一排,如果甲必须站在排头或排尾,而乙不能站在排头或排尾,那么不同站法总数为( )

A. 18

B. 36

C. 48

D. 60

27、A,B,C,D,E 五人站成一排,如果A,B 必须相邻,且B 在A 的右边,那么不同排法的种数有( )

A. 60

B. 48

C. 36

D. 24

28、用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中奇数的个数为( )

A. 36

B. 30

C. 40

D. 60

29、上午要上语文、数学、体育和外语四门功课,而体育教师因故不能上第一节和第四节,则不同排课方案的种数是( )

A. 24

B. 22

C. 20

D. 12

30、用0,1,2,,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有______个。 31、6人站成一排,甲、乙、丙3个人不能站在一起的排法种数为( )

A. 720

B. 144

C. 576

D. 684

32、由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )

A. 56个

B. 57个

C. 58个

D. 60个

33、用0,1,2,3,4,5组成没有重复数字的6位数,其中个位数字小于十位数字的六位数共有( )

A. 300个

B. 464个

C. 600个

D. 720个

34、从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )

A. 108种

B. 186种

C. 216种

D. 270种

35、在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有___________个。

36、7个人排一排,甲不在排头、乙不在排尾、丙不在正中间的排法有__________种? 37、6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达)

(1)男甲必排在首位;

(2)男甲、男乙必排在正中间;

(3)男甲不在首位,男乙不在末位;

(4)男甲、男乙必排在一起;

(5)4名女生排在一起;

(6)任何两个女生都不得相邻;

(7)男生甲、乙、丙顺序一定。

排列与组合(2)

1.定义:从n 个不同元素中取出m (m ≤n )个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 组合与排列的区别在于:虽然都是从n 个不同的元素中取出m 个不同元素,但是排列是要考虑“一定顺序排成一列”,而组合是“合成一组”即元素之间无前后顺序可言.因此两个组合只要它们的元素相同就是同一个组合,而不必考虑元素之间的顺序.

2.组合数即是符合条件的所有组合的个数,用符号m n C 表示.组合数公式有两种表示形式:

①(1)(2)(1)!m m

n n

m m A n n n n m C A m ---+==; ②!!()!m n n C m n m =-. 3.组合数的性质:

①m n m n n C C -=;②11m m m n n n C C C -+=+;③11k k n n kC nC --=;④01n C =.

【同步习题】

1、包括A,B,C,三人在内的七个人站成一排,其中A,B,C 顺序一定(从左到右依次为A,B,C )的排法有_________种。

2、一位教练的足球队共有17名初级学员,他们中没有一人参加过比赛,按照足球比赛规则,比赛时一个足球队的上场队员是11人,问:

(1)这位教练从这17名队员中可以形成多少种上场学员方案??

(2)如果在选出11名上场队员时,还要确定其中的守门员,那么有多少种不同方案?

3、计算232889C C C ++=( )

A. 120

B. 240

C. 60

D. 480

4、有两条平行直线,a b ,直线a 上有4个点,直线b 上有5个点,现在要以这些点为顶点作三角形,这样的三角形一共有( )

A. 70个

B. 80个

C. 82个

D. 84个

5、已知7234610x x x C A ---=,则x 的值为( )

A. 11

B. 12

C. 13

D. 14

6、身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )

A. 5040

B. 36

C. 18

D. 20

7、以一个正三棱柱的顶点为顶点的四面体共有( )

A. 6个

B. 12个

C. 18个

D. 30个

8、平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A. 220个 B. 210个 C. 200个 D. 1320个

9、已知集合{1,2,3,4,5,6},{1,2}A B ==,若集合M 满足B M A ??≠≠,则不同集合M 的个数为( )

A. 12

B. 13

C. 14

D. 15

10、平面内有12个点,任意三点不共线,以这些点为顶点的三角形共有________个。

11、现有1分、2分、5分硬币各一枚,能组成不同币值_________种。

12、判断下列语句是排列问题还是组合问题。

(1)从A,B,C,D 四个风景点选出两个进行游览;(2)从甲、乙、丙、丁四名学生中选出两人担任班长和团支部书记____________.

13、从长度分别为1,2,3,4,5的五条线段为边可构成钝角三角形的概率为____________.

15、将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有( )

A. 252种

B. 112种

C. 20种

D. 56种

16、6人站成一排,若调换其中的三个人的位置,有多少种不同的换法( )

A. 40

B. 60

C. 120

D. 240

17、从15个人中选出一男一女,选法有56种,则其中男人的个数是_________.

18、从一组学生中选出4名学生当代表的选法种数为A ,从这组学生中选出2人担任正、副组长的选法种数为B ,若213

B A =,则这组学生共有__________人。 19、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗,2面白旗,把这5面旗都挂上去,可表示不同信号的种数是_______________.

20、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的选法共有( )种。A. 140 B. 80 C. 70 D. 35

21、四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法共有__________种。

22、某班共有50名学生,从中选3人参加书法比赛。(1)班长必须参加的选法有多少种?(2)班长不能参加的选法有多少种?(3)正副班长只能一个人参加的选法有多少种?(4)正副班长都参加的选法有多少种?

23、高一、高二、高三三个年级共30个班,每个年级10个班,每班一个球队。现举行篮球比赛。首先每个年级中各队进行单循环比赛,然后将各年级的前3名集中起来进行第二轮比赛,在第二轮比赛中,除了在第一轮中已经赛过的两队外,每队要和其他队赛一场,那么先后比赛多少场?

24、某毛巾厂生产的毛巾,每100条毛巾中有次品5条,在抽样检查时,抽3条进行检验。

(1)共有多少种抽法?(2)恰有一条次品的抽法有多少种?(3)至少有一条次品的抽法有多少种?

(4)最多有一条次品的抽法有多少种?

25、从8名男医生、7名女医生中选出5名医生组成一个医疗队,其中至少有2名男医生和2名女医生的选法共有( )

A. 3003 种

B. 2156种

C. 6468种

D. 1178种

26、由数字0,1,2,3,4,5组成没有重复数字的6位数,其中个位数字小于十位数字的共有( )

A. 210个

B. 300个

C. 464个

D. 600个

27、在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )

A. 12694C C

B. 12699C C

C. 3310094C C -

D. 33

10094A A - 28、从编号为1,2,3,4的四种不同的种子中选出3种,在3块不同的土地上试种,每块地上试种一种,其中1号种子必须试种,则不同的试种方法有( )

A. 24种

B. 18种

C. 12种

D. 96种

30、一排7个座位分给3人坐,要求任何两人都不得相邻,所有不同排法的总数有_______种。

31、50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共有_________种。

32、3名飞行员和6名空中小姐分别上3架不同型号的直升飞机,每机1名飞行员和2名空中小姐,则上机的方法共有___________种。

33、从8台甲型和6台乙型电脑中,任意取出3台,其中至少要有甲型与乙型电脑各一台,则不同的选法有____种。

34、一个小组有10名同学,其中4名女生,6名男生,现从中选出3名代表,其中至少有1名女生的选法有多少种?

35、有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种不同的分法?

(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人的3本,一人得2本;(3)甲、乙、丙各得3本。

36、把0,1,2,3,4,5这六个数,每次取三个不同的数字,把其中最大的数放在百万上排成三位数,这样的三位数有()

A. 40

B. 120

C. 360

D. 720

37、从1,2,3,…,9这九个数字中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()

A. 5

9

B.

4

9

C.

11

21

D.

10

21

38、有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞。现在从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法_________种。

39、10个相同的小球,放入编号为1,2,3的三个不同的盒子,要求每个盒子放入的小球数不少于盒子的编号数,共有多少种放法?

40、用五种不同的颜色将图中A,B,C,D,E五个平面区域染色,要求每个区域只染一

种颜色,且相邻的区域不能染相同的颜色,求不同的染色方法数。

41、兵乓球队的10名队员中有3名主力队员,现派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名选手只能排在第二、四位置,那么不同的出场安排共有多少种?

排列与组合(3)

1、有6本不同的书。(1)甲、乙、丙3人每人2本,有多少种不同的分法?(2)分成3堆,每堆2本,有多少种不同的分堆方法?(3)分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少种不同的分配方法?(5)分成3堆,有2堆各1本,另一堆4本,有多少种不同的分堆方法?(6)摆在3层书架上,每层2本,有多少种不同的摆法.

2、将含甲、乙在内的9人平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()

A. 70

B. 140

C. 280

D. 840

3、一条街道上共有10盏路灯,为节约用电又不影响照明,决定每天晚上10点熄灭其中的4盏,并且不能熄灭相邻两盏也不能熄灭两头两盏,问不同熄灯方法有多少种?

4、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()

A. 300种

B. 240种

C. 144种

D. 96种

5、某车间有11个工人,其中5名男工是钳工,4名女工是车工,另外2位老师傅既能当钳工又能当车工。现在从这11名工人中选派4名钳工和4名车工修理一台机床,有多少种不同的选派方法?

6、A,B,C三台不同型号的数控车床和甲、乙、丙、丁四名操作员。其中甲、乙会操作这三种车床,丙不能操作车床C,丁只会操作车床A,今从四人选三个人分别去操作以上车床,不同的选派方案共有________种。

7、某池塘内有A,B,C三只小船,A船可乘3人,B船可乘2人,C船可乘1人。今有3个成人和2个儿童分别乘这些船只,若每船必须坐人,且为安全起见,儿童必须由大人陪同方可乘坐,则他们分乘这些船只的方法有______种。

8、有甲、乙、丙三项任务,甲需2人承担,乙、丙各只需一人承担。若从10个人中选出4人承担这三项任务,则不同的选法有()

A. 1260人

B. 2025人

C. 2520人

D. 5040人

9、四面体的一个顶点为A,从其它顶点与各棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有()

A. 36种

B. 33种

C. 30种

D. 39种

10、某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻的两孔不能同时显示,则这种显示屏可以显示的不同信号的种数是________种。

11、从6名短跑运动员中选4人参加4×100米接力赛,如果甲不能跑第一棒,乙不能跑第四棒,问共有多少种参赛方法?

12、有4个不同的球,4个不同的盒子,把球全部放入盒内。(1)共有多少种方法?(2)恰有一个盒不放球,有多少种放法?(3)恰有一个盒内放两个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?

14、在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋。现在从这7人中各选1人分别参加象棋比赛和围棋比赛,共有多少种不同的选法?

15、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法有( )

A. 50种

B. 100种

C. 1275种

D. 2500种

16、从男生7人和女生5人中选出4人进行兵乓球混双比赛,则不同的种数为( )

A. 420

B. 210

C. 840

D. 105

17、在五张卡片上分别写有2,3,4,5,6这5个数字,其中6可以当9使用,从中任取3张,组成三位数,这样的三位数个数为( )

A. 60

B. 70

C. 96

D. 136

18、4个不同的小球全部放入3个不同的盒子中,使每个盒子都不空,则不同放法种数为( )

A. 1334A A

B. 2343C A

C. 3242C A

D. 1344C C

19、某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班且每班安排2名,则不同的安排方案种数为( )

A. 2264A C

B. 226412

A C C. 2264A A D. 262A 20、七个相同的球,放入四个不同的盒子里,每个盒子至少放一个,不同的放法数为__________。

21、一排长椅上共有10个座位,现有4人就坐,恰好有五个连续空位的坐法种数为_________.

22、有10个三好学生的名额,分配给高三年级6个班,每班至少一个名额,共有_________种不同的分配方案。 23、6名儿童,其中3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌1名会跳舞的儿童去参加文艺演出,问有多少种不同选法?

24、空间有10个点,其中5点在同一直线上,其余再无三点共线,也无四点共面,以这些点为顶点可构成多少个不同的三棱锥。

25、用红、黄、蓝、白、黑五种颜色涂在“田”字形的小方格内,每格内,每格涂一种颜色,相邻两格不同色,如果颜色可以重复使用,共有多少种不同的涂色法?

26、有3名男生,4名女生,在下列不同条件下,求不同的排列方法总数。

(1)全体排成一行,其中甲只能在中间或两头位置;(2)全体排成一行,其中甲不在最左边,乙不在最右边;

(3)全体排成一行,男、女各自相邻;(4)全体排成一行,男、女各不相邻;

(5)全体排成一行,其中甲、乙、丙三位同学按自左至右的顺序保持不变。

(完整word版)排列组合竞赛训练题(含答案),推荐文档

排列组合 一、选择题 1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有 A、15种 B、24种 C、360种 D、480种 2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有 A、81种 B、15种 C、10种 D、4种 3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。则共()种安排出行的办法 A、A99×A310 B、A99×A38 C、A38 D、C38 4、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是 A、2898 B、2877 C、2876 D、2872 5、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有 A、15条 B、21条 C、36条 D、3条 6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有 A、C60 B、C2459 C、C2560 D、C2559 二、填空题 7、4410共有个不同的正约数。 8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。 9、如图,两圆相交于A、B两点, 在两圆周上另有六点C、D、E、F、G、 H,其中仅E、B、G共线,共他无三 点共线,这八点紧多可以确不同圆的 个数是。 10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。 11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。 12、10人有相应的10个指纹档案,每个指纹档案上都记录有相应人的指纹痕迹,并有检测指示灯和检测时的手指按钮,10人某人把手指按在键钮上,若是他的档案,则指示灯出现绿色,否则出现红色,现在这10人把手指按在10个指纹档案的键钮上去检测,规定一个人只能在一个档案上去检测,并且两个人不能在同一档案上去检测,这时指示灯全部出现红色,这样的情况共有种。 三、解答题 13、中、日围棋队各出7名队员,按事先安排好的次序出场进行围棋擂台赛,双方先由1号队员

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

小学二年级数学简单的排列组合[人教版]

数学广角 一、教学内容: 人教版<义务教育课程标准实验教科书数学>第三册第99页例1:简单的排列、组合 二、教学目标与策略选择: 本节课我力图从知识与技能、数学思考、解决问题、情感与态度等四个方面出发,有效地整合教学目标,体现以“学生发展为本”的理念。因些,我制定了以下教学目标: 1、学生通过观察、猜测、操作等活动,能找出最简单的事物的排列数和组合数。 2、学生形成初步的观察、分析能力及有序地、全面地思考问题的意识。 3、通过活动学生形成一定的合作交流意识,感受数学与生活的紧密联系,树立学生学好数学的信心。 鉴于以上的目标定位,本课设计时基于“在教学中要以人为本,强调要从儿童的经验出发,借助一定的数学问题情境和探究性的实践活动,让学生在数学活动中,用数学的眼光去观察事物,用数学的方式去思考问题,用数学的语言去解释现象,用数学的观点去认识世界……从而使学生有效地学会数学地思考。”的总体思路。为此,主要采取了以下教学策略: 1、创设生动有趣的教学情景。 2、采用活动化的教学方式。 ……

…… 师:好,下面我们就来研究这个问题,请同学们试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。在摆之前,想一想怎样摆才能既不重复也不遗漏,每摆出1个两位数就把它写在你的本子上。开始。 生:摆、写数活动 师:好,三人小组交流一下: 1、你是怎么摆的? 2、推荐一种好的摆法,准备汇报,在汇报时说一说你小组为什么要推荐这种方法,它好在哪里? 生:小组交流、推荐 师:我想,每个小组都已推出一种好方法。哪个小组愿意来汇报。 师:你们组是怎么摆的,请上来边摆边说边写 生:我们组摆出12,然后再颠倒就是21;再摆23,颠倒后是32;再摆13,颠倒后是31。一共可以摆出

集合---排列组合

职 高 数 学 单 元 测 试 集合---排列组合 (时间:100分钟,满分100分) 姓名________成绩__________ 一.填空:(每空2分,共38分) 1.从1,2,3,4,5中任选两数组成加法式子,共可组成______个不同的加法式子, 若组成无重复数字的二位数,则可组成_______个不同的二位数. 2.计算:0!+5!- C 62+P 62=____ 3.四人排成一列,甲只能站右边第一个位置,则有 种不同站法. 4.1,2,3,4,5中任取2数,可以组成______个两位偶数,如果数字可以重复, 则可组成________个两位偶数. 5.-8和-2的等比中项为________,等差中项为_______ 6.等比数列{a n }中S n =2n+1-2,则此数列的公比q=_________ 7.数列{a n }为等差数列,a n =2-3n 则S 10=__________ 8.集合A={0,1,2,3}的所有真子集有_______个. 9.已知aa 13. 6名护士,3名医生分派到三所不同的学校为学生体检,每校两名护士和一名 医生,则有 种不同的分派方法。 14.已知函数 x a y log 3=的图象过点)9 1 3(,,则a= 二.选择填空题:(每小题3分,共30分) 15.从甲地到乙地,一天中有两班火车,五班汽车开出,则在一天中不同的乘车方 法有 种 A 25 B 52 C 10 D 7 16.某地有4个不同的邮筒,现将三封信投放到邮筒中,则不同的投法有 种 A 34 B 43 C P 43 D C 43 17.4×5×6×……×(n-1)×n ×(n+1)= A C n+1n-3 B (n+1)!-3! C P n+1n-2 D P n+1n-3 18.已知C 202x-7=C 20x ,则x= A 9 B 7 C 9或7 D 5或9 19.三数m-1,2m ,4成等差,则m= A 0 B 1 C 2 D 3 20.等差数列{a n }中,a 3+a 7=20,则S 9= A 9 B 20 C 90 D 180 21.等比数列:-1,2.......的第8项为 A 256 B -256 C -128 D 128 22.已知等差数列-1,1……则此数列的S 10= A 70 B 80 C 90 D 100 23.函数13sin()25 y x π =--周期和最大值分别为 A 2,3π B ,3π C 4,3π D 3 2,2 π 24.已知平面上有八个点,其中有四点在同一直线上,此外再无三点共线情形,则 此八点可组成 个三角形。 A 50 B 52 C 54 D 56 三.解答题(25、26、27小题每小题6分,28、29小题,每小题7分,共32分) 25.计算:C 63 +C 62 -P 52 +2-1 +lg2-lg20+cos600

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

新人教版二年级上《排列与组合》练习题

二年级上册排列组合专题讲解 题型一:衣裙搭配 美羊羊为了参加比赛,她准备了2件上衣和2条裙子,你们猜一猜会有几种不同的穿法? 题型二:排数问题: 用0、1、2可以组成几个不同的两位数?用2、3、4中的两个数组成两位数有多少种? 为什么用2、3、4中的两个数组成两位数有6种,用0、1、2中的两个数组成两位数却只有4种? 题型三:比赛场数 比赛快开始了,沸羊羊、懒羊羊、喜羊羊三位运动员进场了,村长遇到了个难题,“每两只羊进行一场比赛,一共要比几场呢? 排数时用了3个数字,比赛时也是3个选手,为什么得到的结果不一样呢? 小结:两个人比赛,只能算一次,和顺序无关。排数,交换数字的位置,就变成另一个数了,这和顺序有关。 题型四:握手次数、打电话问题 比赛即将结束了,喜羊羊获得了冠军,沸羊羊获得了亚军,懒羊羊获得了季军,在颁奖典礼上沸羊羊、懒羊羊、喜羊羊三只小羊要相互握手祝贺对方。那么这三只小羊,每两只小羊握一次手,一共需要握几次? 如果他们三个打算合影照相,排队站成一排,请问一共有多少种不同的站法? 一、摆一摆、写一写。 (1)用2、3、4能摆成( )个两位数,它们分别是( )。 (2)用0、3、5能摆成( )个两位数,它们分别是( )。 二、每两人进行一场比赛,四个人一共要比赛几场? 三、下面有4种球,每班可以借其中的两种,有多少种不同的搭配方法?(把它们的编号写在横线上) ①②③④

四、东东的口袋里装了一枚1元、一枚5角和一枚1角的硬币,随便从口袋拿出两枚硬币, 拿出来的硬币有几种可能? 排队问题 二、做一做: 从前往后数,小红排在第7位,从后往前数,小红排在第5位,请问这一排一共有多少位小朋友? 2、从前往后数,小红排在第5位,从后往前数,小红排在第8位,请问这一排一共有多少位小朋友? 3、从前往后数,小红排在第8位,从后往前数,小红排在第3位,请问这一排一共有多少位小朋友? 4、从前往后数,小红排在第6位,从后往前数,小红排在第2位,请问这一排一共有多少位小朋友?

排列组合公式(全)教程文件

排列组合公式(全)

排列组合公式 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用

(1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9!

竞赛试题选编之排列组合

竞赛试题选编之排列组合 一.选择题 (2005年全国高中数学联赛) },4,3,2,1,|7777{},6,5,4,3,2,1,0{4 433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( ) A . 43273767575+++ B .4327 2767575+++ C .43274707171+++ D .43273707171+++ (2004年高中数学联赛)设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A. 45个 B. 81个 C. 165个 D. 216个 (2002年全国高中数学联赛)已知两个实数集合},,,{10021a a a A =与},,,{5021b b b B =,若从A 到B 的映射f 使得B 中每个元素都有原象,且)()()(10021a f a f a f ≤≤≤ ,则这样映射共有 (A )50100C (B )5099C (C )49100C (D )4999C 某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是B (A )16966 (B )16975 (C )16984 (D )17009 首位数字是1,且恰有两个数字相同的四位数共有D (A )216个 (B )252个 (C )324个 (D )432个 对x i ∈{1,2,…,n },i =1,2,…,n ,有()2 11+=∑=n n x n i i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是C (A )4 (B )6 (C )8 (D )9 设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是A (A )45 (B )27 (C )15 (D )11 一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的

二年级上册数学《简单的排列组合》教学案例2篇

二年级上册数学《简单的排列组合》教学案例2篇 Teaching case of mathematics simple permut ation and combination

二年级上册数学《简单的排列组合》教学案例2篇 前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是小学生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:二年级上册数学《简单的排列组合》教学案例 2、篇章2:《简单的排列组合》教学案例分析 篇章1:二年级上册数学《简单的排列组合》教学案例 【背景】 为了进一步提高课堂效率,提升学生学习力,逐步落实数学课堂与“学习力”相结合的自学为主课堂教学模式,提升青年教师的整体素质,进步培养青年教师良好的教学能力。我们二年级数学组于XX年10月开展了全员赛课活动,并取得了良好效果。本篇教案集授课教师努力及组内教师智慧,较能体现学校的主流教学模式,是一篇优秀的案例。

【教材简析】 本节课的内容是数学二年级上册数学广角例1简单的排列与 组合。排列和组合的思想方法应用得很广泛,是学生学习概率统 计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好 素材,本教材在渗透这一数学思想方法时就做了一些探索,把它 通过学生日常生活中最简单的事例呈现出来。 教材的例1通过2个卡片的排列顺序不同,表示不同的两位数,属于排列知识,而简单的排列组合对二年级学生来说都早有 不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一 年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,也有不少学生通过平时的益智游戏都能做到不重复、不遗漏地排列。针对这些实际情况,在设计本节课时,根据学生的年龄特点 处理了教材。整堂课坚持从低年级儿童的实际与认知出发,以 “感受生活化的数学”和“体验数学的生活化”这一教学理念, 结合实践操作活动,让学生在活动中学习数学,体验数学。 【教学目标】 1.通过观察、实验等活动,使学生找出最简单的事物的排 列数和组合数,初步经历简单的排列和组合规律的探索过程; 2.使学生初步学会排列组合的简单方法,锻炼学生观察、 分析和推理的能力; 3.培养学生有序、全面思考问题的意识,通过小组合作探 究的学习形式,养成与人合作的良好习惯。

二年级数学《排列组合》教学反思

二年级数学《排列组合》教学反思二年级数学《排列组合》教学反思(精选4篇) 身为一名到岗不久的老师,课堂教学是重要的任务之一,对学到的教学技巧,我们可以记录在教学反思中,写教学反思需要注意哪些格式呢?下面是我们为大家收集的二年级数学《排列组合》教学反思(精选4篇),欢迎阅读与收藏。 二年级数学《排列组合》教学反思1 根据学生认知特点和规律,在本节课的设计中,我遵照《课标》的要求和低年级学生学习数学的实际,着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学。 1、创设情境活用教材 我对教材进行了灵活的处理,课一开始,老师就创设了和三只小动物参观数学乐园,充分地调动了学生的学习兴趣,同时也将学生知识很好地融合到生活中去。整堂课教师就是围绕这个大情景来教学的。在一个又一个的活动情境中渗透排列和组合的思想方法,让学生亲身经历探索简单事物排列和组合规律的过程,在活动中主动参与,在活动中发现规律。课的设计比较适合低年级学生的年龄特点。 2、关注合作促进交流

以同桌或小组合作的形式贯穿全课,充分应用同桌,分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会了知识,体验了学习的乐趣,思维活动也更加活跃。 3、练习题的设计力求游戏化 使学生在快乐愉悦的氛围中愉快的学习知识,如抽奖游戏从而大大提高了学习的兴趣。 教后反思: 1、教师对学生的小组合作学习指导不够,有个别学生还不能有效参与。 2、对教材的理解不够透彻,对学生的指导不够细致,不够具体,如在抽奖游戏过程中,由于时间关系,没有让学生板演,或说出自己的想法,草草收场。 3、教师语言不够精练,放手不够到位。如排列教学中,没有留给学生更多的思维空间,让学生自己找出不同摆法。 4、今后应加强理论学习,不断改进课堂教学,提高教学效率。 二年级数学《排列组合》教学反思2 排列与组合的思想方法在生活中运用非常广泛,不但是后面学习概率统计知识的基础,同时也是培养和发展学生抽象的逻辑

排列组合二项式定理竞赛选拔题

排列组合二项式定理竞赛选拔题 班级 _______ 姓名_______ 选择填空每题3分,简答题每题7分. 1 ?五男两女站成一排,要求女生不能站在两端,且又要相邻,则共有________ 种排法? 2. 6人排成一排,要求甲乙两人之间必有2人,则共有_________ 种排法. 3.8张椅子排成一排,有4人就坐,每人一个座位,其中恰有3个连续空位,则共有______________ 种排法? 4. 8人站成一列纵队,要求甲乙丙三人不在排头且互相隔开,则共有________ 种排法? 5. ____________________________________________________________ 六人并排拍照,要求甲不坐最左边,乙不坐最右边,则共有____________________________________ 种排法. 6. 求满足方程x y z 10且x,y,z N *的解的个数_____________________ . 7. 从1,2,3,…,14中,按数从小到大的顺序取出a i,a2,a3,使同时满足a? a i 3, a3 a? 3 , 则符合要求的不同取法有_________ 种. &求四个杯子,四个杯盖均不对号入座的方法种数______________ . 9?有五件不同奖品发给4位先进工作者,每人至少一件,有 _______ 种不同的发放方法. 10. 一次小型演出活动,准备了两个独唱、两个乐器演奏、一个舞蹈、一个相声共六个节目, 要编排一个节目单,规定同类节目不能连排,不同的排法有 _____________ 种. 11. ______________________________________________________________________________ 从1 , 2, 3, 4, 7, 9六个数字中任取两个作为一个对数的底数和真数,可得_______ 个不同的数值. 12 .若(1+x)+(1+x)2+(1+x)3+??. +(1+x)n=a o+a1(x-1)+a 2(x-1)2+…+a n(x-1)n,贝y a o+a1+a2+ …+a n 等于. 13?用0, 1 , 2, 3, 4五个数字组成无重复数字的五位数,并将他们排成一个递增数列,则32140是这个数列的第____________________ 项. 14 ?计算3.02 4得 __________ .(使误差小于0.001) 6 15. 求1 2x 3x2展开式中的x2项的系数. 16. 一直线和圆相离,这条直线上有6个点,圆周上有4个点,通过任意两点作直线,最少 可作直线的条数是() A . 37 B . 19 C. 13 D. 7 17?某团进行换届选举,从甲、乙、丙、丁四人中选出三人分别担任书记、畐师记和组织委员,规定上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有() A . 5 种 B . 11 种 C . 14 种 D . 23 种 18 .某城新建的一条道路上有12只路灯,为了节省用电而又不影响正常的照明,可以熄灭其 中三只路灯,但两端的灯不能熄灭,也不能熄灭相邻的两只灯,那么熄灯方法共有() A. C;种 B . A种 C . C93种 D . A种 19 .从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有() A . 240 B . 180 C . 120 D . 60

排列组合常见题型及解题策略(详解)

排列组合常见题型及解题策略 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( ) A 、38 B 、83 C 、38A D 、3 8C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军 看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女 生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432种, 其中男生甲站两端的有1 222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

二年级数学《简单的排列组合》教学反思

二年级数学《简单的排列组合》教学反思 排列与组合的思想方法在生活中运用非常广泛,不但是后面学习概率统计知识的基础,同时也是培养和发展学生抽象的逻辑思维能力的好素材。表面上看教材对于这些知识的呈现似乎比较零乱,实质上数学广角犹如一篇散文,形散神聚,它重在培养学生的有序思考能力,并且经历简单事物排列与组合规律的过程。为此,我在本堂课中创设了一个探索学习的情境,让学生围绕“去数学广角游玩”这样一个主题事件情境,通过智力考试猜老师的年龄,猜老师的手机号码后2位,智力过关握手庆贺,帮老师搭配衣服,排队留影,找回家路线等活动,由浅入深,开展学习探究,实现课堂教学生活化、生活知识数学化、探究过程趣味化。 一堂课下来,虽然同伴们说我教学设计新颖有趣、教态自然、教学语言富有感染力、教学过程流畅,似乎上得挺不错。而我自己心里却很明白,这堂课有许多地方是失败的。因为这一篇“散文”的“神”我开始没渗透好,后来没把握好,到最后学生很难在头脑中有效建模,所以本堂课如果我给自己打分,肯定不合格。细细反思如下: 第一,要充分利用好学生生成的素材,大做文章。《数学广角》的内容本来就像万花筒,不需要额外找大量素材,否则只会让我们的课堂华而不实。如本堂课中,在让学生思考用1、8、3三张数字卡片能排列出几个两位数时,我在学生独立思考、同桌讨论的基础上,安排了同桌操作、验证,即一位学生摆数学卡片,一位学生做记录(用记号笔)。在巡视的过程中,我有意搜集了3种不同方案,并给它们编上号: ①13、18、31、38、81、83 ②13、31、38、83、18、81 ③13、83、31、81、18、38 我让学生比较上面三种方法,说说你最欣赏哪种方法,让小组代表介绍自己的方法。在这里,当学生说出“有顺序”三个字时,我没有细细品下去,而是用“是啊,这样有顺序地去思考问题,就可以做到不遗漏、不重复。”这么一句粗糙的话语把难点遮住,把亮点给错过了。假如当时,我继续追问:“哦,那你来说说,是怎样一种顺序呢?”学生边回答,老师边在学生的方法上做文章,充分暴露学生的思维,提炼出“从小到大”、“从大到小”等不同的顺序,这样就会很自然地突破难点。 第二,要用心关注课堂上的细节问题。在四人小组进行握手操作时,后面的很多孩子其实都没看清,就不可能数出来有几次。如果能让孩子们在握手时把手举高点,这样相信所有的孩子都能看得清清楚楚。有的时候就是如此,一个小小的细节往往关乎成败。 第三,要巧妙设计每一道练习。在本堂课最后,我安排了这样一个问题:小丽、小芳、

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

排列 组合 定义 公式 原理

排列组合公式 久了不用竟然忘了 排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6! 这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。 例3:9个人坐成一圈,问不同坐法有多少种?

高中数学竞赛(排列组合概率)

概率、统计 【知识精要】 1. 排列、组合问题的基本原理:加法(分类)和乘法(分步)原理。解决此类问题常见要点:(1)不重复,不遗漏;(2)正面考虑比较麻烦时,考虑间接法;(2)特殊位置、元素优先考虑;(3)转化思想,对于陌生问题,尽量转化为熟悉模型。 2.隔板法模型:将m 个名额分给k 个人()m k ≥,每人至少一个的方法 是1 1k m C --;引申1:方程12k x x x m ++???+=(1,,)i i x x Z m Z +≥∈∈的解有1 1k m C --组;引申2:方程12k x x x m ++???+=(0,,)i i x x Z m Z +≥∈∈的解有11k m k C -+-组。 【例题精讲】+【习题精练】 例1:3个人传球,由甲发球,5次传球之后,仍回到甲手中,有多少种传球方法? 解:将问题转化为右图填图问题。中间可能 有甲或无甲,则有1122222210C C A A +=种不同 的传球方法。 练习1:(2000全国高中数学联赛)如果:(1)a ,b ,c ,d 都属于{1,2,3,4};(2)a ≠b ,b ≠c ,c ≠d ,d ≠a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数abcd 的个数是_________. 例2:使直线1ax by +=和圆22 50x y +=只有整数公共点的有序实数对(,)a b 的个数为: ( ) A 、72 B 、74 C 、78 D 、82 解:第一象限圆上有(7,1),(5,5),(1,7)三个整点,故平面上有12个整点, 分割线或切线,共2 121278C +=条,但该直线不过原点,减去6条,共有 72条,选A 。 练习2:(05年江苏高中数学竞赛)由三个数字 1、2、3 组成的 5 位数中, 1、2、3 都至少出现 1 次, 这样的5位数共有 . 例3:(2005全国高考试题改编)过三棱柱任意两个顶点的直线共15条,任选两条为异面直线的概率是: 。 解:全部情况有2 15105C =种,记“15条直线中任选两条为异面直线”为 事件A ,而要使两直线异面,只需四点不共面,且不共面的四点可连成3 组异面直线,则事件A 的可能情况有4 63(3)36C -=种,故 3612()10535P A = =。即任选两条为异面直线的概率为12 35 。 练习3:(02年全国联赛题改编)已知点1021,,,P P P 分别是四面体的顶 甲 甲

二年级奥数简单的排列组合教

第三讲排列组合问题 例题精讲 在日常生活中,我们经常会碰到许多排列组合问题。 例1从晓明家到博迪教育共有三条路可走,从博迪教育到西湖有两条路可走,那么从晓明家到西湖有多少路可走? 分析:对这种问题的题目分析,可以先画一个简单的示意图: 可以这样想,从晓明家到博迪如果走①,那到鼓楼后,可有甲、乙两条路可走,如果走②、③的话,到博迪后,分别有两条路可以走,所以从晓明家到西湖共有3×2=6(条)路可走。 例2 幼儿园有3种不同颜色(红、黄、蓝)的上衣,4种不同颜色(黑、白、灰、青)的裙子,请问可以搭配出多少套衣服? 分析:按照次序思考,如果穿红色上衣,就会有四种颜色的裙子可以搭配,同样,如果是黄色、蓝色上衣,同样也有四种颜色的裙子可以搭配,因此 可供搭配的种类有3×4=12(种)。所以,总共有12种搭配方法。

例 3 小红昨天去文三路上一家火锅店吃火锅,她准备在牛肉、羊肉和鱼丸中挑选一个肉类,青菜、生菜、香菜、白菜和菠菜中挑选一个蔬菜,在蘑菇、香菇和金针菇中挑选一个菌类,那总共有多少种不同的搭配方法? 分析:肉类三选一,是3;蔬菜五选一,是5;菌类三选一,是3,相乘是45. 例3 从杭州到北京共有5个车站(包括杭州和北京)。每个汽车站售票处要为这条线路准备多少不同的车票? (杭州-上海-苏州-南京-北京) 分析:我们将车站编号为A,B,C,D,E.那么A号站到其他车站的车票共有4种,即A→B,A→C,A→D,A→E。同样,B号站到其他车站的票号也有4种,即B→A,B→C,B→D,B→E。(这里A→B和B→A的车票是不一样的,出发站和终点站不一样)所以每个站都必须准备4种不同的车票。所以总有车票的数量是:4×5=20(种)

相关主题
文本预览
相关文档 最新文档