辽宁省大石桥市金桥管理区初级中学2017届九年级上学期期中考试数学试题
- 格式:docx
- 大小:235.51 KB
- 文档页数:17
第一学期九年级数学期中试题初中的数学其实开始有一点难度了,所以大家要多花心思去学习哦,今天小编就给大家参考一下九年级数学,仅供参考秋季学期九年级上数学期中试题一、单选题(共 10 题,共 40 分)数学试题卷1.已知⊙O 的半径为 5,若 PO=4,则点 P 与⊙O 的位置关系是( )A.点 P 在⊙O 内B.点 P 在⊙O 上C.点 P 在⊙O 外D.无法判断2.与函数 y = 2( x - 2)2 的图象形状相同的抛物线解析式是( )A. y = 1 + 1x2B. y =(2x +1)2C. y =( x - 2)2D. y = 2x23.如图,在Rt△ABC 中,∠B=30°,∠C=90°,绕点 A 按顺时针方向旋转到△AB1C1 的位置,使得点C,A,B1 在同一条直线上,那么旋转角等于( )A.140°B.120°C.60°D.50°4.已知二次函数 y =( x -1)2 -1(0 ≤ x ≤ 3)的图象如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值 0,有最大值 3B.有最小值-1,有最大值 0C.有最小值-1,有最大值 3D.有最小值-1,无最大值第 3 题图第 4 题图第 5 题图5.图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图2 中①②③④的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④6.下列选项中,能使关于 x 的一元二次方程ax2 - 4x + c=0 一定有实数根的是( ) A.a>0 B.a=0 C.c>0 D.c=07.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是 91.设每个枝干长出 x 个小分支,则 x 满足的关系式为( ) A.x+x2=91 B.1+x2=91C.1+x+x2=91D.1+x(x−1)=918.下列各图中,AB 与 BC 不一定垂直的是( )9.对于方程(ax+b)2=c,下列叙述正确的是( )A.不论 c 为何值,方程均有实数根B.方程的根是抛物线 y=(ax+b)2 与直线 y=c 的交点坐标C.当c≥0 时,方程可化为:ax+b=D.若抛物线 y=(ax+b)2 与直线 y=c 没有交点,则 c<010.如图,AC 是⊙O 的直径,BD 是⊙O 的弦,BE=DE,连接 BC,若 BD=8 cm,AE=2cm,则点 O 到 BC 的距离是( )B.2.5 cm D.3 cm二、填空题(共 6 题,共 30 分)11.已知一个二次函数的图象开口向下,且经过原点,请写出一个满足条件的二次函数解析式 .12.如图,A、B、C 为⊙O 上的三点,若∠AOB=138°,则∠C= .13 . 有一边长为 3 的等腰三角形,它的另两边长是方程 x2 - 4x + k = 0 的两根,则k = .14.如图,在△ABC 中,∠CAB=70°,在同一平面内将△ABC 绕A 点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是 .15.如图,已知 AB、CD 为⊙O 的两条弦,OC⊥AB,连接 AD、OB,若∠ADC=29°,则∠ABO = .16.在平面直角坐标系中,直线 y=m 被抛物线 y = x2 + bx + c 截得的线段长为 6,则抛物线顶点到直线 y=m 的距离为 .三、解答题(共 8 题,共 80 分)17.(8 分)解下列方程:(1)3x2-4x-1=0 (2)(x-3)2+4x(x-3)=0.18.(8 分)如图,方格纸中的每个小方格都是边长为1 个单位长度的小正方形,每个小正方形的顶点叫格点.点A、B、C、D、E、F、O 都在格点上.(1)画出△ABC 向上平移 3 个单位长度的△A1B1C1;(2)画出△DEF 绕点 O 按逆时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1 和△D1E1F1 组成的图形是轴对称图形吗?19.(8 分)如图,在Rt△ABC 中,∠BAC=90°.(1)先作∠ACB 的平分线交 AB 边于点 P,再以点 P 为圆心,PA 的长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中 BC 与⊙P 的位置关系,并证明你的结论.20.(8 分)小明的家门前有一块空地,空地外有一面长 10 米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了 32 米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为 1 米的通道(属于花圃一部分)及在左右花圃各留一个1 米宽的门(其他材料).设花圃与围墙平行的一边长为 x 米,(1)花圃与围墙垂直的一边长为米(用 x 表示).(2)如何设计才能使花圃的面积最大?21.(10 分)已知二次函数 y=x2-2x-3.(1)求函数图象的顶点坐标,与 x 轴和 y 轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当 x 满足时,y<0;当-122.(12 分)如图,⊙O 的直径 AB=12 cm,C 为 AB 延长线上一点,CP 与⊙O 相切于点P,过点 B 作弦BD∥CP,连接 PD.(1)求证:点 P 为B⌒D的中点;(2)若∠C=∠D,求四边形 BCPD 的面积.23.(12 分)已知抛物线 C:y1=a(x-h)2-1,直线 l:y2=kx-kh-1(1)试说明:抛物线 C 的顶点 D 总在直线 y2=kx-kh-1 上;(2)当 a=-1,m≤x≤2 时,y1≥x-3 恒成立,求 m 的最小值;(3)当 024.(14 分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC=6,BC=3,∠ACB=30°,试判断△ABC 是否是“等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于 BC所在直线的对称图形得到△A'BC,连结AA'交直线BC 于点D.若BC=2BD,求 ACBC的值.(3)应用拓展:如图 3.已知l1∥l2, l1 与 l2 之间的距离为2.“等高底”△ABC 的“等底”BC 在直线 l1 上,点 A 在直线 l2 上,AC= BC.将△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C,A'C 所在直线交 l2 于点 D.求 CD 的值.九年级上期中考试数学试题卷一、单选题(共 10 题,共 40 分)1.二次函数 y = 2( x - 3)2 + 4 的顶点坐标是( )A.(3,4)B.(-2,4)C.(2,4)D.(-3,4)2.投掷一枚质地均匀的硬币两次,对两次朝上一面的描述,下列说法正确的是( )A.都是正面的可能性较大B.都是反面的可能性较大C.一正一反的可能性较大D.上述三种的可能性一样大3.一个直角三角形的两条直角边长的和为14 cm,其中一直角边长为 x (cm),面积为y (cm2),则 y 与 x 的函数的关系式是( )A.y=7xB.y=x(14-x)C.y=x(7-x)D. y = 1 x (14 - x)24.以坐标原点O 为圆心,5 为半径作圆,则下列各点中,一定在⊙O 上的是( ) A.(3,3) B.(3,4) C.(4,4) D.(4,5)5.已知 a = 3 ,则 a + b 的值是( )6.如图,已知BD 是⊙O 的直径,弦BC∥OA,若∠B 的度数是50°,则∠D 的度数是( ) A.50° B.40° C.30° D.25°第 6 题图第 7 题图7.如图,在半径为 13 cm 的圆形铁片上切下一块高为 8 cm 的弓形铁片,则弓形弦 AB 的长为( )A.10 cmB.16 cmC.24 cmD.26 cm8.对于抛物线 y =-( x +1)2 + 3 ,下列结论:①抛物线的开口向下; ②对称轴为直线 x=1;③顶点坐标为(﹣1,3); ④x>1 时,y 随 x 的增大而减小. 其中正确结论的个数为( )A.1B.2C.3D.49.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a<0;②c<0;③a-b+c>0;④b+2a=0.其中正确的结论有( )A.4 个B.3 个C.2 个D.1 个第 9 题图第 10 题图10.如图,C 是以 AB 为直径的半圆 O 上一点,连结 AC,BC,分别以 AC,BC 为斜边向外作等腰直角三角形△ACD,△BCE, AC , BC 的中点分别是 M,N.连接DM,EN,若C 在半圆上由点A 向B 移动的过程中,DM∶EN 的值的变化情况是( )A. 变大B. 变小C. 先变大再变小D. 保持不变二、填空题(共 6 题,共 30 分)11.抛物线 y =-2x2 + 4x +1 的对称轴是直线 .12.将抛物线 y = x2 - 2 向左平移 1 个单位后所得抛物线的表达式为 .13.如图 ABCD 中,E,F 是对角线 BD 上的两点,且 BE=EF=FD,连结 CE 并延长交 AB 于点 G,若 EG=2,则 CG= .第 13 题图第 15 题图14.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为 .15.如图,点 A、B、C、D、O 都在方格纸的格点上,每个方格的长度为 1,若△ COD 是由△ AOB 绕点 O 按逆时针方向旋转90°而得,则线段 AB 扫过的面积(阴影部分面积) 为 .16.已知半径为 3 的⊙O 经过平行四边形 ABCD 的三个顶点 A,B,C,与 AD,CD 分别交于点 E,F,若弧 EF 的度数为40°,则 AE 与CF 的弧长之和为= .三、解答题(共 8 题,共 80 分)17.(8 分)(1)已知 x = y ,求代数式2 3x + y2x - y的值.(2)求比例式 x +1 = 3x - 2 中字母 x 的值.3 418.(8 分)如图⊙O 中弦 AC 与弦 BD 交于点 P,连结 AB,CD,已知 AB=CD,(1)求证 AC=BD(2)已知 AB = BC , BD 的度数为160°,求 AB 的度数.19.(8 分)A 口袋中装有三个相同的小球,它们的标号分别为 1,2 和 3,B 口袋中装有三个相同的小球,它们的标号分别为 4,5,6,从这 2 个口袋中各随机地取出 1 个小球.(1)求取出的 2 个小球的标号之和是奇数的概率是多少?(2)现在将 A 口袋中舍弃一个球剩下 2 个球,B 口袋不变,再从这2 个口袋中各随机地取出1 个小球.发现标号之和为奇数的概率变大,问:A 口袋中舍弃的是哪号球.20.(10 分)已知二次函数的表达式是 y = x2 - 4x + 3 .(1)用配方法把它化成 y =( x + m)2 + k 的形式;(2)在直角坐标系中画出抛物线 y = x2 - 4x + 3 的图象;(3)若 A(x1,y1)、B(x2,y2)是函数 y = x2 - 4x + 3 图象上的两点,且x1” “<” 或“=”);(4)利用函数 y = x2 - 4x + 3 的图象直接写出方程x2 - 4x + 3 =1的近似解(精确到 0.1).21.(10 分)在直角坐标系中有点 A(4,0),B(0,4),(1)画一个△ABC,使点C 在x 轴的负半轴上,且△ABC 的面积为12.(2)找出(1)中△ABC 的外接圆圆心 P,并画出△ABC 的外接圆;并写出点 P 的坐标,△ABC 的外接圆半径 R= .22.(10 分)已知△ABC 中,AB=BC,CH⊥AB 垂足为 H,以AB 为直径作⊙O,交 AC、BC、CH 分别于点 D,E,P,连结 DP,AP.(1)求证:∠APD=∠ACH;(2)若 AB=5,AC=6,求 CH 的长.23.(12 分)某水果商户发现近期金桔的批发价格不断上涨,就以每箱 100 元的价格购进80 箱的金桔,购进后,金桔价格每天都上涨5 元/箱,但每天总有 1 箱金桔因变质而丢弃.且商户还要承担这批金桔的储存费用每天 100 元.(1)若商户在购进这批金桔10 天后立即出售这批金桔可以赚多少钱?(2)设商户在购进这批金桔x 天后立即出售这批金桔,求商户的利润 y 与 x 的函数关系式?(3)问几天后立即出售利润最大,最大利润是多少元?24.(14 分)如图(1),抛物线 y =-x2 + bx + c 与 x 轴相交于点 A、B,与 y 轴相交于点 C,已知 A、C 两点的坐标为 A(-1,0),C(0,3).点 P 是抛物线上第一象限内一个动点,(1)求抛物线的解析式;并求出 B 的坐标;(2)如图(2),抛物线上是否存在点 P,使得△ OBP≌△ OCP,若存在,求点 P 的坐标;(3)如图(2),y 轴上有一点 D(0,1),连结 DP 交 BC 于点 H,若H 恰好平分 DP,求点 P的坐标;(4)如图(3),连结 AP 交 BC 于点 M,以 AM 为直径作圆交 AB、BC 于点 E、F,若 E,F关于直线 AP 轴对称,求点 E 的坐标.九年级数学上学期期中试卷阅读一、选择题(每小题3分,共24分)1.若在实数范围内有意义,则x的取值范围是A. x≥1B. x>1C. x≤1D. x≠12.方程的解是A. B. C. D.3.如图,AD∥BE∥CF,直线a、b与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4,BC=6,DE=3,则EF的长为A.4B. 4.5C. 5D. 6(第3题) (第4题) (第5题)4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.若CD=4,AC=6,则cosA的值是A. B. C. D.5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开辟一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x米,则下面所列方程正确的是A. (32-x)(20-x)=600B.(32-x)(20-2x)=600C. (32-2x)(20-x)=600D.(32-2x)(20-2x)=6006.已知点、在二次函数的图象上.若,则与的大小关系是A. B. C. D.7. 如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为A.24°B. 33°C. 34°D. 66°8.如图,△ABC和△ADE均为等边三角形,点D在BC上,DE与AC相交于点F.若AB=9,BD=3,则CF的长为A.1B.2C.3D.4二、填空题(每小题3分,共18分)9.计算:= .10.若关于的一元二次方程有实数根,则的取值范围是 .11.将抛物线向下平移2个单位后,得到的抛物线所对应的函数表达式为 .12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是度.(第12题) (第13题) (第14题)13. 如图,在平面直角坐标系中,线段AB两个端点的坐标分别为(6,6),(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点C的坐标为 .14.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C 在抛物线上,且位于点A、B之间(C不与A、B重合).若四边形AOBC 的周长为a,则△ABC的周长为(用含a的代数式表示).三、解答题(本大题共10小题,共78分)15.(6分)计算:.16.(6分)解方程:.17.(6分)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.求2013年到2015年这种产品产量的年增长率.18.(7分)图①、图②均是边长为1的正方形网格,△ABC的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上.(1)在图①中画一个△A1B1C1,满足△A1B1C1∽△ABC ,且相似比不为1.(2)在图②中将△AB C绕点C顺时针旋转90°得到△A2B2C,求旋转过程中B点所经过的路径长.19.(7分)如图,AB是半圆所在圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC于E,交⊙O于D,连结BC、BE.(1)求OE的长.(2)设∠BEC=α,求tanα的值.20.(7分) 如图,在平面直角坐标系中,过抛物线的顶点A作x轴的平行线,交抛物线于点B,点B在第一象限.(1)求点A的坐标.(2)点P为x轴上任意一点,连结AP、BP,求△ABP的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示. AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD是改造后的斜坡(D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)判断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0(1)用含t的代数式表示BP、BQ的长.(2)连结PQ,如图①所示.当△BPQ与△ABC相似时,求t的值.(3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,直接写出线段PD的长.图①24.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A(4,0)、B(-3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S 与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC 上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.一、1.A 2. C 3. B 4. D 5. C 6. D 7. A 8. B二、9. 10. 11.(化成一般式也可) 12. 105 13.(3,3) 14. a-4三、15.原式=.(化简正确给2分,计算sin30°正确给1分,结果2分)16. .(1分)∵a=1,b=-3,c=-1,∴.(2分)(最后结果正确,不写头两步不扣分)∴. (5分)∴ (6分)【或,(2分) .(3分),.(5分)(6分)】17.设2013年到2015年这种产品产量的年增长率为x. (1分)根据题意,得. (3分)解得 x1=0.1=10%,x2=﹣2.1(不合题意,舍去). (5分)答:2013年到2015年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分)(2)由图得. (5分)(结果正确,不写这步不扣分)旋转过程中B点所经过的路径长:. (7分)(过程1分,结果1分)19. (1)∵OD⊥AC,∴. (1分)在Rt△OEA中,. (3分)(过程1分,结果1分)(2)∵AB是⊙O的直径,∴∠C=90°. (4分)在Rt△ABC中,AB=2OA=10,∴. (5分)∵OD⊥AC,∴. (6分)在Rt△BCE中,tan=. (7分)20. (1).(3分)(过程2分,结果1分)(用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A的坐标为(4,2). (4分)(2)把代入中,解得,(不合题意,舍去). (6分)∴. (7分)∴. (8分)21. 在Rt△ABC中,sin∠ABC=,∴AC=ABsin43°=2×0.68=1.36 (m) . (4分)(过程2分,有其中两步即可,结果2分)在Rt△ADC中,tan∠ADC=,∴(m). (给分方法同上)∴斜坡AD底端D与平台AC的距离CD约为2.3m.(8分)(不答不扣分,最终不写单位扣1分)22. (1)在Rt△ABC中,∠ACB=90°,∠B=30°,∴,(1分)∠BAC=60°. (2分)∴AO=AC=2,∠OAD=∠BAC=60°.∵OA=OD,∴△OAD是等边三角形. (3分)∴∠AOD=60°. (4分)∴. (5分)(2)CD所在直线与⊙O相切.(只写结论得1分)理由:∵△OAD是等边三角形,∴ AO=AD,∠ODA=60°. (6分) ∵AO=AC,∴ AC=AD.∴∠ACD=∠ADC=. (7分)∴∠ODC=∠ODA+∠ADC=60°+30°=90°,即OD⊥CD . (8分) ∵OD为⊙O的半径,∴CD所在直线与⊙O相切. (9分)23. (1)BP=5t,BQ=8-4t. (2分)(2)在Rt△ABC中,. (3分)当△BPQ∽△BAC时,,即.(4分)解得. (5分)当△BPQ∽△BCA时,,即.(6分)解得. (8分)(3). (10分)24. (1)把A(4,0)、B(-3,0)代入中,得解得 (2分)∴这条抛物线所对应的函数表达式为. (3分)(2)当-3当0(每段自变量1分,若加等号共扣1分,解析式2分) (3),,. (12分)。
上学期期中质量测试九年语文试卷一、积累与运用(满分30分)1.下列词语中,黑体字的注音有误的一项是()(2分)A.沉淀(diàn)阔绰(chuò)吹毛求疵(cī)狡黠(iá)B.韶华(shaò)挑衅(ìn)鲜为人知(iān)诘责(jié)C.琐屑(iè) 虬枝(qiú)锲而不舍(qiè)弥漫(mí)D.祈祷(qí)瞬间(shùn)光彩熠熠(yì)恻隐(cè)2.下列词语中没有错别字的一项是()(2分)A.无稽之谈前呼后拥涛涛不绝先声夺人B.前扑后继玲珑剔透分道扬镳老谋深算C.死心塌地弥留之际虎视耽耽睡眼惺忪D.声色俱厉彬彬有礼战战兢兢出其不意3.下列句子中加点成语使用正确的一项是()。
(2分)。
A.所谓学习,不一定限于书本或是某种技术,随时随地学习,这是不断提升自我的不二法门....地谈论起球员们的表现。
B.排球比赛结束后,同学们津津乐道....。
C.三月撄花节期间,磁湖南岸,樱花盛开,如云如霞,游人鳞次栉比....D.几经波折后,李云飞终于找到了失散多年的弟弟,真是无独有偶啊。
....4.依次填入下面横线处的词语,最恰当的一项是()。
(2分)①当警方提醒市民要提高警惕,增加自我保护意识,学会辨识________的骗子,以免上当。
②每逢节日,看到同学与亲人团聚的场面,他总会__________,深深思念远在家乡的母亲。
③古人讲究称呼,对象不同称呼不同,对自己用谦称,对别人要用尊称,不能__________。
A.形形色色触景生情混为一谈B.五花八门触景生情混淆是非C.形形色色睹物思人混淆是非D.五花八门睹物思人混为一谈5.下列句子排序最恰当的一项是()。
(2分)蜜蜂可以搜索人为设埋的地雷。
蜜蜂为什么具有如此非凡本领呢?因为蜜蜂_________________,_________________ 。
九年级(上)期中数学试卷一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.75.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:36.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.212.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a220.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是.(写出一个即可)22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似【分析】A、根据等腰三角形的性质和相似三角形的判定定理进行判断;B、根据等腰三角形的性质和相似三角形的判定定理进行判断;C、D根据相似图形的定义进行判断.【解答】解:A、若一个等腰三角形的顶角为70°,而另一个的顶角为40°,则此两个等腰三角形不相似,故本选项错误;B、95°的角只能是顶角,则顶角为95°的两个等腰三角形相似,故本选项正确;C、所有的矩形是形状不唯一确定的图形,不一定是相似形,故本选项错误;D、所有的菱形是形状不唯一确定的图形,不一定是相似形,故本选项错误;故选:B.2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.【分析】先根据特殊角的三角函数值得出∠B,从而得出∠A,即可计算出结果.【解答】解:∵在Rt△ABC中,∠C=90°,∵sinB=,∴∠B=30°,∴∠A=60°,∴tanA=.故选A.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.7【分析】由公共角和已知条件证明△ADE∽△ACB,得出对应边成比例,即可求出BC的长.【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴,即,解得:BC=12.故选:B.5.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:3【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,得出△DEF∽△CBF,得出对应边成比例EF:BF=DE:BC=1:2,得出△DEF与△BDF的面积比=EF:BF,即可得出结果.【解答】解:∵D、E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DEF∽△CBF,∴EF:BF=DE:BC=1:2,∴△DEF与△BDF的面积比=EF:BF=1:2;故选:A.6.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形,进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,且相似比是:=2,③△ABC与△DEF的周长比等于相似比,即2:1,④根据面积比等于相似比的平方,则△ABC与△DEF的面积比为4:1.综上所述,正确的结论是:①③④.故选:B.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似【分析】由两边成比例和夹角相等(对顶角相等),即可得出△AOB∽△COD,即可得出结果.【解答】解:∵OA:OC=OB:OD,∠AOB=∠COD,∴△AOB∽△COD,C正确;故选:C.9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.【分析】根据三角函数的定义即可求解.【解答】解:∵cosB=,∴BC=ABcosB=10cos50°.故选:B.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选B.11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.2【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.12.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=20构造方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=20∴CD=BD﹣BC=A B﹣AB=20解得:AB=10.故选A.13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个【分析】首先过点O作OC⊥AB于点C,连接OB,由垂径定理可求得OP的取值范围为3≤OP≤5,而OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,故符合条件的点P有5个.【解答】解:过点O作OC⊥AB于点C,连接OB,∵⊙O的直径为10cm,弦AB为8cm,∴BC=AB=4(cm),OB=5cm,∴OC==3(cm),∴3cm≤OP≤5cm,∵OP的长是整数,∴OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,∴满足条件的点P有5个.故选D.14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°【分析】根据三角形的内角和得到∠A=35°,根据圆周角定理即可得到结论.【解答】解:∵AC⊥BO于O,∠B=55°,∴∠A=35°,∴∠BOC=2∠A=70°,故选C.15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm【分析】直线m向右平移时,会与圆在左边相切,或者右边相切,有两种情况,分别讨论解答即可.【解答】解:∵圆心O到直线m的距离为3cm,半径为1cm,∴当直线与圆在左边相切时,平移距离为:3﹣1=2cm,当直线与圆在右边相切时,平移距离为:3+1=4cm,故选D.16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm【分析】连接OC和OB,根据切线的性质:圆的切线垂直于过切点的半径,知OC⊥AB,应用勾股定理可将BC的长求出,从而求出AB的长.【解答】解:连接OC和OB,∵弦AB与小圆相切,∴OC⊥AB,在Rt△OBC中,BC===4cm,∴AB=2BC=8cm.故选D.17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.【解答】解:∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=60°,∴∠AOB=120°,∠AOB所对弧的长度==2π.故选D.18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.【分析】首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半+S△AOB﹣S扇形AOB可求出阴影部分的面积.圆【解答】解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a2【分析】边长为a的正六边形的面积是边长是a的等边三角形的面积的6倍,据此即可求解.【解答】解:边长为a的等边三角形的面积=a2=a2,则边长为a的正六边形的面积等于6×a2=a2.故选C.20.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM 与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是∠D=∠B.(写出一个即可)【分析】先证出∠DAE=∠BAC,再由∠D=∠B,根据三角形相似的判定方法即可得出△ADE∽△ABC.【解答】解:这个条件可能是∠D=∠B;理由如下:∵∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,即∠DAE=∠BAC,又∵∠D=∠B,∴△ADE∽△ABC.22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=75°.【分析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.【解答】解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为6.【分析】过C作直径CD,连AD,根据圆周角定理及推论得到∠CAD=90°和∠D=∠B=30°,再根据30度角所对的直角边等于斜边的一半即可得到圆的直径.【解答】解:过C作直径CD,连AD,∴∠D=∠B=30°,∠CAD=90°,∴CD=2AC=6,∴⊙O的直径为6;故答案为:6.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.【分析】由AB为直径和PC⊥CQ可得出∠PCQ=90°=∠ACB,又由∠P与∠A为同弦所对的圆周角,可得出∠P=∠A,从而得出△ACB∽△PCQ,即得出CQ=•CP,由tan∠ABC=得出CQ=CP,当CP最大时,CQ也最大,而CP为圆内一弦,故CP最大为直径,由此得出CQ的最大值.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°.∵CQ⊥PC,∴∠PCQ=90°=∠ACB,又∵∠P=∠A(同弦圆周角相等),∴△ACB∽△PCQ,∴.在Rt△ACB中,tan∠ABC=,∴=,∴CQ=•CP=CP.∵线段CP是⊙O内一弦,∴当CP过圆心O时,CP最大,且此时CP=5.∴CQ=×5=.故答案为:.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.【分析】过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,由∠A=30°,AC=4,求得CD=AC•sinA=2,AD=AC,cosA=2,根据三角形的内角和得到∠B=45°,在Rt△BCD中,根据BD=CD=2,BC=2,即可得到AB=2+2.【解答】解:过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,∵∠A=30°,AC=4,∴CD=AC•sinA=2,AD=AC,cosA=2,∵∠A=30°,∠ACB=105°,∴∠B=45°,在Rt△BCD中,BD=CD=2,BC=2,∴AB=2+2.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?【分析】由等边三角形的性质得出AB=BC=AC=5,∠B=∠C=60°,证明△ABE∽△ECD,得出对应边成比例=,即可求出CD的长.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=5,∠B=∠C=60°,∵∠AEC=∠AED+∠DEC,∠AEC=∠B+∠BAE,∴∠AED+∠DEC=∠B+∠BAE,又∵∠AED=∠B=60°,∴∠DEC=∠BAE,∴△ABE∽△ECD,∴=,∵BE=2,BC=5,∴EC=3,∴CD===.27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.【分析】(1)由互余两角的关系得出∠B=∠ACD,∠DCB=∠A,证出△ACD∽△CBD,得出对应边成比例,即可得出结论;(2)由相似三角形的性质得出,由勾股定理求出AB,由三角形的面积求出CD,得出BD,即可得出sin∠BCD的值.【解答】(1)证明:∵∠ACB=90°,∠ACD+∠DCB=90°,∵CD是斜边AB上的高,∴∠B+∠DCB=90°,∠A+∠ACD=90°,∴∠B=∠ACD,∠DCB=∠A,∴△ACD∽△CBD,∴,即CD2=AD•BD;(2)解:由(1)知:△ACD∽△CBD,∴,在Rt△ABC中,AC=3,BC=4,∴AB==5,由△ABC的面积得:AB•CD=AC•BC,∴5CD=3×4,∴CD=,∴,解得:BD=,sin∠BCD===.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.【分析】本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.【解答】(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD是中位线,∴OD∥BC,(3分)∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,(6分)∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴,∴BC=,(9分)又∵OD=BC,∴OD=,即⊙O的半径为.(10分)29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.【分析】(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC 的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥EF,∴OC⊥EF,则EF为圆O的切线;(2)∵∠ACD=30°,∠ADC=90°,∴∠CAD=∠OCA=60°,∴△AOC为等边三角形,∴AC=OC=OA=2,在Rt△ACD中,∠ACD=30°,∴AD=AC=1,根据勾股定理得:CD=,∴S阴影=S△ACD﹣(S扇形AOC﹣S△AOC)=×1×﹣(﹣×22)=﹣.。
上学期期中质量测试九年政治试卷一、单项选择题:(请把答案写在后面表格里,每题1分,共15分)1、当代中国最基本的国情是:()A、我国是发展中国家B、我国正处于并将长期处于社会主义初级阶段C、我国的人口问题严峻D、我国仍处于不发达阶段2、对人的成长说,承担责任()①是自尊自信的具体表现②是走向成熟的重要标志③是自立自强的必然选择④是履行应尽的法律义务A ①②④B ①②③C ②③④D ①③④3、下列能直接反映我国现阶段主要矛盾的是()A.我国仍存在就医难、就业难、就学难、住房难问题B.一些地方仍存在乱收费、乱罚款、乱摊派等现象C.某些地方盲目开发、乱占耕地D.某些地方行政执法人员不依法行政4、我国是一个统一的多民族国家,我国实行的处理民族关系的原则是()A、平等、团结、互助;B、平等、团结、共同繁荣;C、实行民族区域自治制度;D、人民当家作主。
5、我们党的基本路线确定我国社会主义初级阶段的奋斗目标是()A、全面建设小康社会;B、把我国建设成为富强、民主、文明、和谐的社会主义现代化国家;C、实施可持续发展战略,使人囗、资及环境和社会经济发展相适应;D、消除贫困,解决温饱问题。
6、党的基本路线的核心内容是()A、以经济建设为中心;B、"一个中心,两个基本点";C、坚持党的领导;D、坚持改革开放。
7、我们已经建立的社会主义新型民族关系的特点是()A、平等、团结、共同繁荣;B、平等、互助、共同繁荣;C、平等、团结、互助、和谐D、你中有我、我中有你的亲缘关系。
8、当前,发展两岸关系,实现和平统一的基础是()A、我们决不承诺放弃使用武力;B、坚持一个中国的原则;C、大陆和台湾实现通商、通航、通邮;D、两岸进行对话与和谈。
9、我国社会主义初级阶段的起止时间是()A、从新中国建立到基本实现社会主义现代化;B、从社会主义基本制度建立到基本实现社会主义现代化;C、从社会主义基本制度建立到2000年小康目标的基本实现;D、从改革开放到基本实现社会主义现代化。
上学期期中质量测试九年化学试卷可能用到的相对原子质量:C—12 O—16 H—1第一部分(客观题)一、选择题(本题包括15道小题,每小题只有一个选项符合题意;其中1—10小题每小题1分,11—15小题每小题2分,共20分。
)1.下列变化中,包含化学变化的是()A.纸张燃烧B.湿衣晾干C.冰雪融化D.酒精挥发2.下列仪器,既能做反应容器又能直接加热的是()A.烧杯B.集气瓶C.锥形瓶D.试管3.如图所示,实验基本操作,正确的是()4.空气中含量较多且化学性质不活泼的气体是()A.氧气B.氮气C.水蒸气D.二氧化碳5.要在一充满空气的瓶子中,将其中的氧气除去,又不增加其他气体的成分.下列物质在瓶中燃烧可达到目的是()A.木炭B.红磷C.铁丝D.蜡烛6.下列对实验现象的描述错误的是()A.碳在氧气中燃烧发出白光,生成二氧化碳B.镁在空气中燃烧发出耀眼的白光,生产白色固体C.细铁丝在氧气中燃烧,火星四射,生产黑色固体D.硫在空气中燃烧,发出淡蓝色火焰,生产有刺激性气味的气体7.下列装置中,最适合用来收集氧气的是()8.某纯净物X燃烧的化学方程式为:X+2O2CO2+2H2O,则X的化学式是()A.CH20 B.C2H4 C.CH4D.CH4O9.市场上有“锌硒茶”、“含氟牙膏”等商品,这里的“锌、硒、氟”指的是()A.分子B.原子C.单质D.元素10.人体吸入的O2有2%转化为活性氧,它加速人体衰老,被称为“夺命杀手”.我国科学家尝试用亚硒酸钠Na2SeO3清除人体内的活性氧,亚硒酸钠Na2Se03中Se(硒)元素的化合价是()A.+2 B.+4 C.+6 D.﹣211.同一原子中,下列说法错误的是()A.质子和电子的数目相同B.原子和中子的电性不同C.原子核和电子的质量不同D.原子核和原子的体积不同12.关于CO2,SO2、O2的说法正确的是()A、CO2,SO2、O2三种物质中都含有氧分子B、CO2,SO2、O2三种物质都是氧化物C、CO2,SO2、O2三种分子中都含氧元素D、CO2,SO2、O2三种分子中都含氧原子13.在R2O3中,R元素与氧元素的质量比是7:3,则R的相对原子质量为()A.14 B.27 C.56 D.3214.一定条件下,甲、乙、丙、四种物质在密闭容器中反应,测得反应前后各物质的质量分数如图所示。
九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( ▲ )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( ▲ )新-课 -标-第- 一-网A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( ▲ )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( ▲ )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( ▲ )A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲ )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( ▲ )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( ▲ )A . 1个B .2个C .3个D .4个 9.已知线段AB ,点P 是它的黄金分割点,AP >BP ,设以AP 为边的等边三角形的面积 为S 1,以PB 、AB 为直角边的直角三角形的面积为S 2,则S 1与S 2的关系是 ( ▲ )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、 AC 的中点,P是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则QE 的值为( ▲ ) A . 3 B .3 2 C .4 D .4 2二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x :y =2:3,则(x +y ):y = ▲ .12.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是 ▲ m .13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为 ▲ .14.在△ABC 中,∠A 、∠B 为锐角,且||tan A -1+(12-cos B )2=0,则∠C = ▲ °.15.如图,在□ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF = ▲ .AD F CBOE(第7题)A CP FEQ(第10题)ACD(第8题)A BCDE F(第15题)16.如图,在△ABC 中,AB =BC ,AC =8,点F 是△ABC 的重心(即点F 是△ABC 的两条中线AD 、BE 的交点),BF =6,则DF = ▲ .17.关于x 的一元二次方程mx 2+nx =0的一根为x =3,则关于x 的方程m (x +2)2+nx +2n =0的根为 ▲ .18.如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是 ▲ .三、解答题(本大题共10小题,共84分. 解答需写出必要的文字说明或演算步骤.) 19.计算或解方程:(每小题4分,共16分) (1)计算:(12)-2-4sin60°-tan45°;(2)3x 2-2x -1=0;(3)x 2+3x +1=0(配方法); (4)(x +1)2-6(x +1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为 ▲ ;(3)判断点D (5,-2)与⊙M 的位置关系.OABCxy (图2) ACB DE ACDE FACDE F(图1)(第18题)AB D CEF (第16题)……21.(本题满分6分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 中点.(1)求证:AC 2=AB •AD ;(2)若AD =4,AB =6,求ACAF 的值.22.(本题满分6分)已知关于x 的方程x 2+(m -3)x -m (2m -3)=0. (1)证明:无论m 为何值方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x 天后一次性出售,则x 天后这批猴头菇的销售单价为 ▲ 元,销售量是 ▲ 千克(用含x 的代数式表示); (2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?ADCEF(第21题)24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为90°和30°.(不考虑其他因素,结果精确到0.1cm .参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)(1)求该台灯照亮水平桌面的宽度BC .(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC 为60°,书的长度EF 为24cm ,点P 为眼睛所在位置,当点P 在EF 的垂直平分线上,且到EF 距离约为34cm (人的正确看书姿势是眼睛离书距离约1尺≈34cm )时,称点P 为“最佳视点”.试问:最佳视点P 在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P (-1,0)为圆心的圆,交x 轴于B 、C 两点(B 在C 的左侧),交y 轴于A 、D 两点(A 在D 的下方),AD =23,将△ABC 绕点P 旋转180°,得到△MCB .(1)求B 、C 两点的坐标;(2)请在图中画出线段MB 、MC ,并判断四边形ACMB 的形状(不必证明),求出点M 的坐标;(3)动直线l 从与BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l 与CM 交点为E ,点Q 为BE 的中点,过点E 作EG ⊥BC 于点G ,连接MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.OCE D PAC O P BDxy26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC的长.(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.(第27题)28.(本题满分10分)如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .已知点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)用含t 的代数式表示:QB = ▲ ,PD = ▲ ;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q 的速度,使四边形PDBQ 在某一时刻为菱形,求出此时点Q 的速度.(3)如图2,在整个P 、Q 运动的过程中,点M 为线段PQ 的中点,求出点M 经过的路径长.ABC PDQ(图1)MA BCPQ(图2)九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75°15、16、2.517、1或-2 18、1/22016三、解答题(10小题,共84分)19.(每小题4分)(1)1—2 (2)x 1=1,x 2=-31(3)x 1=25,x 2=25(4)x 1=0,x 2=420.(本题6分) 解:(1)略 ……2分(2)M 的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D 在⊙M 内……6分21. 解:(1)∵AC 平分∠DAB ,∴∠DAC =∠BAC 又∵∠ADC =∠ACB =90°∴△ADC ∽△ACB …………………………………………(1分) ∴AC AD = A B AC∴AC 2=AB •AD ………………………………………(2分)(2)∵∠ACB =90°,E 为AB 中点.∴CE =21AB =AE =3∴∠EAC =∠ECA ………………………………………(3分) 又∵AC 平分∠DAB , ∴∠DAC =∠EAC∴∠DAC =∠ECA ………………………………………(4分) ∴AD ∥EC∴△ADF ∽△ECF ………………………………………(5分) ∴FC AF =EC AD =34 ∴ AF AC =47. ………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分) 2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。
2017-2018学年第一学期期中考试九年级数学试题一、选择题(共6小题,每小题3分,满分18分)1.计算(-332的结果是()A.3B. -3C. _3D.92.若P (x, —3)与点Q (4, y)关于原点对称,则x + y=()A 7 B、一7 C 1 D、一13.下列二次根式是最简二次根式的是()A. 1B. ,3C. 、4D. 、,84. 一元二次方程2x2 +3x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.用配方法解方程x2+4x+1=0,则配方正确的是()A(x +2)2=3 B、(x +2)2 = —5 C 、(x + 2)2 = —3 D、(x+4)2=36.如图,AB、AC都是圆O的弦,OM,AB, ON,AC,垂足分别为M、N ,如果MN = 3,那么BC =().A. 4B.5 C . 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. W x=2在实数范围内有意义,则x的取值范围是8. 2x2 -1 =届的二次项系数是 , 一次项系数是 ,常数项是——9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了cm.(图中小方格边长代表1cm)10 .关于x 的一元二次方程(m+2)x 2 —mx+m 2_4=0有一根为0,则m=. 11 .对于任意不相等的两个数 a,b ,定义一种运算*如下:a * b =;J^ ,如3* 2=-3±2 = 5 ,那么 a-b 3-23* ( -5)= .12 .有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心 的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是 。
13 .有两个完全重合的矩形, 将其中一个始终保持不动, 另一个矩形绕其对称中心 O 按逆时针方向进行旋转,每次均旋转22.5◎,第2次旋转后得到图①,第 4次旋转后得到图②・,则第20次旋转后得到的14 .等腰三角形两边的长分别为方程 x 2 -9x+20 =0的两根,则三角形的周长是 三、解答题(共4小题,每小题6分,共24分)计算:.18 - 2-- ( ..5 -1)02 2' 17 .下面两个网格图均是 4X4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑, 使整个网格图满足下列要求.图形与图①〜图④中相同的是 图④ 15. 解方程:x(x-2) + x-2 = 0轴X 除图形 中心对称图形16. (填写序图②18.如图,大正方形的边长为,H5 +J5 ,小正方形的边长为J15 - J5 ,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19.数学课上,小军把一个菱形通过旋转且每次旋转120。
期中检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2016·朝阳)方程2x 2=3x 的解为( )A .0B .32C .-32D .0,322.抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3.(2016·攀枝花)若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a的值为( )A .-1或4B .-1或-4C .1或-4D .1或44.(2016·桂林)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k <5B .k <5且k≠1C .k ≤5且k≠1D .k >55.某同学在用描点法画二次函数y =ax 2+bx +c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A .-11 B .-2 C .1 D .-56.若A(-6,y 1),B(-3,y 2),C(1,y 3)为二次函数y =x 2+4x -5图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 37.(2016·广州)定义运算:a b =a(1-b).若a ,b 是方程x 2-x +14m =0(m <0)的两根,则b b -a a 的值为( )A .0B .1C .2D .与m 有关8.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .x 2=21B .12x(x -1)=21C .12x 2=21 D .x(x -1)=219.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . 3 cm 2B .32 3 cm 2 C .92 3 cm 2 D .2723 cm 210.在某次足球训练中,一队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y =ax 2+bx +c(如图).现有四个结论:①a-b >0;②a<-160;③-160<a <0;④0<b <-12a.其中正确的结论是( )A .①③B .①④C .①②D .②④二、填空题(每小题3分,共24分)11.(2016·牡丹江)已知抛物线y =ax 2-3x +c(a≠0)经过点(-2,4),则4a +c -1=________.12.(2016·三明)若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是________(写出一个即可).13.(2016·梅州)用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为____________________.14.将抛物线y =x 2-4x 向上平移3个单位,再向右平移4个单位得到的抛物线是____________.15.(2016·南通)设一元二次方程x 2-3x -1=0的两根分别是x 1,x 2,则x 1+x 2(x 22-3x 2)=________.16.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A(m ,n),B(m +6,n),则n =______.17.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.18.设x 1,x 2是方程x 2-x -2 017=0的两实数根,则x 13+2 018 x 2-2 017=________. 三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).20.(8分)(2016·绥化)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.21.(8分)已知抛物线y=-12x2-x+4.(1)用配方法确定它的顶点坐标和对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,抛物线在x轴上方?22.(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是____________斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23.(8分)小区要用篱笆围成一个四边形花坛,花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米,围成的花坛是如图所示的四边形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.设AB边的长为x米.四边形ABCD面积为S平方米.(1)请直接写出S与x之间的函数关系式;(不要求写出自变量x的取值范围)(2)当x是多少时,四边形ABCD的面积S最大?最大面积是多少?24.(8分)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2的图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.25.(10分)近几年城市建设快速发展,对花木的需求逐年提高,某园林专业户计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的总利润最大,最大利润是多少万元?26.(10分)(2016·河池)在平面直角坐标系中,抛物线y=-x2-2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图①,在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图②,F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.。
试卷第1页,共7页 绝密★启用前 辽宁省大石桥市金桥管理区初级中学2017届九年级上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________ 题号 一 二 三 四 五 总分 得分
注意事项. 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I卷(选择题)
评卷人 得分 一、单选题(题型注释)
1、下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D. 2、某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元.设2,3月份利润的月增长率为x,那么x满足的方程为( ) A.10(1+x)2=36.4 B.10+10(1+x)2=36.4 C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4
3、把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( ) A.y=2(x+3)2+4 B.y=2(x+3)2﹣4 C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4
4、将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为( ) 试卷第2页,共7页
A.4 B.6 C.8 D.10 5、已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是( )
A. B. C. D.
6、如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0.你认为其中错误的有( )个.
A.1 B.2 C.3 D.4 评卷人 得分 二、选择题(题型注释)
7、一元二次方程x2﹣4x=12的根是( ) A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=6
8、下列一元二次方程中有两个相等实数根的是( ) 试卷第3页,共7页
A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=0 9、如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m )与小球运动时间t(单位:s)之间的函数关系式为h=30t-5t2,那么小球从抛出至回落到地面所需的时间是( )
A.6 s B.4 s C.3 s D.2 s 10、在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A.y1<y2 B.y1>y2 C.y的最小值是﹣3 D.y的最小值是﹣4 试卷第4页,共7页
第II卷(非选择题) 评卷人 得分 三、填空题(题型注释)
11、若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________. 12、设,分别为一元二次方程的两个实数根,则=______.
13、用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是 cm2. 14、将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是___________. 15、抛物线y=ax2+b+c的部分图象如图所示,则当y<0时,x的取值范围是
_____________. 16、如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,
AB=1,则BD=_________. 17、如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点
D在该抛物线上,坐标为(m,c),则点A的坐标是_____________. 试卷第5页,共7页
18、如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①②③④…,则三角形⑿的直角顶点的坐标为
________. 评卷人 得分 四、计算题(题型注释)
19、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y与x的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
评卷人 得分 五、解答题(题型注释)
20、(1)用适当的方法解方程:①(x﹣2)2=2x﹣4 ②.x2﹣2x﹣8=0. (2)先化简,再求值:,其中是方程的根 21、在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形). (1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1; 试卷第6页,共7页
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标. 22、已知二次函数的图象经过点(0,-3),顶点坐标为(-1,-4), (1)求这个二次函数的解析式; (2)求图象与x轴交点A、B两点的坐标; (3)图象与y轴交点为点C,求三角形ABC的面积.
23、如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?
24、如图,一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米? (2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水
平距离是多少? 试卷第7页,共7页
25、如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF. (1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),那么①∠E′AF度数___________________②线段BE、EF、FD之间的数量关系____________________ (2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理
由. 26、如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求A、B的坐标。 (2)求直线BC的解析式;
(3)当线段DE的长度最大时,求点D的坐标. 参考答案 1、B
2、D 3、A 4、B 5、D 6、A 7、B 8、D 9、A 10、D
11、a≤且a≠1. 12、2013 13、64. 14、y=-2x2+12x-20 15、x<﹣1或x>3. 16、. 17、(﹣2,0). 18、(48,0) 19、(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
20、(1)①x1=4,x2=2 ②x1=4,x2="-2" (2)原式=-,- 21、(1)答案见解析;(2)图形见解析;B2(4,﹣2),C2(1,﹣3) 22、(1)y=x2+2x-3;(2)A(-3,0),B(1,0),(3)6. 23、横彩条的宽度是2cm,竖彩条的宽度是3cm. 24、(1) 3.5米;(2)4米. 25、(1)(1)∠E′AF=30°,线段BE、EF、FD之间的数量关系为:EF=BE+FD.(2)EF=BE-FD.理由见解析.
26、(1)A(,0),B(,0);(2)y=-x+;(3)D点的坐标为(,). 【解析】 1、试题解析:A、既是轴对称图形,不是中心对称图形; B、既是轴对称图形,又是中心对称图形; C、不是轴对称图形,是中心对称图形; D、只是轴对称图形,不是中心对称图形. 故选B. 2、等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.
解:设二、三月份的月增长率是x,依题意有 10+10(1+x)+10(1+x)2=36.4, 故选D.
3、试题解析:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4. 故选A.
4、试题解析:将抛物线y=x2-1向下平移8个单位长度, 其解析式变换为:y=x2-9 而抛物线y=x2-9与x轴的交点的纵坐标为0, 所以有:x2-9=0 解得:x1=-3,x2=3, 则抛物线y=x2-9与x轴的交点为(-3,0)、(3,0), 所以,抛物线y=x2-1向下平移8个单位长度后与x轴的两个交点之间的距离为6 故选B
5、试题解析:∵y=ax+b的图象过第一、三、四象限, ∴a>0,b<0, 对于y=ax2+bx的图象, ∵a>0, ∴抛物线开口向上,
∵x=->0, ∴抛物线的对称轴在y轴的右侧, ∵c=0, ∴抛物线过原点. 故选D.
6、试题解析:(1)根据图示知,该函数图象与x轴有两个交点, ∴△=b2-4ac>0; 故本选项正确; (2)由图象知,该函数图象与y轴的交点在点(0,1)以下, ∴c<1; 故本选项错误; (3)由图示,知
对称轴x=->-1; 又函数图象的开口方向向下, ∴a<0, ∴-b<-2a,即2a-b<0, 故本选项正确; (4)根据图示可知,当x=1,即y=a+b+c<0,