从电子管到集成电路
- 格式:doc
- 大小:32.00 KB
- 文档页数:8
电子行业电子技术发展历史引言电子技术是现代电子行业的核心,它对现代社会产生了深远的影响。
本文将回顾电子行业的电子技术发展历史,从早期的发展到今天的技术创新,展示电子技术在电子行业中的重要性。
早期电子技术的发展电子技术的起源可以追溯到19世纪末。
在这个时期,科学家开始研究电流、电磁场和电子器件。
其中最重要的突破之一是电子管的发明。
电子管时代在20世纪初,电子管成为电子技术的核心。
电子管能放大电信号,并控制电流的流动。
这一技术的发明使得无线电通讯和放大器的发展成为可能。
电子管还被用于计算机和其他电子设备中。
半导体技术的兴起20世纪40年代,半导体技术开始崭露头角。
半导体材料能够控制电流的流动,具有较高的可靠性和稳定性。
最著名的半导体元件是晶体管,它在电子技术中起到了电子管的替代作用。
当代电子技术发展随着计算机技术的迅速发展,电子技术也在不断演进。
下面将重点介绍当代电子技术的发展。
集成电路的出现20世纪60年代,集成电路技术的出现极大地改变了电子行业。
集成电路将多个电子器件集成在一块芯片上,使得电子设备的尺寸更小、性能更强大。
这为计算机、通信和消费电子等领域的快速发展提供了支持。
大规模集成电路的应用20世纪70年代,大规模集成电路(VLSI)的技术进一步推动了电子技术的发展。
VLSI技术能在一块芯片上集成非常大数量的晶体管,从而提供更高的性能和更低的功耗。
这使得计算机和通信设备能够做更复杂的任务,并促进了全球互联网的发展。
可穿戴技术的崛起21世纪初,可穿戴技术开始崭露头角。
智能手表、智能眼镜和健康追踪器等可穿戴设备的出现,使得人们能够通过电子技术更方便地获取信息和监测身体健康。
可穿戴技术的兴起也推动了智能家居和物联网的发展。
人工智能和物联网的融合当代电子技术的另一个重要趋势是人工智能(AI)和物联网(IoT)的融合。
AI和IoT的相互作用使得设备能够自动获取、分析和共享数据,从而提供更智能和便捷的服务。
计算机采用的主机电子器件的发展顺序是什么1、第1代:电子管数字机(1946—1958年)硬件方面,逻辑元件采用的是真空电子管,主存储器采用汞延迟线、阴极射线示波管静电存储器、磁鼓、磁芯;外存储器采用的是磁带。
软件方面采用的是机器语言、汇编语言。
应用领域以军事和科学计算为主。
特点是体积大、功耗高、可靠性差。
速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。
2、第2代:晶体管数字机(1958—1964年)硬件方的操作系统、高级语言及其编译程序。
应用领域以科学计算和事务处理为主,并开始进入工业控制领域。
特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数10万次,可高达300万次)、性能比第1代计算机有很大的提高。
3、第3代:集成电路数字机(1964—1970年)硬件方面,逻辑元件采用中、小规模集成电路(MSI、SSI),主存储器仍采用磁芯。
软件方面出现了分时操作系统以及结构化、规模化程序设计方法。
特点是速度更快(一般为每秒数百万次至数千万次),而且可靠性有了显著提高,价格进一步下降,产品走向了通用化、系列化和标准化等。
应用领域开始进入文字处理和图形图像处理领域。
4、第4代:大规模集成电路机(1970年至今)硬件方面,逻辑元件采用大规模和超大规模集成电路(LSI和VLSI)。
软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。
特点是1971年世界上第一台微处理器在美国硅谷诞生,开创了微型计算机的新时代。
应用领域从科学计算、事务管理、过程控制逐步走向家庭。
由于集成技术的发展,半导体芯片的集成度更高,每块芯片可容纳数万乃至数百万个晶体管,并且可以把运算器和控制器都集中在一个芯片上、从而出现了微处理器,并且可以用微处理器和大规模、超大规模集成电路组装成微型计算机,就是我们常说的微电脑或PC机。
微型计算机体积小,价格便宜,使用方便,但它的功能和运算速度已经达到甚至超过了过去的大型计算机。
电子技术的发展历史电子技术是19世纪末、20世纪初开始发展起来的新兴技术,20世纪发展最为迅速,应用最为广泛,成为近代科学技术发展的一个重要标志。
电子技术的发展历史篇1第一代电子产品以电子管为核心(1904年),其特点是:体积大、耗电、寿命短(灯丝寿命)第一台电子计算机重30吨,用18000个电子管,功耗25千瓦。
上世纪40年代末诞生了第一支半导体三极管。
特点:小巧、轻便、省电、寿命长。
上世纪50年代末期第一块集成电路问世。
特点:在一小块硅片上集成了许多晶体管,更省电,便于电子产品的小型化。
随后集成电路从小规模集成电路发展到大规模和超大规模集成电路,从而使电子产品向着高效能地低消耗、高精度、高稳定、智能化的方向发展。
由于,电子计算机发展经历的四个阶段恰好能够充分说明电子技术发展的四个阶段的特性,所以下面就从电子计算机发展的四个时代来说明电子技术发展的四个阶段的特点:世界上第一台电子计算机于1946年在美国研制成功,取名ENIAC(Electronic Numerical Integrator and Calculator)。
这台计算机使用了18800个电子管,占地170平方米,重达30吨,耗电140千瓦,价格40多万美元,是一个昂贵耗电的"庞然大物"。
由于它采用了电子线路来执行算术运算、逻辑运算和存储信息,从而就大大提高了运算速度。
ENIAC每秒可进行5000次加法和减法运算,把计算一条弹道的时间短为30秒。
它最初被专门用于弹道运算,后来经过多次改进而成为能进行各种科学计算的通用电子计算机。
从1946年2月交付使用,到1955年10月最后切断电源,ENIAC服役长达9年。
尽管ENIAC还有许多弱点,但是在人类计算工具发展史上,它仍然是一座不朽的里程碑。
它的成功,开辟了提高运算速度的极其广阔的可能性。
它的问世,表明电子计算机时代的到来。
从此,电子计算机在解放人类智力的道路上,突飞猛进的发展。
计算机发展阶段的划分一共有四个发展阶段:第一代计算机特征是采用电子管作为主要元器件第二代计算机特征是采用晶体管作为主要器件第三代计算机特征是半导体中小规模集成电路第四代计算机特征是大规模和超大规模集成电路电子管(第一阶段)-晶体管(第二阶段)--中小规模集成电路(第三阶段)--大规模及超大规模集成电路(第四阶段)--智能(第五阶段)计算机(computer)俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。
是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。
由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。
可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机等。
人和计算机交流信息使用的语言称为计算机语言或称程序设计语言。
计算机语言通常分为机器语言、汇编语言和高级语言三类。
如果要在计算机上运行高级语言程序就必须配备程序语言翻译程序(下简称翻译程序)。
翻译程序本身是一组程序,不同的高级语言都有相应的翻译程序。
翻译的方法有两种:一种称为“解释”。
早期的BASIC源程序的执行都采用这种方式。
它调用机器配备的BASIC“解释程序”,在运行BASIC源程序时,逐条把BASIC的源程序语句进行解释和执行,它不保留目标程序代码,即不产生可执行文件。
这种方式速度较慢,每次运行都要经过“解释”,边解释边执行。
另一种称为“编译”,它调用相应语言的编译程序,把源程序变成目标程序(以.OBJ为扩展名),然后再用连接程序,把目标程序与库文件相连接形成可执行文件。
尽管编译的过程复杂一些,但它形成的可执行文件(以.exe为扩展名)可以反复执行,速度较快。
运行程序时只要键入可执行程序的文件名,再按Enter键即可。
对源程序进行解释和编译任务的程序,分别叫作编译程序和解释程序。
如FORTRAN、COBOL、PASCAL和C等高级语言,使用时需有相应的编译程序;BASIC、LISP等高级语言,使用时需用相应的解释程序。
芯片的发展历程
芯片的发展历程可以概括为以下几个阶段:
起源:从半导体到IC:芯片的起源可以追溯到20世纪50年代初,当时美国贝尔实验室的工程师们研制出了第一款基于微型管的计算机。
微型管是一种真空电子管,能够通过电子的放大和控制来实现复杂的电子计算。
发展:光刻工艺:随着人类对于科技发展的不断追求和突破,芯片的历史也会不断地向前推进。
在过去的几十年中,芯片经历了从最初的微型管到现在的微处理器和集成电路的演变。
集成电路:大规模、超大规模与巨大规模:随着集成电路技术的不断发展和完善,越来越多的晶体管被纳入到同一个集成电路芯片上,于是便出现了大规模集成电路芯片,简称LSI (Large Scale Integrated Circuit)。
大规模集成电路芯片容量比集成电路芯片更大,可以实现更加复杂的电子元件和电路组合。
CPU芯片:在处理器(CPU)领域,英特尔的发展史代表了处理器的发展史。
1971年,英特尔推出了它的第一款处理器:4004,这是一款4位的处理器,仅包含2300个晶体管。
现在来看,这款处理器简直就是个小弱,但它的诞生意义重大,实现了从0到1的突破。
AMD:价格屠夫与搅局者:1969年,杰里·桑德斯(J. Sanders)当时在仙童担任销售部的主任,带着7位仙童员工创办AMD。
移动端芯片:另起炉灶:对于现在炙手可热的智能手机,处理器的竞争则更为激烈。
尾声:发展与现状:新工艺、新材料和新技术的不断涌现,也预示着芯片技术在未来还将有更多的可能性和发展空间。
相信在不久的将来,芯片技术必将继续不断创新和进步,为人们的生活带来更多科技创新和更高的生活品质。
1、1946年第一台电子计算机采用电子管。 2、第二代电子计算机采用晶体管。 3、第三代电子计算机采用中、小规模集成电路。 4、第四代电子计算机采用中规模集成电路和超大规模集成电路。
• 第一台计算机诞生 1946年,人类第一台电子数字计算机ENIAC(Electronic Numerical Integrator And Calculator)在美国宾夕法尼亚大学诞生。
• 计算机发展 依据计算机所采用电子器件的不同,计算机发展可划分为电子管、晶体管、集成电路、超大规模集成电路,一共4代,一代更比一代强。
• 计算机系统组成 一个完整的计算机系统包括硬件系统和软件系统两大部分。 (1)硬件系统一般指用电子器件和机电装置组成的计算机实体。 就是我们肉眼所见的实体。如:电源、显示器、主机箱等等。 组成微型计算机的主要电子部件都是由集成度很高的大规模集成电路及超大规模集成电路构成的。这里“微”的含义是指微型计算机的体积小。微型化的中央处理器称为微处理器,它是微型计算机系统的核心。 微处理器送出三组总线:地址总线(AB)、数据总线(DB)和控制总线(CB)。其他电路(常称为芯片)都可连接到这三组总线上。由微处理器和内存储器构成微型计算机的主机。此外,还有外存储器、输入设备和输出设备,它们统称为外部设备。
(2)计算机软件是指在硬件设备上运行的各种程序以及有关说明资料的总称。所谓程序,实际上是用户用于指挥计算机执行各种动作以便完成指定任务的指令的集合。用户要让计算机做的工作可能是复杂的,因而指挥计算机工作的程序也可能是很庞大而复杂的,有时还可能要对程序进行修改和完善,因此为了便于阅读和修改,必须对程序作必要的说明或整理出有关的资料。
计算机逻辑元件发展顺序计算机逻辑元件的发展顺序可以按照以下几个阶段来进行分类:1. 电子管时代(第一代计算机):1940年代到1950年代初,计算机主要使用电子管作为逻辑元件。
电子管是一种用来放大和控制电流的装置,可以实现逻辑运算。
但是电子管体积大、发热量大且可靠性低,因此限制了计算机的发展。
2. 晶体管时代(第二代计算机):1950年代中期到1960年代,晶体管开始取代电子管作为计算机的逻辑元件。
晶体管是半导体材料制成的电子器件,具有体积小、功耗低、速度快和可靠性高的优点。
晶体管的发明和广泛使用推动了计算机的发展。
3. 集成电路时代(第三代计算机):1960年代中期到1970年代,集成电路开始应用于计算机的制造。
集成电路是将多个晶体管、电容、电阻等元件集成在一块半导体材料上制成的电子器件。
集成电路的出现使得计算机变得更小、更快、更可靠,并且降低了成本。
4. 大规模集成电路时代(第四代计算机):1970年代中期到1980年代,随着集成电路技术的进一步发展,大规模集成电路(VLSI)开始应用于计算机的设计和制造。
VLSI技术使得成千上万个晶体管集成到一个芯片中,大大提高了计算机的性能和集成度。
5. 超大规模集成电路时代(第五代计算机):1980年代中期至今,超大规模集成电路(ULSI)开始应用于计算机的制造。
ULSI技术使得数十亿个晶体管集成到一个芯片中,进一步提高了计算机的性能和集成度,实现了更小、更快、更强大的计算机系统。
除了以上几个阶段,随着技术的不断进步,计算机逻辑元件的发展仍在持续进行,如纳米技术、量子技术等。
未来的计算机可能会有更快、更小、更高效的逻辑元件。
计算机发展历史的四个阶段计算机发展历史的四个阶段计算机是人类创造的伟大发明之一。
从最初的机械计算器到当前的超级计算机,计算机经历了数十年的发展,不断在运算速度、存储容量和功能方面进行了突破,成为支撑现代社会的重要基础设施之一。
计算机发展可分为四个阶段:机械计算时代、电子管时代、集成电路时代和微处理器时代。
第一阶段:机械计算时代(前四个世纪)在古希腊时期,人们就已经开始使用一些机械装置进行计算。
例如,古希腊的菲洛勒提斯使用了一种基于齿轮传动的机械装置,可以用来进行加、减、乘、除等基本的数学运算。
这种机械装置被称为“安提基特拉”,甚至有人认为它是世界上第一台计算机。
然而,真正意义上的计算机出现在18世纪末和19世纪初。
这时期,德国的帕斯卡和英国的巴贝奇发明了机械计算器,可以用来计算对数和三角函数等数学运算。
这些机械计算器由齿轮、手柄、数字盘和指针等组成,需要人们手动输入数据和转动手柄来进行计算。
虽然这些机械计算器计算速度很慢,但它们为后来的计算机打下了基础,并在科学、工程和财务等领域得到了广泛应用。
第二阶段:电子管时代(20世纪40年代-60年代)第二个阶段是电子管时代,这一时期是计算机发展的重要阶段。
在这个时期,计算机中使用的核心元件不再是机械部件,而是电子管。
电子管是一种利用电子的运动来控制电流的器件,具有开关、放大和整流等功能。
与机械计算器相比,电子管计算机速度更快、效率更高,同时可以处理更复杂的数据和运算。
第一台真正的电子管计算机是由美国宾夕法尼亚大学的埃克特和莫奇利发明的,名为ENIAC。
ENIAC于1945年诞生,使用了17000多个电子管,占用了一整个房间,重量超过30吨。
它的运算速度很快,可以每秒钟进行5000次加法或减法运算。
ENIAC的出现标志着计算机进入了电子管时代。
在电子管时代,计算机得到了广泛的应用,主要用于军事、科研和工业领域。
1951年,谢尔曼·艾金纳和格蕾丝·霍普·霍泽金发明了第一个磁盘驱动器,标志着存储技术进入了新的阶段。
电子技术的发展历史院系:姓名:学号:摘要:现在人们已经掌握了大量的电子技术方面的知识,而且电子技术还在不断的发展着,这些知识是人们长期劳动的结晶。
本文主要介绍电子技术的发展历史,过去的电子技术从电子管、晶体管到集成电路;现阶段电子技术的发展状况主要为数字信号处理器DSP、嵌入式系统ARM和EDA技术;未来电子技术的发展趋势:微电子技术、纳米技术。
关键字:集成电路数字信号处理器DSP 纳米技术正文:电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志,下面将介绍电子技术的发展史。
一、电子技术的发展历程(一)电子管(1883年到1904年电子管问世)电子管除应用于电话放大器、海上和空中通讯外,也广泛渗透到家庭娱乐领域,将新闻、教育节目、文艺和音乐播送到千家万户。
就连飞机、雷达、火箭的发明和进一步发展,也有电子管的一臂之力。
固然电子管的产生是必不可少的一步,但是其还是存在很多的缺点:十分笨重,能耗大、寿命短、噪声大,制造工艺也十分复杂。
第二次世界大战中,电子管的缺点更加暴露无遗。
在雷达工作频段上使用的普通的电子管,效果极不稳定。
移动式的军用器械和设备上使用的电子管更加笨拙,易出故障。
因此,电子管本身固有的弱点和迫切的战时需要,都促使许多科研单位和广大科学家,集中精力,迅速研制成功能取代电子管的固体元器件。
(二)晶体管产生(1950--)为了解决电子管所存在的问题,科学家们不断的尝试。
在1948年6月30日,贝尔实验室首次在纽约向公众展示了晶体管(肖克利、巴丁和布拉顿。
)1948年11月,肖克利构思出一种新型晶体管,其结构像“三明治”夹心面包那样,把N型半导体夹在两层P型半导体之间。
由于当时技术条件的限制,研究和实验都十分困难。
直到1950年,人们才成功地制造出第一个PN结型晶体管。
同电子管相比,晶体管具有诸多优越性:①晶体管的构件是没有消耗的,晶体管的寿命一般比电子管长100到1000倍,②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一。
从电子管到集成电路 摘要:电子技术的迅速发展,是20世纪以来最重大而又影响深远的科技成就之一。电子工业的发展和电子技术的水平,已经成为衡量一个国家现代化程度的重要尺度。通过梳理电子技术的发展历程,找寻一门技术从出现发展到成熟的内在逻辑,并提出自己得见解,正是这篇文章的意义所在。
关键词:电子管 晶体管 半导体 集成电路 1 电子管的诞生 1883年美国发明家爱迪生在进行提高电灯灯丝寿命的实验时在灯丝附近安放了一根金属丝,然后他意外地发现通电加热的灯丝和这根金属丝之间竟然出现了微弱的电流。通过进一步的实验,爱迪生发现当金属丝对灯丝的电压为正时有电流通过,而当电压为负时则没有电流。这种现象就是“爱迪生效应”,它成为后来发明电子管的基础。1897年,英国物理学家约瑟夫·约翰·汤姆生(J.JThomson,1856—1940)通过对阴极射线的研究,证明了从炽热灯丝会发射出一种带负电的粒子流,这就是电子。由于电子的发现,人们终于明白“爱迪生效应”就是真空中的热电子发射现象。
1889年英国工程师弗莱明(J.A.Fleming,1849—1945)在当时迅速兴起的电子学的基础上,开始对爱迪生效应进行了深入研究,终于在1904年发明了第一种电子元件:一种可用作电磁波检波器的二极电子管。二极管发明之后,美国无线电工程师德·福雷斯特(L.de Forest,1873—1961)即对弗莱明的发明进行了深入研究。为了改进二极管的性能,福雷斯特于1906年进行了在二极管的负极加入一个电极的实验。实验结果发现,在正极负极之间加入一个金属丝支撑的栅极时,其检波效果最佳,不久还发现三极管对电流有放大作用。
二极电子管和三极电子管的发明奠定了电子元件的主要技术基础,是具有划时代意义的技术发明。由于电子元件技术的带动,另一电子基础技术—— 电子线路也得以迅速发展,两者一并为后来的广播、电视、雷达等电子应用技术的兴起提供了技术基础。虽然电子管作为20世纪前半期电子技术的基础,写下了光辉的一页,但它也暴露出一些弱点,主要是体积大、重量重、耗电多、寿命短、需预热等,这同电子设备的发展要求提供体积小、重量轻、功耗低、可靠性高、起动迅速的元器件,形成了尖锐的矛盾。这就迫使人们去寻求新的性能更优异的电子器件。
2 半导体物理学的兴起 半导体物理学是凝聚态物理学的主要分支之一,在第二次世界大战之后得到了迅猛发展。它的兴起与30年代中后期相关技术背景和相关科学基础的形成有直接的内在联系。
在技术背景方面,到30年代中后期的时候,以热机技术和电力技术为主要技术标志的第二次工业革命在德、美、英等国家已基本完成。以电子管为主要技术基础的电子技术经过从20世纪初到30年代中后期的发展,其技术已经基本成熟,其技术局限也日趋明显。
在科学基础方面,布洛赫提出的能带理论为半导体物理学的发展提供了重要的理论基础。所谓能带理论,是研究固体中电子运动规律的一种近似理论。固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。到1931年英国物理学家威尔逊提出区分绝缘体、半导体和导体的微观理论判据之后,半导体物理学已经开始呈现向半导体技术初步转化的态势。
晶体管的出现 由于半导体物理学的兴起以及电子管本身材料与技术的局限性,美国贝尔实验室研究部电子管分部主任、固体物理学家凯利(M.Kelly)敏锐地察觉到电子技术可能正面临着一场大革命。1939年,凯利组建了以肖克利(W.Shockley)、巴丁(J.Bardeen)、布拉顿(W.H.Brattain)和伍德里奇(D.E.Woodridge)等人为主要成员的半导体学物理小组。这是一个年富力强,既有深厚的固体物理理论素养,又有丰富的实验技术经验的科研集体。他们的目标是:探索半导体的导电机制,研制能消除电子管缺陷并具有放大功能的新型电子器件。 1947年12月,研究小组发现金属与半导体表面形成的两个充分靠近点接触的结,存在着相互作用。巴丁和布拉顿根据这个效应重新制订了方案,12月23日终于研制出世界上第一支晶体三极管,它是用半导体锗制成的点接触型晶体管。1956年,肖克利、巴丁、布拉顿三人由于晶体管的发明和半导体物理学的杰出贡献,共同获得了诺贝尔物理学奖。
3 P-N结理论 肖克利及其小组成员在研制第一代晶体管的同时,在固体物理学已有的电子理论、量子理论和能带理论的基础上,对半导体物理的导电性进行了深入研究。1949到1950年间,他们提出了以半导体电子理论为基本内容的P-N结理论。P-N结理论主要有三个方面。
其一,半导体有N型半导体和P型半导体两种不同的类型。N型半导体参与导电的主要是带负电(negative)的电子。这些电子来自于半导体中的施主,如含有适量的五价元素砷、磷、锑的锗或硅,即是这种N型半导体。P型半导体参与导电的主要是带正电(positive)的空穴。这些空穴来自半导体中的受主,如含有适量的三价元素硼、铟、镓的锗或硅,即是这种P型半导体。
其二,N型半导体和P型半导体的交界层能形成P-N结。由于P-N结具有单向导电性,因此以P-N结为基础的二极管对电流具有整流作用。 其三,以P-N结为基础,可以形成PNP或NPN两种类型的组合P-N结。由于组合P-N结具有三极,因此以它为基础的三极管与电子三极管一样,对电流具有放大效应。
4 晶体管的大规模生产 在肖克利及其小组成员提出P-N结理论之后,肖克利根据对晶体管工作机理的分析,又提出了PNP和NPN结型晶体管的理论。1950年贝尔电话实验室的斯帕克斯(M.Sparks)等人研制出了这种结型晶体管(或称面触型晶体管)。它同点接触型晶体管相比,结构简单、牢固可靠、噪声小、宜于大批量生产。
晶体管的大规模生产除了自身技术硬件指标达标外,原材料的数量和质量的供应以及产品的生产工艺也是决定晶体管能否大量生产的重要因素。1952年,范(W.G.Pfann)发明了生产高纯度锗的区域提纯熔炼工艺;1954年蒂尔(G.KTeal)和比勒(E.Buehler)改进了拉制单晶硅的工艺;同年,富勒(C.S.Fuller)研究出了一种新的掺杂方法—— 扩散工艺。他们均来自贝尔实验室。1959年,仙童公司的霍尔尼(J.A.Hoerni)发明了平面工艺,并制出了第一个平面型晶体管。这些成果为晶体管的大规模生产和半导体工业的发展创造了条件,尤其是扩散工艺和平面工艺,不但将晶体管的工作频率推到了超短波波段,而且使晶体管的管芯结构图形达到前所未有的精密和微小程度,从而为晶体管的微小型化开辟了道路。 5 集成电路 晶体管可以大规模生产以后,其体积小、重量轻、能耗少、寿命长、可靠性高、不需预热、电源电压低等一系列优点使它全面取代了电子管。但是,晶体管取代电子管,还只是一个器件代替一个器件。对于大型电子设备,有时要用到上百万个晶体管,这就要几百万个结点,这些结点就成了出现故障的渊源;同时,生产部门和军事部门希望电子设备进一步微小型化,这都强烈地推动人们去开辟发展电子技术的新途径。
20世纪50年代,用硅取代锗作晶体管材料,以及制作晶体管的扩散工艺、平面工艺等,都相继研究成功,这就为集成电路的研制提供了技术基础,而掌握这些技术的美国德克萨斯仪器公司、仙童公司也就具备了更有利的条件。1959年初,美国德克萨斯公司的工程师基尔比(J.Kiby)利用扩散工艺,很快就在一块1.6×9.5平方毫米的半导体材料上,制成了包括1个台面晶体管、一个电容和3个电阻的移向振荡器,从而研制成功了第一块集成电路。与此同时,美国仙童公司的经理诺伊斯(R.N.Noyce)运用平面工艺制成了更专业化,更适合于工业生产的集成电路。1961年,集成电路即在美国实现了商品化生产。
同半导体分立电路相比,半导体集成电路具有容量大、体积小、组装快等优点。因此集成电路自问世以后,其发展速度可谓突飞猛进。自1961年以后的短短20余年内,集成电路的集成度便由最初的100个元器件以内发展到10万~100万个元器件之内。 6 电子技术发展的内在逻辑 从电子管到集成电路,短短60余年间,电子技术就从电力技术的附属产物蜕变成整个社会的主流技术。爱迪生发现了“爱迪生效应”,但他却不能对这个现象做出完满的解释,于是便吸引着其他的科学家来解决问题,逐渐形成科学共同体。一项新技术其诞生必然源于自然现象,其发展必然会形成科学共同体。汤姆生发现电子,解释了“爱迪生效应”为电子技术的起步打下了理论基础。弗莱明发明了真空二极管、德弗雷斯特发明了真空三极管,他们成功的将理论转化为技术产品,其中的转化必然有现实需求的牵引。当电子管的元件缺陷与电子技术高速发展形成尖锐矛盾时,半导体物理学理论开始蓬勃发展起来,而半导体物理学的蓬勃发展又离不开电子技术这个载体。半导体物理学理论的发展促使晶体管的诞生,而P-N结理论则是研制晶体管的理论衍生物,又反过来促进了半导体物理学的发展。而从晶体管发展到集成电路,则是纯技术工艺上的进步。
纵观整个电子技术从“爱迪生效应”发展到集成电路,其科学技术轨迹可以大致概括为:发现现象→探究现象→形成理论→衍生技术→升华理论→技术飞跃→技术完善→技术成熟。
另一值得注意的现象在电子技术的发展进程中,大部分的研究人员都是默默无名却又充满干劲的年富力强的青壮派科学家。如,参与研发出第一支晶体三极管并发表了P-N结理论的肖克利、巴丁和布拉顿三人在1956年获得诺贝尔奖时也才不到50岁。我认为导致这种现