基于单片机集成电路的桥式可逆斩波电路分析
- 格式:doc
- 大小:426.16 KB
- 文档页数:20
电力电子技术课程设计报告姓名: ***学号: ***班级: ***指导老师: ***专业:电气工程与自动化设计时间: 2007-7***大学自动化学院制升降压斩波电路在直流可逆电动机的运用摘要:文章分析了升/降压斩波电路的工作原理,介绍了集成芯片SG3525的应用特点,并对由SG3525控制,通过升/降压斩波电路来实现的直流脉宽调速电路进行了分析和实验。
关键词:升/降压斩波电路 SG3525 直流脉宽调速本文介绍了通过斩波电路来实现的直流脉宽调速电路,此斩波电路由基本的降压型变换器和升压型变换器相组合,选用全控型器件MOSFET,当此变换器对直流电动机供电时,只要对MOSFET进行实时的PWM 控制,就可实现电机的四象限运行。
此斩波电路中IG—BT的驱动信号由集成脉宽调制控制器SG3525产生,由于它简单可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试。
1 电路组成及系统分析直流脉宽调速电路原理如图1所示,其中直流斩波电路可看成降压型变换器和升压型变换器的串联组合,采用IGBT作为自关断器件,利用集成脉宽调制控制器SG3525产生的脉宽调制信号作为驱动信号,由两个IGBT及其反并联的续流二极管组成。
图1 电路原理图1.1 主电路工作原理三相127 V交流电经桥式整流电路,滤波电路变成直流电压加在P、N两点间,直流斩波电路上端接P点,下端接N点,中点公共端(COM)(如图1所示)。
若使COM端与电机电枢绕组A端相接,B端接N,可使电机正转。
若T2截止,T1周期性地通断,在T1导通的T。
时间内,形成电流回路P —T1一A—B-N,此时UAB>0, AB>0;在T1截止时由于电感电流不能突变,电流 AB经D2续流形成回路为A-B-D2-A,仍有UAB>0,IAB>0,电机工作在正转电动状态(第一象限),T1,D2构成一个Buck变换器。
若T1截止,T2周期性地通断,在T2导通的T。
斩波电路原理一、斩波电路概述斩波电路是一种将直流电转换为交流电的电路,通常用于交流电机驱动、逆变器等应用中。
其原理是通过周期性地开关导通和断开,使直流电源经过一个高频变压器的变换,输出具有一定频率和幅值的交流电。
二、斩波电路分类1. 单极性斩波电路:只有一个半桥开关管或全桥开关管,在负载两端产生单向脉冲。
2. 双极性斩波电路:有两个半桥开关管或全桥开关管,在负载两端产生双向脉冲。
三、单极性斩波电路原理单极性斩波电路主要由直流源、半桥开关管、高频变压器和输出滤波器四部分组成。
其中直流源提供稳定的直流输入,半桥开关管控制输入信号的导通和断开,高频变压器将输入信号变换成具有一定频率和幅值的交流信号,输出滤波器则对交流信号进行平滑处理。
1. 直流源直流源通常使用整流桥将市区或三相交流转换为稳定的直流电源,直流电压的大小取决于所选用的整流桥和滤波器。
2. 半桥开关管半桥开关管通常由一个N沟道MOSFET管和一个二极管组成。
当N 沟道MOSFET导通时,二极管截止;当N沟道MOSFET截止时,二极管导通。
通过控制N沟道MOSFET的导通和截止,可以实现直流信号的周期性开关。
3. 高频变压器高频变压器是斩波电路中最重要的部分之一。
它通过将输入信号变换为具有一定频率和幅值的交流信号,实现了直流到交流的转换。
高频变压器通常由磁芯、一些绕组和辅助元件组成。
4. 输出滤波器输出滤波器主要用于对交流信号进行平滑处理,去除其残留的脉冲噪声和杂散波形。
输出滤波器通常由电感、电容等元件组成。
四、双极性斩波电路原理双极性斩波电路与单极性斩波电路类似,只不过在半桥开关管上增加了一个相同结构相反的开关管。
这样,当一个开关管导通时,另一个开关管截止,从而在负载两端产生双向脉冲。
五、斩波电路优缺点1. 优点:(1) 斩波电路可以将直流电源转换为交流电源,用于驱动交流负载。
(2) 斩波电路具有高效率、高速度和可靠性等优点。
(3) 斩波电路可以实现输出电压和频率的调节。
1 电路总体分析与方案选择1.1问题的提出与简述直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等,利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
1.2设计目的及解决方案任务的要求是需要设计一个输出为20-30V的直流稳压电源,此部分内容由以前所学模拟电路知识可以解决。
然后对降压斩波主电路进行设计,所涉及电力电子原理知识的直流斩波部分,可以参见所学课本第三章,所选着的全控型器件为IGBT。
任务还需要通过PWM方式来控制IGBT的通断,查阅相关资料,需要使用脉宽调制器SG3525来产生PWM控制信号。
电路需要使输出电压恒定为15V,采用电压闭环,将输出电压反馈给控制端,由输出电压与载波信号比较产生PWM信号,达到负反馈稳定控制的目的。
得到电路的原理框图如下:图1-1 总电路原理框图2 直流稳压电源设计2.1 电源设计原理小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如下所示:图2-1 直流稳压电源原理框图电源变压器的作用是将来自电网的220V 交流电压U1变换为整流电路所需要的交流电压U2。
电源变压器的效率为:,其中:2P 是变压器副边的功率,1P 是变压器原边的功率。
一般小型变压器的效率如表2-2 所示:表2-2小型变压器效率副边效率P2效率n <10VA 0.610-30VA 0.730-80VA 0.880-200VA 0.85因此,当算出了副边功率2P 后,就可以根据上表算出原边功率1P 。
桥式逆变电路工作原理
桥式逆变电路是一种常见的电路设计,用于将直流电源转换为交流电源。
它由四个开关管(或二极管)和一个负载组成,其中两个开关管与两个二极管串联,另外两个开关管与剩下的两个二极管串联。
工作原理如下:
1. 开关管一和开关管三同时闭合,而开关管二和开关管四同时断开。
这样,电源的负极连接到开关管一和开关管三之间,正极连接到开关管三和开关管四之间。
2. 当开关管一和开关管三闭合时,二极管一和二极管三同时断开。
这样,直流电源的正极电流通过开关管三,再通过负载,最后回到负极。
3. 同时,由于二极管一和二极管三断开,开关管一和开关管三之间没有回路,因此负载的两个端接在开关管一和开关管三之间,不接收直流电源。
4. 接下来,开关管一和开关管三同时断开,而开关管二和开关管四同时闭合。
这样,电源的正极连接到开关管一和开关管二之间,负极连接到开关管二和开关管四之间。
5. 当开关管二和开关管四闭合时,二极管二和二极管四同时断开。
这样,直流电源的正极电流通过开关管四,再通过负载,最后回到负极。
6. 类似地,由于二极管二和二极管四断开,开关管二和开关管四之间没有回路,负载的两个端接在开关管二和开关管四之间,不接收直流电源。
7. 这样,交替闭合和断开的开关管和二极管的组合将直流电源
转换为交流电源,通过负载提供正弦波形的交流电。
总之,桥式逆变电路通过交替闭合和断开的开关管和二极管的组合,将直流电源转换为交流电源,实现交流电的输出。
第3章直流斩波电路主要内容:降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路的结构与工作原理。
重点:降压斩波电路、升压斩波电路的结构与工作原理。
难点:升压斩波电路的工作原理基本要求:掌握降压斩波电路、升压斩波电路、升降压斩波电路的结构与工作原理,了解复合斩波电路的结构与工作原理。
直流斩波电路(DC Chopper)将直流电变为另一固定电压或可调电压的直流电,也称为直接直流直流变换器(DC/DC Converter)。
直流斩波电路的种类6种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。
复合斩波电路——不同基本斩波电路组合多相多重斩波电路——相同结构基本斩波电路组合1 基本斩波电路重点:最基本的2种——降压斩波电路和升压斩波电路。
(1) 降压斩波电路斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中E m所示。
为使i o连续且脉动小,通常使L值较大。
数量关系电流连续时,负载电压平均值(3-1)a——导通占空比,简称占空比或导通比U o最大为E,减小a,U o随之减小——降压斩波电路。
也称为Buck变换器。
负载电流平均值I=U d/R (3-2)电流断续时,U o平均值会被抬高,一般不希望出现斩波电路三种控制方式a 脉冲宽度调制(PWM)或脉冲调宽型——T不变,调节t on,应用最多b 频率调制或调频型——t on不变,改变Tc 混合型——t on和T都可调,使占空比改变图3-1降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形2 升压斩波电路(1) 升压斩波电路的基本原理工作原理:假设L值、C值很大,V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压U o为恒值,记为U o。
设V通的时间为t on,此阶段L上积蓄的能量为EI1t onV断时,E和L共同向C充电并向负载R供电。
整流逆变斩波四种电路在我们日常生活中,电流就像水流一样,流淌在我们的设备里,让一切运转得有模有样。
但有时候,我们需要的电流形状和特性并不是那么简单的。
于是,整流、逆变、斩波这些电路就登场了,听上去是不是有点高大上?别担心,今天我们就来聊聊这四种电路,简单明了又不失幽默感,让你轻松搞懂!1. 整流电路整流电路,简单来说,就是把交流电变成直流电的魔法师。
想象一下,如果你有一条河流(交流电),但是你只想要一股平稳的小溪流(直流电),整流电路就来帮你实现这个愿望。
它主要有两种类型:半波整流和全波整流。
1.1 半波整流半波整流就像是一个只工作一半的懒虫,简单得很,只利用交流电的一个方向。
它的电流在一个周期内只“吃”一半,所以输出的电压波形就像是起伏不定的小山丘,虽然简单,但总是让人觉得不够稳定。
不过,它的结构简单,成本低,适合一些对电流要求不高的地方,比如小灯泡啥的。
1.2 全波整流再说说全波整流吧,跟懒虫相比,它就是个拼命三郎,能够充分利用交流电的两种方向。
这样输出的电流就像一条平滑的河流,稳定又持续。
全波整流用的二极管桥式整流器,虽然结构稍微复杂一点,但能给我们提供更好的电流品质,特别适合需要高稳定性电流的设备,比如手机充电器。
2. 逆变电路接下来,让我们把目光转向逆变电路。
这可是个颇具反转戏剧情节的家伙,它的工作就是把直流电“逆转”成交流电。
想象一下,一条笔直的小路(直流电),通过逆变电路,瞬间变成了蜿蜒曲折的大道(交流电),这简直是电流界的魔术啊!2.1 纯正弦波逆变器在逆变电路中,纯正弦波逆变器就像是一位高水平的厨师,做出的“菜”不仅好看还好吃。
它能生成非常接近理想的交流电波形,适合高档设备,比如音响系统、医疗设备等等。
虽然价格有点小贵,但用得安心,真的是物超所值。
2.2 方波逆变器而方波逆变器呢?就像一个小学生的手绘画,简单粗暴,输出的是一系列尖锐的波形。
虽然便宜,但对一些敏感设备可不太友好。
桥式整流电路总结1. 引言桥式整流电路是一种常见的交流电到直流电的转换电路,广泛应用于各种电子电路中。
本文将对桥式整流电路的原理、应用以及优缺点进行总结和分析。
2. 桥式整流电路原理桥式整流电路是由四个二极管构成的电路,其原理基于半波整流电路。
如图所示,桥式整流电路的核心是四个二极管和一个负载电阻。
|+-----+---------+-----+Vin -- | | | | -- Vout+-----+---------+-----+| | | |D1 D2 D3 D4| | | |+-----+---------+-----+|当输入电压Vin为正向的时候,D1、D3导通,D2、D4截止,电流从Vin经过D1、D3流向Vout,实现正向整流。
当输入电压Vin为反向的时候,D2、D4导通,D1、D3截止,电流从Vout经过D2、D4流向Vin,实现反向整流。
通过这种方式,桥式整流电路可以将输入的交流电转换为直流电。
3. 桥式整流电路的应用桥式整流电路有广泛的应用场景,下面列举了其中的几个重要应用。
3.1 单相桥式整流电路单相桥式整流电路是最基本和常用的桥式整流电路,广泛应用于各种电子设备中,如家用电器、电子电路实验等。
通过单相桥式整流电路,可以将交流电转换为直流电供给电子设备。
3.2 三相桥式整流电路三相桥式整流电路是应用于三相交流电的桥式整流电路。
相比于单相桥式整流电路,三相桥式整流电路具有更高的功率处理能力,适用于大功率电子设备和工业设备。
3.3 电动机驱动电源桥式整流电路可以作为电动机驱动电源的核心组成部分,将交流电转换为直流电供给电动机。
这种应用方式能够有效控制电动机的转速和转向,广泛应用于各种电动机驱动系统中。
4. 桥式整流电路的优缺点4.1 优点•桥式整流电路具有较高的效率,能够将输入的交流电转换为直流电。
•结构简单,仅由四个二极管构成,成本低廉。
•适用于各种功率要求的电子设备,可用于低功率电源和高功率电源。
XXX学院实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:验(序号)项目名称:直流斩波电路的性能研究(六种典型线路)实验五直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件三、实验线路及原理1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12 所示。
图中V 为全控型器件,选用IGBT。
D 为续流二极管。
由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D=U i。
当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。
由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13 所示。
电路也使用一个全控型器件V。
由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L1 充电,充电电流基本恒定为I1,同时电容C1 上的电压向负载供电,因C1 值很大,基本保持输出电压U O 为恒值。
设V 处于通态的时间为t on,此阶段电感L1 上积蓄的能量为U i I1t on。
当V 处于断态时U i和L1 共同向电容C1 充电,并向负载提供能量。
目录1.课程设计目的 (1)2.课程设计题目和要求 (1)3.以单片机控制的三相桥式整流电路的设计 (1)3.1三相桥式全控整流电路 (2)3.1.1三相桥式全控整流电路的结构工作原理分析 (2)3.1.2数量计算 (6)3.2触发电路 (7)3.3过零检测电路及整流稳压电源 (9)3.1.1稳压电源部分 (9)3.3.2过零检测部分 (10)3.4单片机控制电路 (11)3.4.1显示部分 (11)3.4.2键盘部分 (14)4.设计总结 (18)参考书目 (18)1.课程设计目的1、巩固和加深课堂所学知识。
2、学习掌握一般的软硬件的设计方法和查阅、运用资料的能力。
3、了解单片机应用系统设计方法。
4、掌握LED显示器的原理与静态显示和动态显示的特点。
5、掌握独立式键盘的原理与应用。
6、了解串行口的并行口的结构和工作原理7、掌握三相桥式整流的工作原理。
2.课程设计题目和要求题目:以单片机控制的三相桥式整流电路的设计要求如下:1、显示采用4位动态显示,段选信号通过74LS164来控制,位选信号通过P1口控制。
2、键盘独立式按键,采用74LS165为键盘接口。
3、控制电路采用脉冲变压器结构。
4、要求有过零检测电路。
3.以单片机控制的三相桥式整流电路的设计目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路。
三相全控桥整流装置常用作可调直流电源,而直流电压的调节靠触发电路来控制, 单片机通过控制晶闸管触发脉冲的移相控制角来改变整流装置输出的直流电压大小。
下图为一用单片机控制的整流电路的原理图。
8031显示键盘过零检测输出控制主电路图3-1 单片机控制电路原理图3.1三相桥式全控整流电路3.1.1三相桥式全控整流电路的结构工作原理分析图3-2为三相桥式全控整流电路VT VT VT VT VT VT 123456图3-2 三相桥式全控整流电路三相全控桥式整流电路由一组共阴极接法的三个晶闸管和一组共阳极接法的三个晶闸管串联而成。
电流可逆斩波电路(MOSFET )1 设计要求与方案设计一电流可逆斩波电路(MOSFET ), 已知电源电压为400V, 反电动势负载, 其中R 的值为5Ω、L 的值为1 mH 、E=350V, 斩波电路输出电压250V 。
电流可逆斩波主电路原理图如图1.1所示。
a)b)M 图1 .1 电流可逆斩波电路的原理图及其工作波形a )电路图b )波形 2 原理和参数2.1 设计原理如图1.1: V1和VD1构成降压斩波电路, 由电源向直流电动机供电, 电动机为电动运行, 工作于第1象限;V2和VD2构成升压斩波电路, 把直流电动机的动能转变为电能反馈到电源, 使电动机作再生制动运行, 工作于第2象限。
必须防止V1和V2同时导通而导致的电源短路。
只作降压斩波器运行时, V2和VD2总处于断态;只作升压斩波器运行时, 则V1和VD1总处于断态;第3种工作方式: 一个周期内交替地作为降压斩波电路和升压斩波电路工作。
当降压斩波电路或升压斩波电路的电流断续而为零时, 使另一个斩波电路工作, 让电流反方向流过, 这样电动机电枢回路总有电流流过。
在一个周期内, 电枢电流沿正、负两个方向流通, 电流不断, 所以响应很快。
2.2 参数计算V1 gate 信号的参数: 输出Uo大小由降压斩波电路决定, 根据, 已知Ui=400V, Uo=250V, 不妨取T=0.001s, 则ton=0.000625s, 占空比为62.5%。
V2 gate 信号的参数:由于电感只有1mH, 释放磁场能的时间不易计算, 可在后面仿真时再确定。
T=0.001s, 占空比粗略地取为30%, V2 gate 信号触发延时间:(62.5%+(1-30%))*0.001=0.000725s。
3 驱动电路分析与设计图3.1 驱动电路原理图功率MOSFET驱动电路的要求是:(1)开关管开通瞬时,驱动电路应能提供足够充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡;(2)开关管导通期驱动电路能保证MOSFET栅源极间电压保持稳定可靠导通;(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断;(4)关断期间驱动电路最好能提供一定的负电压避免受到干扰产生误导通;(5)另外要求驱动电路结构简单可靠,损耗小,根据情况施加隔离。
湖南科技大学 信息与电气工程学院
《电力电子技术课程设计报告》 题 目:基于单片机集成电路的桥式可逆降压斩波仿真 专 业:电气工程及其自动化 班 级:13级电气三班 * ***** 学 号:********** 指导教师:***
2016年 6 月 17日 2
信息与电气工程学院课程设计任务书 2015 — 2016 学年 第 2 学 期 专业:电气工程及其自动化 班级:13级电气三班 学号:1304010330 姓名:陈美林 课程设计名称 : 电力电子技术课程设计 设计题目:基于单片机集成电路的桥式可逆降压斩波仿真(电源:220V,电机48V,4A,IGBT) 完成期限:自 2016 年 6 月 14 日至 2016 年 6 月 17 日共 1 周 设计依据、要求及主要内容 一、设计依据 设计参数:输出电压48V、电流4A
二、要求及主要内容 1.主电路、保护电路、控制电路设计; 2.主电路元件的参数计算与选择; 3.计算整流变压器参数、选择其容量和规格; 4.主电路中过电压过电流保护电路的选择及相应电路元件的计算与选择; 5.绘制主电路、保护电路、控制电路设计电气系统原理图; 6.写出课程设计报告。其中设计报告要包括有设计的目的,设计原理,设计参数的计算,元器件选型,器件表,电路图的设计说明以及设计的心得等;设计报告3000字以上;
指导教师(签字): 批准日期:2016 年 6月 1日 3
评语: 成绩:
评阅人: 日期:
摘 要 本次电力电子技术课程设计的题目是基于单片机集成电路的桥式可逆斩波电路仿真设计(电源:220V,电机48V,4A,IGBT)。以单片机为核心的桥式可逆斩波电路实现直-直电压的斩波控制,有利于提高变换器的功率密度和功率效率。文章给出其工作模态和工作原理,讨论了三种P W M调制策略,并指出单性调制策略可降低开关损耗。斩波开关元件采用电力电子器件I G B T。系统具有控制灵活、外围器件少、结构简单、精度高、可靠性高等特点,通过仿真得到了验证。 直流斩波电路是城市轨道交通车辆电力牵引系统中广泛应用的电力电子电路,主要用于构成驱动直流电机的调压调速主电路和辅助电路的前级。直流斩波基本电路主要有:降压斩波电路、升压斩波电路、再生斩波电路、多象限斩波电路、多相多重斩波电路和G T O斩波电路等。而桥式可逆斩波电路的特点,具有反应速度快、效率高、开关元件承受反压小的特点。本文给出了桥式可逆斩波电路详细的分析和仿真。 关键词:斩波器 直-直变换器 微控制器 4
目录 1、目的与意义....................................................... 5 2、原理............................................................. 6 2.1设计要求 .................................................... 6 2.2设计方案 .................................... 错误!未定义书签。 2.3电路拓扑图 .................................................. 6 2.3.1主电路 ................................................ 6 2.3.2控制电路 .............................................. 7 2.3.3驱动电路 .............................................. 8 2.3.4保护电路 .............................................. 8 3、器件选型......................................................... 9 3.1 555定时芯片简述 ............................................ 9 3.2主电路参数计算 ............................................. 10 3.2.1占空比 ............................................... 10 3.2.1主电路 ............................................... 10 3.2.2 IGBT................................................. 10 4.1仿真平台 ................................................... 12 4.1.1仿真平台 ............................................. 12 4.1.2仿真过程 ............................................. 12 4.2仿真波形 ................................................... 12 4.2.1输入电压、输出电压 ................................... 12 4.2.2波形输出 ............................................. 13 5、心得体会........................................................ 15 6、参考文献........................................................ 16 7、附录............................................................ 17 7.1器件表 ..................................................... 17 7.2主电路 ..................................................... 18 7.3控制电路 ................................................... 18 7.4驱动电路 ................................................... 19 7.5保护电路 ................................................... 19 7.6总电路图 ................................................... 20 5
1、目的与意义 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,已成为现代电气 工程与自动化专业不可缺少的一门专业基础课,在培养本专业人才中占有重要地位。 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。电力电子技术是应用于电力领域的电子技术。具体的说,就是使用电力电子器件对电能进行变换和控制的技术。所用的电力电子器件均用半导体制成,故也称为电力半导体器件。电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。 随着电力电子技术应用的不断发展,对电力电子器件性能指标和可靠性的要求也日益苛刻。具体而言,要求电力电子器件具有更大的电流密度、更高的工作温度、更强的散热能力、更高的工作电压、更低的通态压降、更快的开关时间,而对于航天和军事应用,还要求有更强的抗辐射能力和抗振动冲击能力。 电力电子课程设计的目的在于进一步巩固和加深所学的电力电子基础知识。使学生能综合运用相关课程的基本知识,培养学生检索文献的能力,特别是利用网络检索需要的文献资料,培养学生综合分析问题、发现问题,解决问题的能力。。以及方案选择等。树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力;迅速准确的进行工程计算的能力,计算机应用能力;用简洁的文字,清晰的图表来表达自己设计思想的能力。 通过课程实际使学生认识到理论与实践相结合的重要性,只靠从书本上学到的知识是远远不够的,显示的生活中需要更为丰富的知识,只有把硕学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在在课程设计工程中查阅资料,了解查阅资料的重要性,鼓励他们克服心理上的不良情绪,不断的学习和解决难题,不断磨练学生意志的过程。通过课程设计是学生所学的基础理论知识得到巩固,并使学生可以运用所学理论知识解决实际问题的初步训练。进一步提高学生的分析、综合能力以及工程设计中分析设计的基本能力,为今后的毕业设计做必要的准备,并为毕业后的工作学习打下了很好的基础。 6
2、原理 2.1设计要求 利用可关断晶闸管(IGBT)、电源电压:1000V、电机电压220V,电流600A
2.2电路拓扑图 2.2.1主电路 桥式可逆斩波电路原理图,如图二所示。设电动机 感应电动势为EM,电感电流正方向为A→B。桥式可逆斩波电路包括四个工作模态。
图二:主电路 1、工作模态1 斩波器工作在第一象限,VT4始终处于导通 状态,VT3为关断状态。VT1导通,VT2关断。电动机工作于第一象限作正转电动运行,同时给电感L充电,电路作为降压斩波器运行。VT1关断时, 电流不能突变,导致VD2导通,电感向电动机供电。 2、工作模态2 斩波器工作在第三象限,VT2始终处于导通 状态,VT1于关断状态。VT3导通,VT4关断。电动机工作于第三象限做反转电动运行,同时给电感L充电,电路作为降压斩波器运行。工作原理与第一象限运行时完全相同。VT3关断时,电流不能突变,导致VD4导通,电感向电动机供电。 3、工作模态3 斩波器工作在第二象限,VT4始终处于导通状态,VT3于关断状态。VT2导通,VT1关断。电动机工作于第二象限正转再生制动运行,速方向不变,电流改变方向,同时给电感L充电,电路作为降压斩波器运行。VT2关断时,电流不能突变,导致VD1导通,EM与UL叠加向直流电源反馈能量。 4、工作模态4 斩波器工作在第四象限,电动机作为反转再 生制动时,电流反向,VT4导通,EM首先向电感L充