再热蒸汽温度控制系统
- 格式:doc
- 大小:116.00 KB
- 文档页数:4
再热蒸汽温度pid控制系统设计
要设计一个再热蒸汽温度的PID控制系统,首先需要确定控制的目标是什么。
再热蒸汽温度是指在汽轮机高压缸和低压缸之间再加热后的蒸汽温度。
该温度的控制对于保证汽轮机的运行稳定性和有效性至关重要。
控制系统可以使用PID控制器来实现。
PID控制器由比例(P)、积分(I)和微分(D)3个部分组成。
控制器将当前的温度与设定的目标温度进行比较,然后根据误差来调整再热蒸汽的加热流量。
具体的PID控制器参数需要根据实际情况来确定。
常用的调节方法是试误法,即不断地使用不同的PID参数进行试验,直到得到满意的控制效果。
除此之外,还需要考虑控制器的输出信号如何作用于加热流量控制系统。
通常需要使用执行器、控制阀门等设备来将信号转换成实际的控制作用。
总之,再热蒸汽温度的PID控制系统设计需要考虑多方面的因素,包括控制器参数的确定、控制信号的传递和执行器的配置等等。
只有全面考虑这些因素,才能实现稳定、高效的控制系统。
电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。
大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。
过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。
使再热器的对流传热加强,达到调温的目的。
优点:反应灵敏,调温幅度大。
缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。
优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。
10级热动《电厂热工过程自动控制》1.掌握自动控制系统中常用的基本术语。
被控量被控对象给定值扰动控制量控制对象2.掌握自动控制系统常见的分类方法,并能够判别实际系统所属类别。
按生产过程中被控量所希望保证的数值分恒值控制系统(过热汽温控制系统再热汽温控制系统) 程序控制系统随机控制系统根据控制系统内部结构分类闭环控制系统(反馈控制系统)开环控制系统复合控制系统3.掌握被控对象分类方法、各类对象的动态特性曲线及其平衡特性。
有自平衡能力的无自平衡能力的有自平衡能力对象:被控对象收到扰动后平衡被破坏,不需要外来的控制作用,而依靠被控量自身变化使对象重新恢复平衡的特性,称为对象的自平衡特性,具有这种特性的被控对象就是有自平衡能力的被控对象。
¥无自平衡能力对象:当这种被控量平衡关系破坏后,被控量以一定的速度继续变化下去而不会自动地在新的水平上恢复平衡,具有这种现象的对象成为无自平衡能力对象。
4.控制器有哪些基本动作规律各种动作规律的阶跃响应曲线,控制动作的特点、参数变化对其控制过程的影响。
比例控制P(有差调节)比例带减小,控制系统稳定性变差,比例带太小将使系统不稳定,系统稳定时比例带越小静态误差越小但被控量振荡加剧积分控制I(无差调节)积分时间T1越小积分作用越强调节阀的动作越快就越容易引起和加剧振荡但与此同时振荡频率将越来越高而最大动态偏差则越来越小被控量最后都没有静态偏差。
微分控制D(超前调节)有某种程度的预见性5.被控对象控制通道、扰动通道的特性对控制质量的影响。
扰动通道(扰动和被控量之间的信息通道)1、放大系数增大静态偏差也增大所以扰动通道的放大系数越小越好对控制越有利2、时间常数越大阶次m越高,被控量受到扰动后的动态偏差就较小,这将有利于控制。
控制通道(控制作用和被控量之间的信息通道)1、放大系数增大静态偏差减小有利控制2、时间常数越大阶次n越大控制作用就较迟缓控制不灵敏,显然不利控制。
6.》7.复杂控制系统主要包括哪几种串级控制系统比例控制系统前馈-反馈控制系统8.串级控制系统基本组成原理,系统中常见术语及其控制作用分析。
再热汽温调节方法
再热汽温调节方法主要包括以下几种:
1. 烟气挡板调节:烟气挡板可以手控或自控,当负荷变化时,调节挡板开度可以改变通过再热器的烟气流量,从而达到调节再热汽温的目的。
例如,当负荷降低时,可以开大再热器侧的烟气挡板开度,使通过再热器的烟气流量增加,提高再热汽温。
2. 烟气再循环调节:利用再循环风机从尾部烟道抽出部分烟气再送入炉膛。
通过对再循环气量的调节,改变经过热器、再热器的烟气量,使汽温发生变化。
3. 摆动式燃烧器:通过改变燃烧器的倾角来改变火焰中心的高度,从而使炉膛出口温度得到改变,以达到调整再热汽温的目的。
4. 再热喷水减温调节:喷水减温器由于其结构简单、调节方便、调节效果好而被广泛用于锅炉再热汽温的细调。
但使用这种方法会使机组热效率降低,因此应尽量减少再热喷水的用量以提高整个机组的热经济性。
以上信息仅供参考,具体采用哪种方法还需要根据实际运行情况来确定。
如需更多信息,建议咨询专业工程师。
主蒸汽、再热蒸汽系统一、作用1、从蒸汽发生器向汽轮机供给蒸汽;2、正常运行时向汽水分离再热器供汽;3、在机组事故冷却时向大气排汽;4、在汽机抽汽未投入时向厂用蒸汽系统供汽;5、在事故时将发生事故的蒸汽发生器隔离;6、防止蒸汽发生器超压。
二、工作原理2.1 主蒸汽系统工作原理主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。
对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。
主蒸汽系统采用“2-1—2”布置。
主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。
发电厂常用的主蒸汽系统有四种形式:(1)集中母管制系统。
其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。
这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。
(2)切换母管制系统。
其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。
它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。
该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。
(3)单元制系统。
其特点是每台锅炉与对应的汽轮机组成一个独立单元,各单元间无母管横向联系,单元内各用汽设备的新蒸汽支管均引自机炉之间的主汽管。
单元制系统的优点是系统简单、管道短、阀门少(引进型300MW级机组有的取消了主汽阀前的电动隔离阀)能节省大量高级耐热合金钢;事故仅限于本单元内,全厂安全可靠性较高;控制系统按单元设计制造,运行操作少,易于实现集中控制;工质压力损失少,散热少,热经济型较高;维护工作量少,费用低;无母管,便于布置,主厂房土建费用少。
再热蒸汽系统工作原理过热蒸汽进入汽机做完功后,蒸汽的压力温度下降,为了循环利用,把这一部分蒸汽引回锅炉的再热器,进行加热,提高蒸汽品性,从而再次做功。
简而言之,通过再热器的蒸汽,就叫再热蒸汽。
再热蒸汽系统的工作原理主要涉及蒸汽在汽轮机中做功后的循环利用过程。
具体过程如下:1.过热蒸汽进入汽轮机首先,过热蒸汽进入汽轮机并在其中膨胀做功,压力和温度降低。
2.肯定蒸汽引出当蒸汽在汽轮机高压缸中膨胀至某一中间压力后,被引出并引回锅炉的再热器。
3.再热过程在再热器中,蒸汽被加热,其温度通常升高至机组额定温度。
这一过程提高了蒸汽的品质,使其能够再次在汽轮机中膨胀做功。
4.返回汽轮机加热后的蒸汽被送回汽轮机的低压缸中继续膨胀做功,直至达到凝汽器的压力。
5.循环继续通过这种方式,蒸汽在汽轮机和锅炉之间形成一个循环,提高了整个动力装置的循环热效率和汽轮机的功率。
6.控制系统在实际操作中,再热蒸汽的温度控制是一个重要的环节,需要根据不同负荷、不同速率下的变负荷过程及特殊工况进行控制。
7.主蒸汽系统对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器进口联箱的再热冷段管道、阀门及从再热器出口联箱至汽轮机中压缸进口阀门的再热热段管道、阀门。
综上,再热蒸汽系统通过在汽轮机内部分阶段引出蒸汽进行加热,然后再次引入汽轮机继续做功,实现能量的循环利用和效率的提升。
为了避免再热蒸汽温度与主蒸汽温度互相影响,在快速、稳定控制主蒸汽温度的前提下,投入再热蒸汽温度控制。
再热蒸汽控制系统通过烟气再循环系统的低温烟气调整燃料的放热量,以增强对流换热,从而实现对再热蒸汽温度的有效调节。
火电厂主蒸汽和再热蒸汽汽温的主要调整方法以火电厂主蒸汽和再热蒸汽汽温的主要调整方法为标题,本文将详细介绍火电厂主蒸汽和再热蒸汽汽温的调整方法。
一、主蒸汽汽温的调整方法主蒸汽汽温是指从锅炉中出来的蒸汽温度,也是火电厂发电的重要参数之一。
主蒸汽汽温过高或过低都会影响发电效率和设备寿命,因此需要对主蒸汽汽温进行调整。
1. 调整给水温度给水温度是指进入锅炉的水温度,它的高低会直接影响到主蒸汽汽温。
当主蒸汽汽温过高时,可以适当提高给水温度来降低主蒸汽汽温;当主蒸汽汽温过低时,可以适当降低给水温度来提高主蒸汽汽温。
2. 调整燃烧控制燃烧控制是指调整燃烧器的燃烧状态,控制燃烧产生的热量和蒸汽量。
通过调整燃烧器的燃烧状态,可以控制主蒸汽汽温的升高和降低。
3. 调整送风量送风量是指送进锅炉的空气量,它的大小会直接影响燃烧的强弱和蒸汽的产生量。
适当增加送风量可以提高燃烧强度,从而升高主蒸汽汽温;适当减小送风量可以降低燃烧强度,从而降低主蒸汽汽温。
4. 调整水位水位是指锅炉内水面的高度,它的高低会直接影响到蒸汽产生量和蒸汽质量。
当水位过低时,会导致蒸汽产生不足,从而降低主蒸汽汽温;当水位过高时,会导致蒸汽含水量过高,从而降低主蒸汽汽温。
因此,需要适时调整水位来保持合适的蒸汽产生量和质量。
二、再热蒸汽汽温的调整方法再热蒸汽汽温是指蒸汽在再热器中再次加热后的温度,也是影响火电厂发电效率和设备寿命的重要参数之一。
再热蒸汽汽温过高或过低都会影响发电效率和设备寿命,因此需要对再热蒸汽汽温进行调整。
1. 调整再热蒸汽温度再热蒸汽温度是指再热器的加热温度,它会直接影响到再热蒸汽汽温的高低。
当再热蒸汽汽温过高时,可以适当降低再热蒸汽温度来降低再热蒸汽汽温;当再热蒸汽汽温过低时,可以适当提高再热蒸汽温度来提高再热蒸汽汽温。
2. 调整再热器的水流量再热器的水流量是指水在再热器内的流量,它的大小会直接影响到再热蒸汽汽温。
适当增加再热器的水流量可以提高再热蒸汽汽温;适当减小再热器的水流量可以降低再热蒸汽汽温。
过热蒸汽和再热蒸汽及减温水系统一、设备资料1.我厂炉膛内前墙布置有六片中温过热器管屏、六片高温过热器管屏,六片高温再热器管屏及一片水冷隔墙,后墙布置两片水冷蒸发屏。
尾部采用双烟道结构,前烟道布置了三组低温再热器,后烟道布置四组低温过热器。
2.过热器系统中设有两级喷水减温器,分别布置与屏过前后。
再热器系统中布置有事故喷水减温器和微喷水减温器,分别布置于低再前后。
过热器减温水来自给水母管,再热器减温水来自给水泵中间抽头。
3.低温过热器、低温再热器管组采用长伸缩式吹灰器吹灰,低温过热器管组间8只,低温再热器管组间6只。
过热器安全阀再热器入口安全阀再热器出口安全阀过热器出口电磁泄放阀二、过热蒸汽及其减温水系统1.过热蒸汽流程从汽包分离出来的饱和蒸汽从汽包顶部的蒸汽连接管引出。
饱和蒸汽从汽包引出后,由饱和蒸汽连接管引入冷却式旋风分离器入口烟道的上集箱,下行冷却烟道后由连接管引入冷却式旋风分离器下集箱,上行冷却分离器筒体之后,由连接管从分离器上集箱引至尾部竖井侧包墙上集箱,下行冷却侧包墙后进入侧包墙下集箱,由包墙连接管引入前、后包墙下集箱,向上行进入中间包墙上集箱汇合,向下进入中间包墙下集箱,即低温过热器进口集箱,逆流向上对后烟道低温过热器管组进行冷却后,从锅炉两侧连接管引至炉膛顶部中温过热器进口集箱,流经中温过热器受热面后,在炉前从锅炉两侧连接管引至炉前高温过热器进口集箱,最后合格的过热蒸汽由位于炉膛顶部的高过出口集箱两侧引出。
2.过热蒸汽温度调节方式过热器系统采取调节灵活的喷水减温作为汽温调节和保护各级受热面管子的手段,整个过热器系统共布置有两级喷水。
一级减温器(左右各一台)布置在低过出口至屏过入口管道上,作为粗调控制屏式过热器出口温度,保护屏式过热器;二级减温器(左右各一台)位于屏过与高过之间的连接管道上,作为细调控制高过出口温度,保证蒸汽参数合格,其主环和付环均为比例积分调节。
3.过热器设计规范4.启动初期过热器温的调整(1)应采用一、二级减温器喷水调节,维持进入屏式过热器和高温过热器的蒸汽温度至少有11℃的过热度。
汽包锅炉蒸汽温度自动调节系统一、蒸汽温度自动调节系统锅炉蒸汽温度自动调节包括过热蒸汽温度和再热蒸汽温度调节。
调节的任务是维持锅炉过热器及再热器的出口汽温在规定的允许范围之内。
1、过热汽温调节任务和特点过热汽温是锅炉运行质量的重要指标之一。
过热汽温过高或过低都会显著地影响电厂的安全性和经济性。
过热汽温过高,可能会造成过热器、蒸汽管道和汽机的高压部分金属损坏,因为超温会引起汽轮机金属内部过大的热应力,会缩短使用寿命,还可能导致叶片根部的松动;过热汽温过低,会引起机组热耗上升,并使汽机轴向推力增大而可能造成推力轴承过载。
过热汽温过低还会引起汽轮机尾部叶片处蒸汽湿度增加,从而降低汽轮机的内效率,并加剧对尾部叶片的水蚀。
所以,在锅炉运行中,必须保持过热汽温长期稳定在规定值附近(一般范围为额定值541±5℃)。
过热汽温调节对象的静态特性是指过热汽温随锅炉负荷变化的静态关系。
过热器的传热形式、结构、布置都将直接影响过热器的静态特性。
对流式过热器和辐射式过热器的过热汽温静态特性完全相反。
对于对流式过热器,当负荷增加时,通过其烟气的温度和流速都增加,因而使过热汽温升高。
而对于辐射式过热器,由于负荷增加时炉膛温度升高不多,而炉膛烟温升高所增加的辐射热量小于蒸汽负荷增大所需要的吸热量。
我们的过热器系统采取了对流式、辐射式和屏式(半辐射式)交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。
引起过热蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、进入过热器的蒸汽温度变化、流过过热器的烟气温度和流速变化等。
归结起来,过热汽温调节对象的扰动主要来自三个方面:蒸汽流量变化(机组负荷变化),加热烟气的热量变化和减温水流量变化(过热器入口汽温变化)。
过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与过热汽温之间的动态关系。
在各种扰动下的过热汽温调节对象动态特性的特点是有迟延和惯性,典型的过热汽温阶跃反应曲线如下图所示。
1000MW二次再热火电机组主蒸汽温度控制策略及工程应用发布时间:2022-12-09T01:46:44.401Z 来源:《中国电业与能源》2022年14期作者:罗贵艺[导读] 蒸汽温度属于火电机组运行的重要参数,同时也是维持主蒸汽温度恒定设计值运行的关键,是保障机组安全、稳定、经济性运行的关键。
罗贵艺广东大唐国际雷州发电有限责任公司广东湛江 524000【摘要】主蒸汽温度属于火电机组运行的重要参数,同时也是维持主蒸汽温度恒定设计值运行的关键,是保障机组安全、稳定、经济性运行的关键。
主蒸汽温度在超过设计值时过热器的管壁金属使用寿命会明显缩短,甚至导致过热器管道被烧毁。
在主蒸汽温度偏低时,会显著降低发电机组的能量转换效率,从而导致机组运行经济性遭受影响。
对此,为了进一步保障火电机组的运行综合水平,本文简要分析1000MW二次再热火电机组主蒸汽温度控制策略及工程应用,希望能够为相关工作者提供帮助。
【关键词】1000MW;火电机组;二次再热循环系统;主蒸汽温度;控制策略0.引言近些年随着我国市场经济的快速发展,社会各界对于电能的需求也在不断增加,这也间接增加了对于火电机组的发电量依赖性。
我国属于当前上百万千瓦超超临界机组装机容量最多的国家,二次再热机组因为较高的热循环效率成为了超超临界机组的重要发展方向。
二次再热机组的重要参数等级明显提升,机炉的结构发生了明显的改变,此时温度控制便成为了重担与难点。
二次再热超超临界机组的汽水工质温度最高值应当控制在末级过热器的出口,也就是主蒸汽温度。
主蒸汽温度的控制对于机组的安全与经济性存在直接影响,但是在控制期间存在的干扰因素过多,例如煤质情况、运行工况、加热面的烟气温度以及流速等,在内外因素影响之下主蒸汽温度的控制会呈现出非线性、明显滞后、反应速度慢等特征。
对此,探讨1000MW二次再热火电机组主蒸汽温度控制策略及工程应用具备显著实践性价值。
1.1000MW二次再热火电机组主蒸汽温度控制策略1.1过热器的布置以某项目为例,该项目主要是应用二次再热技术,过热器系统因为受热面可以结合蒸汽流向划分为两个等级,也就是低温过热器与高温过热器。
锅炉丨二次再热机组再热汽温控制方案研究再热汽温是表征锅炉运行工况的重要参数之一。
汽温过高,会使锅炉受热面及蒸汽管道金属的蠕变速度加快,影响锅炉使用寿命;汽温过低将会引起机组热效率降低,使汽耗率增大,还会使汽轮机末级叶片处蒸汽湿度偏大,造成汽轮机末级叶片侵蚀加剧。
再热汽温对象具有大延迟、大惯性的特点,而且影响再热汽温变化的因素很多,如机组负荷变化、煤质变化、减温水量、受热面结焦、风煤配比、燃烧工况以及过剩空气系数等,汽温对象在各种扰动作用下反映出非线性、时变等特性,使其控制难度增大。
随着电网规模不断增大以及大容量机组在电网中的比例不断增加,电网要求发电机组具有更高的负荷调整范围和调整速率,快速的负荷变化极易导致再热器超温,而大量使用喷水减温又会严重降低机组热效率。
如何保证再热汽温自动调节系统正常投用,同时兼顾机组运行的安全性和经济性,是一个长期而复杂的课题。
随着近年来火力发电技术的不断发展,二次再热超超临界发电技术逐渐成熟,国内已有多台二次再热机组在建或即将开建。
而二次再热机组锅炉增加了一级二次再热循环,锅炉的受热面布置更加复杂,锅炉汽温控制的复杂性和难度也相应增加,其中最主要的在于两级再热汽温的控制。
因此,合理的再热汽温控制是二次再热机组安全性、经济性、可靠性的有力保证。
二次再热机组锅炉特点二次再热机组锅炉相比一次再热增加了一级再热器,主要的蒸汽参数也有很大差异,下表是典型的二次再热π型锅炉与常规的一次再热π型锅炉的主要参数对比。
表1二次再热锅炉与常规一次再热锅炉的主要参数对比从表1可以看出,二次再热锅炉具有以下特征:(1)增加了一级二次再热循环,主汽流量减少,主汽与再热汽之间的吸热比例发生变化。
(2)蒸汽温度调节对象由一次再热的主汽温度、再热汽温度变为主汽温度、一次再热汽温度、二次再热汽温度三个,调节方式和系统耦合将更加复杂。
(3)再热汽温度和给水温度提高,空预器入口的烟温将会提高,导致排烟温度的控制难度增大。
1 蒸汽温度控制系统设计1.1 控制系统任务保证机组的安全经济运行,要求主蒸汽温度为设定值。
过热汽温调节的任务是维持过热器出口蒸汽温度再允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
过热温度过高,可能造成过热器、蒸汽管道和汽轮机的高压部分金属损坏,因而过热温度的上限不应超过额定值5C 。
过热蒸汽温度过低,又会降低全厂的热效率并影响汽轮机的安全经济运行,因而过热汽温的下限一般不低于额定值10C 。
过热汽温的额定值通常在500C 以上。
1.2 控制系统构成控制系统的构成,主要由被控对象——过热器管道,执行机构——执行器(电动喷水阀门),检测变送组件——热电偶或温度变送器,控制系统核心部件——调节器(电动控制器)组成。
其中,被调量(测量值)——主汽温度,调节量(控制信号)——喷水流量,干扰信号——炉膛燃烧情况。
1.3 控制系统结构框图图1-1汽温控制系统结构框图1.4 控制过程简要分析当主汽温度的测量值等于设定值时,喷水阀门不动,系统处在动态平衡状态。
此时,若炉膛燃烧情况发生变化,使汽温上升,造成给定值和测量值产生偏差,则偏差信号经过控制器的方向性判断及数学运算后,产生控制信号使喷水阀门以适当形式打开,喷水量增加。
测量值最终回到设定值,系统重新回到平衡状态。
2 控制系统工作原理系统中有两个调节器,构成两个闭环回路。
内回路祸福回路,包括控制对象、副参数变送器、副调节器、执行器和喷水阀,它的任务是尽快消除减水温度的干扰,在调节过程中起初调作用;外回路或主回路,包括主对象、主参数变送器、主调节器、副回路,其作用是保持过热器出口汽温等于给定值。
主调节器接受被控量出口汽温以及给定值信号,主调的输出给定汽温与喷水减温器出口汽温共同作为副调节器输入,副调节器输出汽温信号控制执行机构位移,从而控制减温水调节阀门的张开闭合程度。
当炉膛燃烧剧烈,过热器管道过热,有喷水量的自发性增加造成干扰,如果不及时加以调节,出口温度将会降低,但因为喷水干扰引起的汽温降低快于出口汽温的降低,温度测量变送器输出的汽温信号会降低,副调节器输出也降低,通过执行器使喷水阀门开度减少,则喷水量降低,使扰动引起的汽温变化波动很快消除,从而使主汽温基本上不受影响。
再热蒸汽温度控制系统
1.再热蒸汽温度控制的目的及原则
对于大容量、高参数机组,为了提高机组循环效率,防止汽机未级带水,大都采用了中间再热系统,新蒸汽以过高压缸作功后,再回到锅炉再热器吸热,被加热后的再热蒸汽送往中、低压缸继续作功。
采用一次中间再热,可使热经济提高约5%。
无论是无中间再热,还是采用一次再热,提高蒸汽温度对提高循环热效率都是有利的,但受金属材料的性能限制,蒸汽温度一般都不能超过580℃。
目前,一般机组都将蒸汽或再热汽温度限制在560℃以下。
再热蒸汽温度系统的目的是为了将再热蒸汽温度控制在某个定值上,不可过高,以防止损坏设备;亦不可过低,以保证机组有较高的效率。
锅炉的尾部烟道由分隔墙分成再热烟道和过热烟道。
再热器及初级过热器,分别安装在这两个烟道中,再热蒸汽温度控制的主要手段是通过改变尾部烟道出口处再热烟道挡板及过热烟道挡板的开度,改变流过再热器通道的烟气流量,从而改变再热蒸汽与烟气换热,达到控制再热汽温的目的。
喷水减温作为辅助控制手段,在挡板开度已无法(或不及)将再热汽温控制住,再热汽温又高过一定值时,则施以喷水,以快速降低再热汽温。
众所周知,再热器用喷水减温控制温度会降低机组循环热效率,是不宜经常采用的一种方法,因此,在这里只是用于温度过高的情况下,所以又称再热减温水为紧急或事故喷水。
2.控制方案及运行特点
图1为控制方案方框图。
2.1 正常情况下,再热蒸汽温度的控制
再热蒸汽温度定值通常是主蒸汽流量的函数。
这个函数关系由图1中的函数发生器f (x )①来描述,图2给出了f (x )①的特性曲线。
再热蒸汽定值也可由运行人员在事故喷水站⒂上手动给出。
究竟采用什么定值,将由图1中切换开关②选择。
当站发出串级“CASCADE ”信号时,切换开关将选用f (x )①的输出,否则是运行人员给定的值。
热再热蒸汽实测温度与其定值在减法器③中求偏差后分别送PID 调节器④和⑤进行P 、I 、D 运
算,以最终消除误差。
很显然,由于再热器布置于对流区,流经再热器的烟气流量的变化会影响到再热汽温,烟气流量增加,会使再热汽温升高。
因此,控制系统中采用了总风量信号特性化后的值,作为控制再热挡板及过热挡板开度的前馈信号。
特性化是由函数发生器f (x )⑥实现。
图3表示了f (x )⑥的特性。
在加法器⑦中,PID 调节器④的输出与前馈信号叠加,其输出经函数发生器f (x )⑧特性化以后,作为过热挡板开度指令。
在加法器⑾中,PID 调节器⑤
的输出与前馈信号叠加,其输出经函数发生器f (x )⑾特性化以后,作为再热挡板开度指令。
当机组负荷较低时,由于对流换热比例较小,再热汽温也比较低。
PID 调节器④和⑤的输出处于反向饱和(0%),送风前馈指令亦较小,所以加法器⑦和⑾的输出值都较小,此时再热器挡板全开,而将过热挡板关到一个较小的开度,以保证让大部分烟气从再热烟道过,从而提高再热蒸汽温度。
随着机组负荷增加,对流换热比例增加,将使再热汽温升高,并可能超过当时负荷下要求的定值,这将使PID 调节器④和⑤的输出增加,加上风量前馈信号增加的因素,加法器⑦、⑩的输出将增加,再热挡板逐渐关小,以减省流经再热器的烟气,降低再热汽温。
过热烟道挡板随之开大。
无论何时过热挡板开度不可以关得太小,从f (x )⑧可以看出,输出最小自动信号为
20%。
一方面是为了给烟气贸下一定的通道,另一方面是因为挡板开度在020%范围变化时,对烟气通流量的影响是极为明显的。
因而,在低负荷下,对初过出口的过热汽温、未过出口的汽温以及再热汽温影响明显,即调节、回路增益较高,对系统动态品质不利,此外若过热挡板关得矿小,很可能使再热汽温升高太多,而使过热汽温很低,而对汽轮机来说,应避免过热汽温与再热汽温之间出现负偏差。
手动时为了防止误将过热挡板完全关闭,所以也应加20%的最小开
度限制。
2.2
2.2.1 当对锅炉进行吹扫
时,BMS 将发出一信号使再热烟道挡板和过热烟道挡板处于全开位置,对应的控制站进入手动方式。
此外,当MFT 时,挡板锁定,两挡板的控制站进入手动方式。
MFT 复位后,将挡板释放至可控制状态。
在锅炉吹扫结束后,BMS 发出一信号,使再热挡板关闭,再热挡板数字控制站面板上的“跟踪”灯亮。
2.2.2 对于本机组来说,冷态起动时,由于旁路不能用,因此,在冲转前再热器中无蒸汽流动,再热器处于干烧状态,此时,虽然锅炉负荷很低,但亦有可能使再热器金属超温,这时可采用两种措施,以避免再热器金属被高温损坏。
一是通过然烧调整,控制炉膛出口的烟温不超过一定温度(约538℃);二是手动使再热烟道挡板处于关闭状态。
2.2.3 如果烟道挡板开度调整难以使再热蒸汽湿度保持在设定值上,那么,当再热蒸汽温度高过定值一定的值(图1中的偏差A )以后,将对再热器入口施以喷水,以快速降低再热蒸汽温度。
PID ⒁的控制信号,将使再热汽温降至“温度定值+A ”的水平上,其后,若挡板调整能使再热汽温继续下降的话,PID 喷水减温系统所用减温水,取自再热器减温水母管。
母管水是从给水示的某一抽头引入的,因而有足够的压头。
减温水以关断阀和调节阀喷向再热器冷端,如图5所示。
2.2.3.1 减温水关断阀控制逻辑① 锅炉蒸汽流量>10%MCR ② 无MFT (主燃料跳闸)。
③ 控制系统对减温水调节阀有一定开度(>2%)。
上述任一条件不满足,(对应③,是指指令<1%),或者实际上调节阀已关闭时,则发出指令,将关断阀关闭。
2.2.3.2 减温调节阀的运行
当下列条件全部满足时,允许对调节阀进行控制。
① 锅炉蒸汽流量>10%MCR (最大连续出力)。
② 无MFT (主燃料跳闸)。
否则,系统发出关闭调节阀的信号,数字控制站面板上的“跟踪”状态灯亮。
减温水控制站处于手动方式。
“跟踪”灯亮时,不可手动改变控制站输出。
3.手/自动控制站运行
3.1再热烟道挡板控制站
显示:PV柱,无。
SP柱,无。
CO柱,显示再热烟道挡板位置信号。
投入自动的条件:无下列信号
①再热烟道挡板位置、总风量、再热汽温测量系统发出“置手动”信号。
②BMS系统在吹扫或MFT时。
否则站切手动,若站不在“跟踪”状态,则可手动改变控制输出。
3.2过热烟道挡板控制站
显示:PV柱,无。
SP柱,无。
CO柱,显示过热烟道挡板位置信号。
投入自动的条件:无下列信号
①过热烟道挡板位置、总风量、再热汽温测量系统发出“置手动”信号。
②BMS系统在吹扫或MFT时。
否则站切手动,若站不在“跟踪”状态,则可手动改变控制输出。
3.3减温水控制站
显示:PV柱,再热蒸汽温度。
SP柱,温度定值(℃)。
CO柱,显示减温水阀控制信号(%)。
投入自动的条件:
①再热汽温测量系统未发出“置手动”信号。
②锅炉蒸汽流量>10%MCR。
③无MFT。
否则站处于手动方式。
手动时,若“跟踪”状态灯不亮。
则可手动改变控制输出。