双曲线的渐近线方程?
=−
2 2
对于双曲线 2 − 2 = 1和它的渐近线 = ± ,
=
y
(, )
将方程中的与互换,就得到双曲线
即 = ± .
− 2 = 1 的渐近线方程 = ± ,
2
2
2
(−, )
规律方法:由双曲线方程求渐近线方程,只需把1变成0,
∴当 ∈
2
+
2
2
> 1.
=
(1, +∞)时,
∈
1+
2
(0, +∞),且增大, 也增大
b
离心率越大, 渐近线y x的斜率越大 双曲线的“张口”越大
a
新知探究
方程
2 2
− 2=1
2
2 2
− 2=1
2
图像
范围
对称性
≤ −,或 ≥
≤ −,或 ≥
≤ −,或 ≥
关于轴、轴、原点对称
( − ,),(,) (, − ),(,)
a
b
y x
y x
渐近线
b
a
= >
离心率
顶点
1. 求下列双曲线的实轴与虚轴的长, 顶点和焦点的坐标, 离心率, 渐近线方程.
2
2
x
y
2
2
2
2
2
2
(1) x 8 y 32; (2) 9 x y 81; (3) x y 4; (4)