一种频率可调超声波驱动电路的设计
- 格式:pdf
- 大小:457.21 KB
- 文档页数:3
一种基于DDS技术的电磁超声激励电源引言电磁超声是一种非接触式的超声检测方法,不需要与被测对象有任何的物理接触,不需要耦合剂,能够应用于被测对象处于高温、高速、粗糙表面的检测条件下。
因为不接触的特点,所以用来激励电磁超声换能器的激励电源是极其重要的一部分,激励电源要产生高峰值电流、窄脉宽特点的电脉冲。
对于不同的被测物体,采用合适的参数激发电磁超声,使电磁超声换能器的电/声转换效率最大化,也是提高信噪比的关键之一。
因此,设计脉冲串频率、个数、相位均可调的激励电源是非常必要的。
本文设计了一种基于DDS技术的电磁超声波激励电源。
1 电磁超声波激励源组成电磁超声波激励电源主要包括DDS信号发生电路、脉冲串控制电路、功率放大电路、阻抗匹配电路,如图1所示。
为了方便调节激发脉冲的频率、相位和控制激发脉冲的个数,上位机与单片机进行串行通讯,用来设定激励电源的参数,单片机控制DDS芯片AD9850产生频率为1 kHz~2 MHz的可调方波信号,单片机控制可编程逻辑器件(CPLD)MAX7064完成脉冲串的个数和相位的设定。
由于信号发生电路产生的脉冲信号功率较弱,电压幅值低,不足于驱动VMOS管,在脉冲发生电路与功率放大电路之间加一级驱动电路,对信号进行放大。
由信号发生器电路和驱动电路组成控制电路,控制 VMOS管的开通和关断。
在VMOS管电路关断时,高压电源通过充电电阻对电容进行充电;当VMOS 管导通时,电容、VMOS管以及探头(包括阻抗匹配电路)形成放电回路,使得在探头两端能够得到高峰值的窄脉宽电脉冲。
为了使电/声转换效率达到最大化,在功率放大电路与换能器之间增加了阻抗匹配电路,由阻抗匹配变压器和电容组成。
功率放大电路采用半桥功率放大方式,其中,功率开关使用MOSFET模块。
2 激励源硬件实现2.1 DDS原理及电路信号发生电路为了得到最佳的电/声转换,激励频率应当与探头的谐振频率一致,因此要求控制信号的频率可以灵活改变。
中北大学课程设计说明书学生姓名:杨胜华学号:**********学院:信息与通信工程学院专业:电子信息科学与技术题目:超声波发射电路设计指导教师:程耀瑜职称: 教授李文强职称:讲师2011 年 1 月 7 日中北大学课程设计任务书2010/2011学年第一学期学院:信息与通信工程学院专业:电子信息科学与技术学生姓名:杨胜华学号:0805014137 课程设计题目:超声波发射电路设计起迄日期:12月26日~1月7日课程设计地点:中北大学指导教师:程耀瑜,李文强系主任:程耀瑜下达任务书日期: 2010 年 12 月 26 日目录一.绪论----------------------------------------------------------------1页1.1课程设计的目的及意义-------------------------------------1页1.2 超声波发射电路的设计思路------------------------------3页1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页2.1 课程的方案设计--------------------------------------------- 4页2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页3.1 触发脉冲产生电路------------------------------------------ 7页3.2发射脉冲产生电路------------------------------------------- 8页3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页绪论1.1课程设计的目的及意义1.1.1目的科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
40kHZ超声波收发电路40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。
F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。
电容C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用9V叠层电池。
测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。
发射超声波信号大于8m。
40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。
T40-16是反馈耦合元件,对于电路来说又是输出换能器。
T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。
S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。
电路工作电压9V,工作电流约25mA。
发射超声波信号大于8m。
电路不需调试即可工作。
40kHZ超声波发射电路(3)40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。
电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40kHZ±2kHZ。
频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。
电感L1与电容C2调谐在40kHZ起作谐振作用。
本电路适应电压较宽(3~12V),且频率不变。
电感采用固定式,电感量5.1mH。
整机工作电流约25mA。
发射超声波信号大于8m。
40kHZ超声波发射电路(4)40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。
其中门YF1与门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。
4mhz超声波电路
4MHz超声波电路通常用于超声波传感器和超声波成像系统。
这样的电路通常包括超声波发射器和接收器,以及驱动和接收电路。
以下是一些可能包括在4MHz超声波电路中的元件和功能:
1. 超声波发射器,超声波发射器是用来产生4MHz的超声波信号的元件。
它可能是一个压电晶体或者超声波换能器,通过驱动电路产生超声波信号。
2. 超声波接收器,超声波接收器用来接收从目标物体反射回来的超声波信号。
它也可能是一个压电晶体或超声波换能器,将接收到的信号转换为电信号。
3. 驱动电路,驱动电路用来驱动超声波发射器,通常会包括适当的信号发生器和放大器,以确保发射器能够产生稳定的4MHz超声波信号。
4. 接收电路,接收电路用来放大和处理从超声波接收器接收到的信号,通常包括放大器、滤波器和解调器等元件,以确保准确地提取目标物体反射回来的超声波信号。
5. 控制电路,控制电路用来控制超声波发射和接收的时序,可能包括时钟电路和触发器等元件,以确保发射和接收的时序精确可靠。
在设计4MHz超声波电路时,需要考虑信号的稳定性、抗干扰能力、功耗和成本等因素。
同时,还需要考虑电路的布局和阻抗匹配等问题,以确保电路能够正常工作并达到预期的性能指标。
希望以上信息能够帮助到你。
4mhz超声波电路4MHz超声波电路是一种常见的电子组件,它具有广泛的应用领域。
本文将介绍一些关于4MHz超声波电路的基本知识和应用。
我们需要了解超声波的定义和原理。
超声波是一种频率高于人类听觉范围的声波,其频率通常在20kHz到1GHz之间。
超声波的产生依赖于压电材料的特性,当压电材料受到电场激励时,会产生机械振动,从而产生超声波。
4MHz超声波电路通常由多个组件组成,包括发射器、接收器和控制电路。
发射器通过将电信号转换为超声波信号来产生超声波。
接收器则将接收到的超声波信号转换为电信号,以便后续处理和分析。
控制电路负责控制整个超声波系统的运行。
在医学领域,4MHz超声波电路广泛应用于超声医学成像。
通过将超声波发送到人体内部,可以获取到人体组织的影像,从而用于诊断和治疗。
超声医学成像具有无创、实时性和可重复性的优点,因此被广泛应用于临床。
4MHz超声波电路还在工业领域有着重要的应用。
例如,它可以用于测量材料的厚度、检测缺陷和定位物体等。
由于超声波在材料中的传播速度取决于材料的物理性质,因此可以通过测量超声波的传播时间来获取关于材料性质的信息。
在生活中,4MHz超声波电路还可以应用于超声波清洁器、超声波距离测量仪等设备中。
超声波清洁器利用超声波的高频振动产生微小的气泡,从而实现对物体表面的清洁。
超声波距离测量仪则利用超声波的传播时间来测量物体与传感器之间的距离。
总结一下,4MHz超声波电路是一种重要的电子组件,具有广泛的应用领域。
它在医学、工业和生活中都发挥着重要的作用。
通过了解超声波的原理和应用,我们可以更好地理解和利用4MHz超声波电路。
希望本文对读者有所启发,增加对超声波技术的了解。
超声波发射和接收电路在本设计中,我们设计的发射和接收电路都是分别只有一个,通过继电器进行顺、逆流方向收发电路的切换,这样做既降低了成本,又消除了非对称性电路误差,且发射脉冲通过使用单独的继电器分别对发射和接收换能器进行控制,使换能器的发射和接收电路完全隔离,消除了发射信号对接收的影响。
4.2.1超声波发射电路接收信号的大小和好坏直接取决于发射传感器的发射信号,由于使用收发共用型超声换能器,所以除了选用性能优良的超声波传感器外,发射电路和前级信号接收电路至关重要,它决定着整个系统的灵敏度和精度.超声波测量最常用的换能器发射电路大体可分为三种类型:窄脉冲触发的宽带激励电路、调制脉冲谐振电路和单脉冲发射电路。
从早先国内进口的日本超声波流量计来看,基本都采用的是窄脉冲驱动电路.这种电路在设计上一般是用一个极快速的电子开关通过对储能元件的放电来实现,这些开关器件通常为晶闸管或大功率场效应管(MOSFET).由于需要输出激励信号的瞬时功率大,因此开关器件必须由直流高压供电,一般要达到几十到一百伏以上,这在电池供电的系统中无法实现;此外,开关瞬间会产生高压脉冲,对整个电路的抗干扰设计不利。
而脉冲谐振电路设计起来比较简单,其基本方法是用振荡电路产生一个高频振荡,经过幅值和功率放大后接至换能器,使换能器发出超声波,确保高频振荡的频率与换能器固有频率一致,则可获得超声发射的最佳效果。
谐振电路能够使用较低的电压产生较强的超声波发射,适合使用电池供电的系统,而且它能精确地控制发射信号,效率高.在本设计中,超声发射电路采用了连续脉冲发射电路,它由脉冲发生、放大电路构成,具体电路连接如图17所示。
单片机发出的方波信号经三极管放大和变压器升压,达到足够功率后推动换能器超声超声波,这里变压器的主要用途是升高脉冲电压和使振荡器的输出阻抗与负载(超声换能器)阻抗匹配,变压器与探头接成单端激励方式。
图17超声波发射电路4.3。
2 超声波接收电路发射换能器发出超声波信号后,信号经过流体传播到接收换能器,中间有杂 质和气泡等影响,强度不断减小,并且强度也不稳定。
用单片机实现频率可调的PWM控制信号作者:林广峰来源:《科技传播》2010年第12期摘要本文介绍了一种用51系列单片机的定时器来实现频率可调的PWM信号,提供了一种可靠、有效、灵活的方法,信号准确、稳定,频率和占空比调节方便、直观,电路简单、集成度高,成本低,最高可实现几十KHz频率和占空比可调的PWM信号。
可作为各种需要PWM控制的信号源发生器。
关键词单片机;定时器;频率;PWM;占空比中图分类号TP368.1文献标识码A 文章编号 1674-6708(2010)21-0220-020 引言在嵌入式系统及控制系统中,经常需要产生特定频率和PWM的方波脉冲信号,以便实现精确的控制过程。
在实际应用中,为了达到最佳的控制,往往需要对驱动控制信号的频率和占空比都能够按要求进行调节,也就是需要实现可调频率的PWM控制。
在传统电路中,用555来实现的是比较经典的电路,但通过R、C来调节脉冲时,频率和占空比可调的范围不大,器件的误差带来的影响较大,调节时不直观,调节参数具有一定的离散性,不利于批量生产。
对于需要经常改变参数的情况更不方便。
随着数字技术的不断发展,单片机的性能越来越强,价格也越来越低,51系列作为非常成熟的8位单片机,在国内得到了广泛的应用。
采用51系列单片机除了能完成所需的控制功能外,完全能够实现对方波信号的频率和占空比的调节,不再需要额外的信号发生电路,采用软件控制这种方法,电路简单,调节方便,显示直观,误差小,一致性好,可靠性高。
1 实现原理脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,它是通过调节方波的占空比来实现的,只要占空比的步进精度足够,就可以通过PWM来实现数字输出信号对模拟电路的有效控制,比如灯光的亮度、流量的控制、开关电源电压的控制等等。
脉冲宽度调制在工业控制、电源变换、测试测量、通信等领域都有广泛的应用。
在一些文献中,产生各种波形信号,采用的是软件延时的方式,但这种方式占用了单片机的处理时间,且精度不易控制,尤其是在调节时计算比较复杂,本文采用的是定时器中断方式,单片机通过中断来产生对应的脉冲信号,还可以同时进行其他输入、输出控制功能,定时器的精度较高,调节时也仅需通过软件调整对应的设置值即可。
超声波电机驱动电源的设计作者:***指导老师:***摘要:本文阐述了超声波电机的发展,应用前景,驱动原理及其对驱动电源的要求,在此基础上设计了一种驱动电源。
该驱动电源结构简单、成本低廉,可直接用市电为其供电。
针对该电源,尤其是信号发生单元,分频移相单元,功率放大单元以及12V直流供电单元,进行了详细的电路设计。
文章最后给出了该电源的仿真结果及安装调试结果,并指出了对该方案进一步进行改进的措施。
关键词:超声电机;驱动电源;占空比Design of Driving Power of Ultrasonic MotorAbstract:This paper describes the development of ultrasonic motors, prospects driving principle and the requirements on the drive power. Based on these , it designs of a drive power. The drive power is simple, low cost and can be directly used for electricity supply. For the power supply, especially in the signal units, sub-frequency phase shift unit, power amplifier module and 12V DC power supply unit, it provides a detailed circuit design. Finally this paper gives the power of the simulation results and the installation results, and points out the program of measures for further improvement.Key words: ultrasonic motor ; driving power ;duty ratio目录1、绪论 (1)1.1、超声波电机 (1)1.1.1、超声波电机的工作原理 (1)1.1.2、超声波电机的特点 (2)1.1.3、超声波电机的应用及前景展望 (2)1.2、超声波电机电源 (4)1.2.1、超声波电动机对驱动电源的要求 (5)1.2.2、超声波电机电源的国内外发展现状 (5)1.3、本设计的特点 (6)2、整体设计 (6)2.1、整体设计要求 (6)2.2、整体设计框架 (6)3、各单元设计 (8)3.1、信号发生单元 (8)3.2、分频及移相单元 (10)3.2.1、采用双向移位寄存器40194构成移相电路 (10)3.2.2、采用D触发器构成分频移相电路 (10)3.3、功率放大单元 (12)3.4、12V直流供电单元 (15)3.5、显示单元 (16)4、仿真结果 (16)5、安装调试 (18)6、改进措施 (18)7、结束语 (19)8、致谢 (19)参考文献 (21)附录完整电路图 (23)1、绪论超声电机是20世纪70年代发展起来的一种新型电机,以其不同于传统电磁电机的独特优势近年来得到迅猛发展。