电火花加工工艺规律
- 格式:pptx
- 大小:8.38 MB
- 文档页数:73
第三章 电火花加工工艺规律3.1 电火花加工的常用术语电火花加工中常用的主要名词术语和符号如下:1.工具电极电火花加工用的工具是电火花放电时的电极之一,故称为工具电极,有时简称电极。
由于电极的材料常常是铜,因此又称为铜公(如图3-1所示)。
图3-1 电火花加工示意图2.放电间隙放电间隙是放电时工具电极和工件间的距离,它的大小一般在0.01~0.5 mm 之间,粗加工时间隙较大,精加工时则较小。
3.脉冲宽度ti(μs)脉冲宽度简称脉宽(也常用ON 、TON 等符号表示),是加到电极和工件上放电间隙两端的电压脉冲的持续时间(如图3-2所示)。
为了防止电弧烧伤,电火花加工只能用断断续续的脉冲电压波。
一般来说,粗加工时可用较大的脉宽,精加工时只能用较小的脉宽。
图3-2 脉冲参数与脉冲电压、电流波形4.脉冲间隔to(μs))脉冲间隔简称脉间或间隔(也常用OFF 、TOFF 表示),它是两个电压脉冲之间的间隔时间(如图3-2所示)。
间隔时间过短,放电间隙来不及消电离和恢复绝缘,容易产生电弧放电,烧伤电极和工件;脉间选得过长,将降低加工生产率。
加工面积、加工深度较大时,脉间也应稍大。
5.放电时间(电流脉宽)te(μs)21—工具电极;2—工件;3—脉冲电源;4—伺服进给系统放电时间是工作液介质击穿后放电间隙中流过放电电流的时间,即电流脉宽,它比电压脉宽稍小,二者相差一个击穿延时td 。
ti 和te 对电火花加工的生产率、表面粗糙度和电极损耗有很大影响,但实际起作用的是电流脉宽te 。
6.击穿延时t d (μs)从间隙两端加上脉冲电压后,一般均要经过一小段延续时间t d ,工作液介质才能被击穿放电,这一小段时间t d 称为击穿延时(见图3-2)。
击穿延时t d 与平均放电间隙的大小有关,工具欠进给时,平均放电间隙变大,平均击穿延时t d 就大;反之,工具过进给时,放电间隙变小,t d 也就小。
7.脉冲周期t P (μs)一个电压脉冲开始到下一个电压脉冲开始之间的时间称为脉冲周期,显然t P =t i +t o (见图3-2)。
电火花加工工艺规律
1、电火花加工的异常放电
异常放电形式
异常放电产生的原因
2、表面变质层
表面变质层的产生
表面变质层对加工结果的影响
3、电蚀产物
电蚀产物的种类
电蚀产物的危害
电蚀产物的排除
4、电极耗损
电极材料和电火花工作液
1、电极材料
2、电火花工作液
(1)电火花工作液的主要作用
(2)电火花工作液的种类及特性
选择加工规准
1、电规准及其对加工的影响
(1)电规准的重要参数是:
①脉冲宽度Ton,又称持续放电时间。
②脉冲间隔了Toff,又称放电停歇时间。
③脉冲峰值电流Tp,正常放电时的脉冲电流幅值。
除此之外,以下几个参数对加工也有一定影响:
①击穿电压,每个脉冲放电的起始电压。
②脉冲放电波形,分为空载波形和放电波形。
③放电脉冲的前后沿,即电流的上升梯度和下降梯度di/dt。
④平均加工电流Im,放电时的间隙平均电流。
⑤单个脉冲能量,每个脉冲的能量,通常以Ip×Ton计。
⑥脉宽峰值比,即Ton/Ip。
大多数脉冲电源输出的放电脉冲是固定的(Ton、Toff、Ip),改变参数要人工调节。
适应控制的脉冲电源则可以根据加工状态的不同,自动调节Ton、Toff、Ip中的一个或全部。
(2)电规准对加工的影响
•2、正确选择加工规准
•为了能正确选择电火花加工参数规准,人们根据工具电极、工件材料、加工极性、脉冲宽度、脉冲间隔、峰值电
流等主要参数对主要工艺指标的影响,预先制定工艺曲线
图表,以此来选择电火花加工的规准。
电火花加工的基本规律和脉冲电源电火花加工是一种利用电火花放电原理进行金属材料加工的方法。
它是通过将电极和工件之间产生高频脉冲电流,并产生电火花放电,利用电火花的热能和电弧冲击力来实现材料的剪切、腐蚀和熔化等加工过程。
电火花加工具有高精度、高表面质量和适用于任何导电材料等特点,广泛应用于模具制造、航空航天、汽车制造等领域。
脉冲电源是电火花加工中的重要组成部分,它提供脉冲电流来驱动电火花放电。
脉冲电源的设计和控制能直接影响到电火花加工的效果和加工质量。
脉冲电源一般由脉冲发生器、电源装置和控制系统组成。
脉冲发生器产生高频脉冲信号,电源装置将脉冲信号转化为脉冲电流供给电极和工件,控制系统对脉冲电流进行调节和控制。
电火花加工的基本规律是在电极与工件之间产生电火花放电时,电极和工件表面的金属材料发生溶解、蒸发和氧化等物理化学变化,从而实现材料的剪切、腐蚀和熔化。
电火花加工的基本规律可以总结为以下几点:1. 放电能量与电极间隙大小有关:电火花加工是利用电火花放电来实现材料加工的,放电能量与电极间隙大小有关。
当电极间隙较小时,放电能量较大,加工效果较好;当电极间隙较大时,放电能量较小,加工效果较差。
2. 放电能量与脉冲电流参数有关:放电能量与脉冲电流的脉宽、峰值电流和重复频率等参数有关。
脉冲电流的脉宽决定了电火花的持续时间,峰值电流决定了放电能量的大小,重复频率决定了放电的频率。
合理选择脉冲电流参数可以实现不同材料的加工。
3. 放电能量与电极材料有关:电火花加工电极通常采用铜、铜合金或铜镍合金等导电性好的材料。
放电能量与电极材料的热导率、电导率和耐磨性等性能有关。
高热导率和电导率的电极能快速散热,减少电极烧蚀;耐磨性好的电极能提高加工寿命。
4. 放电能量与工作液有关:电火花加工过程中需要用到工作液来冷却电极和冲洗加工区。
工作液的性能对放电能量和加工效果有影响。
一般来说,工作液应具有较高的电导率、热导率和冷却性能,以提高放电能量和加工质量。
机械制造电火花加工技术机械制造是现代制造业的重要组成部分,而电火花加工技术则作为一种特殊的加工工艺,在机械制造中起着重要的作用。
本文将深入探讨机械制造中的电火花加工技术,包括其定义、原理、应用以及未来发展方向。
一、电火花加工技术的定义电火花加工技术,也称为放电加工技术,是利用电火花在工件与电极之间的放电裂谷中产生的高温、高压等物理效应,对工件进行加工的一种非接触式加工方法。
该技术主要适用于导电性好的金属材料,如铜、铝、钢等。
二、电火花加工技术的原理电火花加工技术主要基于工件与电极之间发生的电火花放电现象,该现象产生的高温和高压可以使工件表面发生熔化、蒸发以及电化学反应,从而实现对工件的精密加工。
电火花加工技术通常采用脉冲电源,通过电极与工件的间隙中的电离气体形成放电通道,电火花能量在放电区域形成微小的电脑加工坑或有规律的加工形貌。
三、电火花加工技术的应用1. 模具制造:电火花加工技术在模具制造中有着广泛的应用。
通过电火花加工技术可以对模具进行复杂的零件加工,如线切割、冲击孔、镜面抛光等。
这些加工过程可以大幅度提高模具的加工精度和表面质量。
2. 航空航天领域:在航空航天领域,电火花加工技术主要应用于航空发动机燃烧室、涡轮叶片等高精度复杂零件的制造。
电火花加工技术可以实现对大型、复杂零件的高效精密加工,提高零件的一致性和可靠性。
3. 高精密仪器制造:电火花加工技术在高精密仪器制造方面具有独特的优势。
通过电火花加工技术可以对微型零件进行加工,如微机械零件、微细结构等。
该技术在生物医学仪器、精密仪器等领域有着广泛的应用前景。
四、电火花加工技术的未来发展方向1. 高能源电火花加工技术:随着工业需求的不断增长,对电火花加工的精度和效率提出了更高的要求。
未来的发展方向之一是开发高能源电火花加工技术,以提高电火花的能量密度,实现更高的加工效率和加工精度。
2. 绿色环保电火花加工技术:传统的电火花加工技术通过进行大量的放电加工来实现对工件的加工,这样容易产生大量的废弃物和环境污染。