当前位置:文档之家› 传统超导的基本性质和理论

传统超导的基本性质和理论

传统超导的基本性质和理论
传统超导的基本性质和理论

※超导简介与超导材料的历史

神奇的超导:超导简介与超导材料的历史 神奇的超导 罗会仟周兴江 一、什么是超导? 电阻起源于载流子(电子或空穴)在材料中运动过程中受到的各种各样的阻尼。按照材料的常温电阻率从大到小可以分为绝缘体、半导体和导体。绝大部分金属都是良导体,他们在室温下的电阻率非常小但不为零,在10-12 mΩ?cm量级附近。自然界是否存在电阻为零的材料呢?答案是肯定的,这就是超导体。当把超导材料降到某个特定温度以下的时候,将进入超导态,这时电阻将突降为零(图1),同时所有外磁场磁力线将被排出超导体外,导致体内磁感应强度为零,即同时出现零电阻态和完全抗磁性。超导态开始出现的温度一般称为超导临界温度,一般定义为Tc。微观上来说,当超导材料处于超导临界温度之下时,材料中费米面附近的电子将通过相互作用媒介而两两配对,这些电子对将同时处于稳定的低能组态,叫“凝聚体”。在外加电场驱动下,所有电子对整体能够步调一致地运动,因此超导又属于宏观量子凝聚现象。对于零电阻态,实验上已经证实超导材料的电阻率小于10-23 mΩ?cm,在实验精度允许范围内已经可以认为是零。如果将超导体做成环状并感应产生电流,电流将在环中流动不止且几乎不衰减。超导体的完全抗磁性并不依赖于超导体降温和加场的次序,也称为迈斯纳(Meissner)效应。一个材料是否为超导体,零电阻态和完全抗磁性是必须同时具有的两个独立特征。

超导态下配对的电子对又称库珀(Cooper)对。配对后的电子将处于凝聚体中,打破电子对需要付出一定的能量,称为超导能隙,它反映了电子间的配对强度。一般来说,超导态在低外磁场及低温下是稳定的有序量子态。超导体的一系列神奇特性意味着我们可以在低温下稳定地利用超导体,比如实现无损耗输电、稳恒强磁场和高速磁悬浮车等。正因如此,自从超导发现以来,人们对超导材料的探索脚步一直不断向前,对超导微观机理和超导应用的研究热情也从未衰减。随着对超导研究的深入,一系列新的超导家族不断被发现,它们展现的新奇物理现象也在不断挑战人们对现有凝聚态物理的理解,同时实验技术手段也因此得以加速进步,理论概念更是取得了诸多飞跃。已逾百年的超导研究,在诸多科学家的推动下,依旧不断展示新的魅力! 金属Hg在4.2K以下的零电阻态

圆的基本概念和性质教学设计

圆的基本概念和性质教学设计 教学设计思想 圆是初中几何中重要的内容之一。本节通过第一课时建立圆的基本概念,认识圆的轴对称性与中心对称性。讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验;第二课时在第一课时的基础上,掌握垂径定理及其逆定理;第三课时加深学生对弦、弧、圆心角之间关系的认识;第四课时的重点是圆周角,通过圆周角定理及其推理的推理论证,从而把圆周角、圆心角、弧和弦之间的关系展现出来,从而使学生全面了解和掌握圆的基本性质。教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性。 数学源于生活,又服务于生活,最终要解决生活中的问题。利用电子白板教学帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。 教学目标 圆的基本概念和性质总目标: 1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角、圆周角之间的关系; 2、掌握垂径定理及推论的意义及应用,掌握圆心角与弧、弦关系定理意义及应用,掌握圆周角定理及推论的意义和应用; 3、探索圆周角与圆心角、弧、弦的关系,理解并会证明圆周角定理及其推论,理解圆内接四边形的对角互补。 第一课时教学目标 知识与技能: 1、经历圆的形成过程,理解圆的概念, 2、能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等; 3、认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形; 过程与方法: 1、经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念; 2、通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法; 情感态度价值观: 经历探索圆及其有关结论的过程,发展学生的数学观察及思考能力以及问题的提出能力。 教学重难点 重点:(1)了解圆的概念的形成过程;(2)揭示与圆有关的本质属性。 难点:圆的概念的形成过程和圆的定义。 学情分析

圆的基本概念和性质—知识讲解(提高)

圆的基本概念和性质—知识讲解(提高) 【学习目标】 1.知识目标:理解圆的有关概念和圆的对称性; 2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,?圆的对称性进行计算或证明; 3.情感目标:养成学生之间发现问题、探讨问题、解决问题的习惯. 【要点梳理】 要点一、圆的定义及性质 1.圆的定义 (1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”. 要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线. (2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合. 要点诠释: ①定点为圆心,定长为半径; ②圆指的是圆周,而不是圆面; ③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面. 2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴. 要点诠释: ①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”. 3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线). 要点二、与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距.

余数性质及同余定理(B级) 1

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 二、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 知识框架 余数性质及同余定理

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4 3.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同. 一、同余定理 1、定义 整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm) 2、同余的重要性质及举例。 〈1〉a≡a(modm)(a为任意自然); 〈2〉若a≡b(modm),则b≡a(modm) 〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm); 〈4〉若a≡b(modm),则ac≡bc(modm) 〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm); 〈6〉若a≡b(modm)则an≡bm(modm) 其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性" 注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类: 〈1〉用2来将整数分类,分为两类: 1,3,5,7,9,……(奇数); 0,2,4,6,8,……(偶数) 〈2〉用3来将整数分类,分为三类: 0,3,6,9,12,……(被3除余数是0) 1,4,7,10,13,……(被3除余数是1) 2,5,8,11,14,……(被3除余数是2)

(整理)※超导的理论发展.

神奇的超导:超导理论的发展 超导理论的发展 超导现象被发现以后,许多理论物理学家试图对超导的起源进行理论上的描述。然而,超导微观机理的建立经历了一个艰巨而曲折的漫长过程。20世纪初期,许多顶级的理论物理学家都试图从量子力学基础上理解超导电性,但最终并没有获得成功,其中包括爱因斯坦,玻尔,海森伯,费曼等。直到超导发现近50年后,超导微观理论才被建立。 图3.第一类超导体和第二类超导体的磁场-温度相图 在最初对超导电性的认识过程中,唯象理论起到了非常重要的作用,如二流体模型和伦敦(London)方程等。其中最著名的是前苏联物理学家金茨堡(Ginzburg)和朗道(Landau)于1950年建立的金茨堡-朗道理论(简称G-L理论),他们从热力学统计物理角度描述了超导相变。G-L理论以朗道的二级相变理论为基

础,假设了超导态和正常态之间的相变可以用一个所谓相变序参量来描述,从而推导出超导转变附近的临界行为。G-L理论告诉我们,外磁场并不是完全不可以进入超导体,实际上它穿透进入了超导体的表面。即使在超导临界温度以下,如果外磁场足够强,那么它也可以完全进入超导体而彻底破坏超导态,即恢复到正常态。能够破坏超导态的磁场称为临界场Hc,一些超导体只存在一个临界场,称为第一类超导体。而实际上大部分超导体存在两个临界场,即下临界场Hc1和上临界场Hc2,这些超导体被称为第二类超导体(图3)。当磁场增加到下临界场时,磁场将进入超导体内部,完全抗磁性被破坏,但是超导电子对仍然以超导环流的形式存在,零电阻态还被保持,这个中间状态被称为混合态;当磁场进一步增强到上临界场时,零电阻态也被彻底破坏,超导体恢复到有电阻的正常态。1957年,阿布里科索夫(Abrikosov)从G-L方程导出,在第二类超导体中,磁场其实是以量子化的量子磁通涡旋进入超导体内部的,一个磁通量子为Φ0 = h/2e(约为2.067×10-15Wb)。在低温和低场下,量子磁通涡旋将有序地排列,如图4所示。量子化的磁通很快就被实验所证实,并开辟了涉及超导应用的一个重要领域——超导体的磁通动力学研究。G-L方程的发展为其他物理学领域注入了活力,如其四维扩展柯尔曼-温伯格(Coleman- Weinberg)理论等在量子场论和宇宙学都取得了重大的成功。

余数性质及同余定理(B级)

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 一、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 余数性质及定理 知识框架

超导原理

超导原理 超导的发生,是核外电子运动所引起的物质特性明显的变化的结果:在很低的温度下,价电子运转在固定的平面上,达到临界温度,运转速率更低。核心习惯于常温下的核外电子快速运转,低速运转的电子形成了核外电子的缺失。核心就挪用相邻核心的外电子,接着形成所有核心连续地挪用相邻电子——形成外电子公用。核心把公用的电子当成自己所需求的电子一部分,用核心的库仑力去顺势输运它,让其在自己身边流过,于是就形成了电子流——超导电流。 核心把外来(公用)的电子流当成自己所需求的电子一部分,用核心的库仑力(原子核吸引核外电子使电子绕核运转的力)去顺势输运它,让其在自己身边流过,在顺序排列的原子核库仑力的接力输送下,电子直截在其间畅通无阻,于是超导电流不仅不受到阻力,而且还获得了一份来自核心的输运力。在顺序排列的原子核库仑力的接力输送下,电子直截在其间畅通无阻,形成了电阻为零的超导现象。 正因为超导电流获得了核心的输运力,所以它能像核外电子那样永恒不断的运动,流速均衡、电阻为零,保持永恒的电流。 尽管库伯对理论获得了诺贝尔奖,也实在不敢恭维,首先,两个电子如何能紧密结成对?这直接违背同性相斥的自然原理。其次,超导体的电流走的不是匀速直线,必定有能量损失,所谓理论连核心的输运力都没有想到、没有提到,说的再复杂,再冠冕堂皇,不符合自然能量守恒法则肯定不是事实。 由于超导发生是大量的电子群集流动。大量电子的定向运动,伴

生着很强的电磁波,伴生着极强的磁场。磁共振成像的磁场就是由超导原理提供。 物质的超导特性与温度密切相关,而且极具规律。再一次为核外电子的运转线路、速率决定物质的各种特性;线路、速率的变化改变物质特性的论点提供了有力的例证。 超导的抗磁性 超导时大量电子在物体内均衡畅通地在核心边流动,成了核外电子的组成部分,大量电子的定向流动伴生着很强的磁场。外磁场会干扰电子的定向运动,所以伴生的磁场必须把外磁场抵制在外,于是就形成了很强的抗磁性。 实验表明,金属物体(第一类超导体)在超导时,外磁场从超导体内完全排出,表现出很强的抗磁性,又称迈斯纳效应。若外磁场太强,干扰电子不能形成整齐的定向运动,即使到了临界低温,超导也不能发生。这种情况正好映证以上讲的电—磁伴生现象。 同样,内磁场强的物体也难以发生超导,铁磁性或反铁磁性金属因其内部结构元的排列使得部分价磁力叠加,内磁场较强,阻止电子直线定向流动,因而不具有超导性能。而且磁性物质的微粒——杂质也会阻断核外电子共用,影响超导发生。 第二类超导体 大自然往往是戏剧性的展示其风采,近些年发现的超导材料并不是在传统上被认为良导体的金属及其合金中,而是在常态下导电性能很差的氧化物体系的陶瓷中,这就是所谓第二类超导体。

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

1.同余的概念及基本性质

第三章 同余 §1 同余的概念及其基本性质 定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作 ()\mod a b m ≡. 甲 ()mod . a a m ≡ (甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.) 乙 若()mod ,a b m ≡则()mod .b a m ≡ 丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡?- 证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是, ()12,|.a b m q q m a b -=-- 反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是, ()()1221. r r m q q a b -=-+- 故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡ 丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡± 证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-

4.1基本概念及一次同余式

1. 同余方程15x ≡12(mod99)关于模99的解是__ x ≡14,47,80(mod99)_。 2. 同余方程12x+7≡0 (mod 29)的解是__ x ≡26 (mod 29)_____. 3. 同余方程41x≡3(mod 61)的解是__ _ . 4. 同余方程9x+12≡0(mod 37)的解是___ x ≡11(mod 37)______ 5. 同余方程13x ≡5(mod 31)的解是_ x ≡ 29(mod 31)__ 6. 同余方程24x ≡6(mod34)的解是__ x ≡13,30(mod34)__ 7. 同余方程26x+1≡33 (mod 74)的解是__ x ≡24,61 (mod 74)_ 8. 同余方程ax +b ≡0(mod m )有解的充分必要条件是__()b m a ,_ 9. 21x ≡9 (mod 43)的解是_ x ≡25 (mod 43)__ 10. 设同余式()m b ax mod ≡有解()m x x mod 0≡,则其一切解可表示为_ _ . 11. 解同余式()15mod 129≡x 12. 同余式()111mod 1227≡x 关于模11有几个解?( ) A 1 B 2 C 3 D 4 13. 同余式3x ≡2(mod20)解的个数是( B ) A.0 B.1 C.3 D.2 14. 同余式72x ≡27(mod81)的解的个数是_9_个。 15. 同余方程15x ≡12(mod27) 16. 同余方程6x ≡4(mod8)有 个解。 17. 同余式28x ≡21(mod35)解的个数是( B ) A.1 B.7 C.3 D.0 18. 解同余方程:63x ≡27(mod72) 19. 同余方程6x≡7(mod 23)的解是__ _ . 20. 以下同余方程或同余方程组中,无解的是( B ) A.6x ≡10(mod 22) B.6x ≡10(mod 18) C.???≡≡20) 11(mod x 8) 3(mod x D. ???≡≡9) 7(mod x 12) 1(mod x 21. 同余方程12x ≡8(mod 44)的解是x ≡8,19,30,41(mod 44)____ 22. 同余方程20x ≡14(mod 72)的解是 ___ 23. 下列同余方程无解的是( A ) A.2x ≡3(mod6) B.78x ≡30(mod198) C.8x ≡9(mod11) D.111x ≡75(mod321) 24. 解同余方程 17x+6≡0(mod25) 25. 同余方程3x ≡5(mod16) 的解是___ x ≡7(mod16)____ 26. 同余方程3x ≡5(mod14)的解是_ x ≡11(mod14)的解是__。 27. 同余方程3x ≡5(mod13)的解是__ x ≡6(mod13)_________。 28. 下列同余方程有唯一解的是( C )

超导物理

超导物理 超导物理作为一个有近百年历史的学科,它是随着对超导电性的研究,认识不断发展起来的,特别是20世纪50年代以来取得了一系列重大突破,引发了今天的"高温"超导电性机理及超导材料研究的热潮. "绝对零度先生"昂内斯发现了神奇的超导现象 .昂内斯于1853年9月21日生于荷兰的格罗宁根,29岁即1882年就被任命为荷兰莱顿大学物理学教授和实验室主任.晋升后不久,昂内斯受到他的同胞范德瓦尔斯研究的影响,决定在莱顿大学建一个当时在世界上规模最大的低温实验室, 并把全部研究项目都转到低温研究方面.由于有了较好的实验条件,昂内斯于1906年使用真空泵连续真空法,使低温气体获得最大限度的膨胀,这样,他获得了20.4k(零下252. 76℃)的低温,液化了氢气.由于有了大量液态氢,就为进一步液化氦气打下了坚实的基础. 1808年7月10日,液化氦气的关键性实验从凌晨5点半就开始了,经过漫长的13小时之后,实验室的工作人员才在人类科学史上第一次看到了液态的氦.当时,昂内斯激动得不得了,他激动地说:"当我看到了液氦时,那真有点像神话中的幻觉,一切都似乎是奇迹的显现."在实验过程中昂内斯获得了4.2k(零下268.9 6℃) 的低温. 过了两年,昂内斯进一步做了使氦固化的试验,但是没有成功.虽说氦没有固化成功,昂内斯意外地从中却获得了1.04k(零下272.12℃)的低温.这是人类向绝对零度大大逼近了一步.人们为了尊敬昂内斯的贡献,给他送了一个风趣的绰号叫"绝对零度先生".从此,昂内斯更加专心致志于探索物体在低温时表现出的特殊性质. 昂内斯和他的学生开始用汞作为测量对象,因为他认为金属材料纯净与否会大大影响测量.而汞可以用蒸馏法提炼得非常纯净.1911年4月的一天,昂内斯让他的学生霍尔斯特进行实验观察,在观察中发现当温度到4.2k以下时,电阻突然消失了,这使霍尔斯特大为惊讶.但是,昂内斯并不感到过分吃惊,因为这一实验结果与他的猜想相吻合.4月28日,昂内斯公布了他们的这一重要发现.同年11月25日,他又明确指出,"测量表明,从氢的熔点(14.02k)到氦的沸点(4.56k)之间,曲线显示出汞的电阻随温度下降而减小的速度与通常情形一样,是逐渐减小的;但到4.21k与4.19k之间,电阻减小的速度急剧加快;到4.19k时,电阻完全都消失了".就这样,低温超导现象被人类第一次发现. 为了进一步证明电阻真的减到零,昂内斯和他的学生把磁铁穿过水银环路,由于电磁感应产生的电流保持了好几天,这就充分证实了电阻完全消失后的超导现象:即只要超导体内有电流,由于没有电阻,所以原则上电流就会永远流动下去,不会停止.1913年,昂内斯首次在论文中使用了"超导电性"这个词. 美国物理学家巴丁,库珀,施里弗说明了超导现象的微观本质和机制,创立了BCS超导微观理论 超导现象虽说于1911年就发现了,但是直到20世纪40年代末,还只能建立起一个唯象的理论,仅仅只限于解释超导的宏观现象.一直到1957年,关于超导现象的微观本质和它的机制,才由美国物理学家巴丁,库珀和施里弗三人共同解决----他们合作创建了超导微观理论.他们三人创建的这套理论,取每人姓氏的第一个字母进行组合,即被称为"BCS"理论.这一理论提出后,迅即被大量理论研究和实验实践证明它是十分成功的----因为,这一理论能对超导电性作出正确的解释,并极大的促进了电性和超导磁体的研究和应用.所以如此,他们三人于1972年共同获得了诺贝尔物理学奖.

【重点梳理】-初三数学-圆的基本概念和性质(1)

作业帮一课初中独家资料之【初三数学】 1. 圆的定义 (1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆 O”. 要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者 缺一不可; ②圆是一条封闭曲线. (2)静态:圆心为 O,半径为 r 的圆是平面内到定点O 的距离等于定长r 的点的集合. 要点诠释: ①定点为圆心,定长为半径; ②圆指的是圆周,而不是圆面; ③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点 的集合是球面,一个闭合的曲面. 2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对 称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何 一条直线都是圆的对称轴. 要点诠释: ①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”, 而应该说“圆的对称轴是直径所在的直线”. 3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线). 每周六 10 点,【作业帮一课初中】服务号定时上新独家资料,等你来抢~~~ 核心知识点二:与圆有关的概念 1.弦 弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距. 要点诠释: 直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径. 为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD. 证明:连结OC、OD ∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦. 2.弧

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

同余的概念与性质

同余的概念与性质 同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。 性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。 性质2:同余关系满足下列规律: (1)自反律:对任何模m 都有)(mod m a a ≡; (2)对称律:若)(mod m b a ≡,则)(mod m a b ≡; (3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。 性质 3:若,,,2,1),(mod s i m b a i i =≡则 ).(mod ), (mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++ 推论: 设k 是整数,n 是正整数, (1)若)(mod m c b a ≡+,则)(mod m b c a -≡。 (2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。 性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。 性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。 性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

圆基本概念和性质

_O _A 图1 C D 北辰教育学科教师辅导学案 学员编号: 年 级: 课 时 数: 学员姓名: 辅导科目: 学科教师: 授课类型 T 圆的基本概念 C 圆的基本概念 T 圆的对称性 授课日期及时段 年 月 日 00:00--00:00 教学内容 —————圆的基本概念 知识结构 一、圆的基本概念: 1、圆的概念:圆可以看作是到定点的距离等于定长的点的集合。如图,把线段OA 绕着端点O 在平面内旋转1周,端点A 运动所形成的图形叫做圆.其中,固定的端点O 叫做圆心,线段OA 叫做半径.记作⊙O ,读作“圆O ”. 2、 2、圆的半径确定圆的大小;圆心确定圆的位置。 3、圆:圆可以看作是到定点的距离等于定长的点的集合;圆的外部:可以看作是到定点的距离大于定长的点的集合;圆的内部:可以看作是到定点的距离小于定长的点的集合。 4、点与圆的位置关系:点P 与圆心的距离为d ,半径为r,则点在直线外?r d >; 点在直线上?r d =; 点在直线内?r d <。 注意:这里是等价关系,即由左边可以推出右边,由右边也可以推出左边。 二、圆心角、圆周角、弧、弦、弦心距之间的关系 1、弦:连接圆上任意两点的线段,如图1上弦AB ;直径是一条 特殊的弦,并且是圆中最大的弦;从圆心到弦的距离叫做弦心距。 2、直径:经过圆心的弦,如图1上弦CD 。 3、圆心角:顶点在圆心的角,如图2上:∠AOB 。 4、圆周角:顶点在圆上,并且两边都和圆相交的角,如图3上:∠BAC 。 3、 5、同心圆:圆心相等、半径不同的两个圆。 图2

4、 6、等圆:半径相同、圆心不同的两个圆。 5、 7、等弧:能够互相重合的弧。同圆或等圆的半径相等。 注意:半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径。 8、圆的任意一条直径的两个端点吧圆分成两条弧,每条弧都叫做半圆。大于半圆 的弧叫做优弧,小于半圆的弧叫做劣弧。 题型1: 1、概念辨析:判断下列说法是否正确? (1)直径是弦; ( √ ) (2)弦是直径; ( × ) (3)半圆是弧,但弧不一定是半圆; ( √ ) (4)半径相等的两个半圆是等弧; ( √ ) (5)长度相等的两条弧是等弧; ( × ) (6)半圆是弧; ( √ ) (7)弧是半圆. ( × ) 2、如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心, AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________. 解题思路:利用点与圆的位置关系,答案:外部,内部 2、如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连接DE ,点G 、H 在线段DE 上,且DG =GH =HE . (1)求证:四边形OGCH 是平行四边形 (1)连结oc ,交de 于m , ∵四边形odce 是矩形 ∴om =cm ,em =dm 又∵dg=he ∴em -eh =dm -dg ,即hm =gm ∴四边形ogch 是平行四边形 3、已知:如图,AB 是⊙O 的直径,半径OC ⊥AB ,过CO 的中点D 作DE ∥AB 交⊙O 于点E ,连接EO ,则∠EOC 的度数为_____度. 答案:60 通过半径相等,把条件转化到Rt△ODE 中,OD=OE ,利用特殊直角三角形的性质求解 解:∵OD= OC= OE ,OC⊥AB,DE∥AB, ∴在Rt△ODE 中,∠E=30°, ∴∠EOC=90°-30°=60° 图3

第5讲同余的概念和性质

第5讲同余的概念和性质 解题思路:理解并熟记同余的性质,运用同余性质把数化小、化易。 同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为: a≡b(modm). 性质1:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。 ★性质2:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。 ★性质3:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。 性质4:若a≡b(mod m),那么a n≡b n(mod m),(其中n为自然数)。 性质5:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。 例1 判定288和214对于模37是否同余,74与20呢 例2 求乘积418×814×1616除以13所得的余数。 例3 求14389除以7的余数。

例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列 十位,…上的数码,再设M=0a +0a +…+n a ,求证:N ≡M (mod 9) 例6 求自然数1002+1013+1024的个位数字。 习题 1.验证对于任意整数a 、b ,式子a ≡b (mod1)成立,并说出它的含义。 2.已知自然数a 、b 、c ,其中c ≥3,a 除以c 余1,b 除以c 余2,则ab 除以c 余多少 年的六月一日是星期二,这一年的十月一日是星期几 4.求+被7除的余数。

超导体论文

超导体的电磁性质及其应用 院别:物理与电子工程学院 专业:09级物理学 姓名:王雪梅 完成日期:2014 年6 月3 日 摘要:具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料称为超导材料。从1911年荷兰物理学家翁奈首先发现超导现象以来,现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有优越的物理性质和优越的性能,目前已被广泛接受和认同,具有良好的发展前景。 关键词:超导材料;分类;性质;应用;原理;展望 1、引言 1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。 2、分类 元素超导体、合金和化合物超导体,有机高分子超导体三类。 3、性质 3.1零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 超导体的零电阻现象与常导体零电阻在实质上截然不同。常导体的零电阻是指在理想的金属晶体中,由于电子运动畅通无阻,因此没有电阻;而超导体零电阻是指当温度降至某一数值Tc或以下时,其电阻突然变为零。 3.2完全抗磁性 1933年迈斯纳和奥尔德首次发现了超导体具有完全抗磁性的特点。把锡单晶球超导体在磁场(H≦Hc)中冷却,在达到临界温度Tc以下时,超导体内的磁通线一下子被排斥出去;或者先把超导体冷却至Tc以下,再通以磁场,这时磁通线也被排斥出动;如图所示。即在超导状态下,超导体内磁感应强度B=0.这就是迈斯纳效应。 3.3约瑟夫森效应 两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 3.4同位素效应 超导体的临界温度Tc与其同位素质量M有关。M越大,Tc越低,这称为同位素效应。例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146

相关主题
文本预览
相关文档 最新文档