第八章 电子传递与氧化磷酸化
- 格式:ppt
- 大小:5.54 MB
- 文档页数:67
生物氧化与氧化磷酸化一、教学大纲基本要求教学大纲基本要求讲解生物氧化与氧化磷酸化,1.生物能学简介,包括化学反应的自由能,自由能变化与化学反应平衡常数的关系,标准自由能变化的加和性,高能磷酸化合物,生物氧化的概念和特点。
2.线粒体电子传递,包括线粒体电子传递过程,电子传递链,电子传递链有关的酶和载体,电子传递链的抑制剂。
3.氧化磷酸化作用,包括氧化磷酸化的,P/O比和由ADP形成ATP的部位,电子传递和ATP形成的偶联及调节机制概念,氧化磷酸化的偶联机理,氧化磷酸化的解偶联。
二、本章知识要点1、本章概述有机物分子在生物细胞内被逐步氧化生成CO2,并释放出能量。
电子传递和氧化磷酸化作用使NADH和和FADH2再氧化并以ATP捕获释放出的能量。
真核生物电子传递和氧化磷酸化作用在线粒体内膜进行,而原核生物中过程在质膜上进行。
2、自由能变、反应平衡常数、氧化还原电位体系内能用于做功的能量称为自由能。
对化学反应来说,可以把自由能看成促使化学反应达到平衡的一种驱动力。
反应物自由能的总和与产物的自由能总和之差就是该反应的自由能变化(△G)。
当△G<0时体系未达到平衡,反应可以自发正向进行;当△G>0时体系未达到平衡,必须供能反应才能正向进行;当△G=0时反应处于平衡状态。
在参加反应物质的浓度为1mol/L、压力为一个大气压(0.1MPa),温度为25℃、pH=0的条件下进行反应时自由能的变化称为标准自由能变化(△G0)。
标准自由能变化具有加和性。
对生物化学反应而言,在参加反应物质的浓度为1mol/L、压力为0.1MPa,温度为25℃、pH=7.0的条件下进行反应时自由能变为标准自由能变化(△G0)。
生化反应中自由能变与反应的平衡常数间的关系可以用△G0=-RTlnK′eq =-2.303RTlogK′eq。
氧化-还原电位(E)是物质对电子亲和力的量度。
生化反应的标准氧化-还原电势(E0 )是在标准状况(参加反应物质的浓度为1mol/L、压力为0.1MPa,温度为25℃)和pH7的条件下测量的,用伏特表示。
电子从参考电势到样品流动,氧化还原电势为正样品具有较强的受电子影响氧化剂,受电子体例如:O 2,Fe 3+等标准氢电极测试电极盐桥电子从样品流动到参考电势,氧化还原电势为负样品具有较强的电子转移势能还原剂,供电子体例如:NADH,FADH2等氧呼吸链呼吸链膜间腔NADH → NADH-Q 还原酶 → Q → 细胞色素还原酶 → 细胞复合体酶名称多肽链数辅基复合体 Ⅰ复合体 Ⅱ复合体 Ⅲ复合体 ⅣNADH-泛醌还原酶琥珀酸-泛醌还原酶泛醌-细胞色素C还原酶细胞色素C氧化酶3941013FMN,Fe-SFAD,Fe-S铁卟啉,Fe-S铁卟啉,Cu四种具有传递电子功能的酶复合体(complex) 人线粒体呼吸链复合体- 测定各载体的E’o - 测定各载体被氧化的速率- 测定各载体的氧-还状态呼吸链及其相关电子载体的标准还原电势由E ’o 推断的载体顺序:NADH → Q → cyt b → cyt c 1 → cyt c → cyt a → cyt a 3 → O 2e–趋向于自发从E’o较低的载体流向较高在整条载体链被还原后测定各载体的氧化速率ⅠⅣCytcQNAD H +H +延胡索酸琥珀酸1/2O 2+2H +H 2O胞液侧基质侧线粒体内膜e -e -e -e-e-ⅡⅢ以氢负离子( H-)形式转移进入水溶剂异咯嗪结构FMN组成成分作用传递机制2Fe-2S型4Fe-4S型参与单电子转移:Fe-S簇中只有1个Fe被氧化或还原蓝细菌Anabaena7120的铁氧还蛋白为2Fe-2S型仅指无机S为一种脂溶性醌类化合物。
泛醌半醌泛醇5元含氮吡咯环(卟啉)共价原态复合体Ⅰ→FMN; Fe-SN-1a,b; Fe-SN-4;Fe-SN-3; Fe-SN-2膜间隙NADH+H++FMN FMNH2+NAD+复合体ⅡFe-S1; b560; FAD; Fe-S2 ; Fe-S3酶结合位点Fe-S中心细胞质辅酶Q亚铁血红素外周胞质双磷脂酰甘油复合体Ⅲb562; b566; Fe-S; c1细胞色素 c1细胞间隙细胞色素 b细胞色素 c1和细胞色素 b结构示意图细胞色素 c 细胞色素 c1铁硫蛋白细胞色素 b复合体ⅣCuA→a→a3→CuB复合体IV:细胞色素氧化酶激活分子氧H+离子泵鱼藤酮,安密妥,杀粉蝶菌素抗酶素A氰化物,叠氮化物,一氧化碳。
第八章生物氧化课外练习题一、名词解释1、生物氧化:指发生在线粒体内的一系列传递氢和电子的氧化还原反应,有机物质被氧化,生成二氧化碳和水,并逐步放出能量的过程。
2、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有顺序的排列在线粒体内膜上的电子传递体组成的电子传递途径,传递到分子氧的总过程。
3、氧化磷酸化:代谢物氧化脱氢经呼吸链传递给氧生成水的同时,释放的能量使ADP磷酸化生成ATP,由于是代谢物的氧化反应与ADP的磷酸化反应偶联发生,因此称为氧化磷酸化。
二、符号辨识1、Fe-S:铁硫蛋白;2、CoQ:辅酶Q;3、Cyt:细胞色素体系三、填空1、生物氧化通常需要消耗氧,所以又称为(呼吸)作用。
有两种类型的氧化体系,即(线粒体)氧化体系和(非线粒体)氧化体系。
2、生物氧化的方式有(脱氢)氧化、(加氧)氧化和(脱羧)氧化三种。
3、呼吸链的组成成分包括脱氢酶的辅酶(NAD+)和(NADP+)、黄素蛋白的辅基(FMN)和(FAD)以及(Fe-S)蛋白、(泛醌)和(细胞色素)体系。
4、呼吸链的氢传递体既传递质子也传递电子,其类型有(NAD+)、(NADP+)、(FMN)、(FAD)和(UQ)。
5、呼吸链的电子传递体只传递电子,包括(细胞色素)体系、某些(黄素)蛋白和(铁硫)蛋白。
6、泛醌又称为(辅酶Q),广泛存在于动物和细菌的线粒体中。
它是电子传递链中唯一的(非蛋白)电子载体,是一种(脂)溶性醌类化合物。
7、主要的两条呼吸链途径为(NADH)氧化呼吸链和(FADH2)氧化呼吸链,与氧化磷酸化偶联可分别产生(3)分子和(2)分子ATP。
8、ATP酶,由两个主要单元构成,(F0)起质子通道作用,(F1)起催化合成ATP的作用。
9、氧化磷酸化的机制可用Mitchell的(化学渗透)假说予以解释。
10、氧化磷酸化的抑制包括(电子传递)抑制、(解偶联剂)抑制、(ATP酶)的失活以及(离子载体)的影响。
11、细胞的(微粒)体和(过氧化物酶)体中也发现有氧分子直接参与的生物氧化体系。
第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O 并逐步释放能量的过程。
CO2的生成方式为有机酸脱羧。
脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。
有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。
线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。
细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。
从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。
CoQ、Cytc不包含在这些复合体中。
体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。
ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。
氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。
实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。
氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。
底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。
除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。
在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。
胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。
生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。
微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。
第八章生物氧化(6学时)第一节概述生物氧化的一般过程在葡萄糖的分解代谢中,1分子葡萄糖共生成10个NADH和2个FADH2.总的△Gˊ0=-2564.8KJ/mol在燃烧时,1分子葡萄糖可释放出的热 2870.23KJ/mol,因此可推算葡萄糖分子所释放自由能的90%贮存在还原型辅酶中.还原辅酶的再氧化在电子传递过程中,还原辅酶借助O2得以氧化的过程可用下式表示:NADH+H++1/2O2 →NAD++H2O △Gˊ0=-220.07KJ/mol →ATPFADH2 +1/2O2→ FAD+ H2O △Gˊ0=-181.58KJ/mol →ATP产能物质在不同的分解代谢过程中,都伴有代谢物的脱H和辅酶NAD+或FAD的还原.这些携带着H+和e 的还原型辅酶NADH和FADH2,最终将H+和e传递给氧时,都经历相同的一系列电子载体传递过程.第二节线粒体氧化体系(呼吸链)生物体内存在多种氧化体系,其中最重要的是存在与线粒体中线粒体氧化体系。
此外还有微粒体氧化体系、过氧化体氧化体系、细菌的生物氧化体系等。
一、线粒体氧化体系(呼吸链)在生物氧化过程中,代谢物的氢由脱氢酶激活,脱下来的氢经过几种传递体的传递,将电子传递到细胞色素体系,最后将电子传递给氧,活化的氢(H+)和活化的氧(O2-)结合成水,在这个过程中构成的传递链称为电子传递链,或呼吸链。
(一)呼吸链的组成构成呼吸链的成分有20多种。
大致可将它们分成五类。
即以NAD+或NADP+为辅酶的脱氢酶类;以FAD或FMN为辅基的黄素蛋白酶类;铁硫蛋白类;泛醌和细胞色素类。
依具体功能又可分为递氢体和递电子体。
1.递氢体在呼吸链中即可接受氢又可把所接受的氢传递给另一种物质的成分叫递氢体,包括:(1)NAD+NAD+是不需氧脱氢酶的辅酶。
它们分别可与不同的酶蛋白组成多种功能各异的不需氧脱氢酶。
辅酶分子能可逆地加氢和脱氢。
NAD++2H++2e-→NADH+H+(2)FAD和FMNFAD和FMN是黄素蛋白(又称黄素酶)类的辅基。
第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O并逐步释放能量的过程。
CO2的生成方式为有机酸脱羧。
脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。
有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。
线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。
细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。
从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。
CoQ、Cytc不包含在这些复合体中。
体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。
ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。
氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。
实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。
氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。
底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。
除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。
在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。
胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。
生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。
微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。