第三节 电子传递与氧化磷酸化
- 格式:doc
- 大小:925.00 KB
- 文档页数:17
第三节电⼦传递与氧化磷酸化第三节电⼦传递与氧化磷酸化三羧酸循环等呼吸代谢过程中脱下的氢被NAD+或FAD所接受。
细胞内的辅酶或辅基数量是有限的,它们必须将氢交给其它受体之后,才能再次接受氢。
在需氧⽣物中,氧⽓便是这些氢的最终受体。
这种有机物在⽣物活细胞中所进⾏的⼀系列传递氢和电⼦的氧化还原过程,称为⽣物氧化(biological oxidation)。
⽣物氧化与⾮⽣物氧化的化学本质是相同的,都是脱氢、失去电⼦或与氧直接化合,并产⽣能量。
然⽽⽣物氧化与⾮⽣物氧化不同,它是在⽣活细胞内,在常温、常压、接近中性的pH和有⽔的环境下,在⼀系列的酶以及中间传递体的共同作⽤下逐步地完成的,⽽且能量是逐步释放的。
⽣物氧化过程中释放的能量可被偶联的磷酸化反应所利⽤,贮存在⾼能磷酸化合物(如ATP、GTP等)中,以满⾜需能⽣理过程的需要。
线粒体中氧化磷酸化反应的⼀般机理⼀、呼吸链的概念和组成所谓呼吸链(respiratory chain)即呼吸电⼦传递链(electron transport chain),是线粒体内膜上由呼吸传递体组成的电⼦传递总轨道。
呼吸链传递体能把代谢物脱下的电⼦有序地传递给氧,呼吸传递体有两⼤类:氢传递体与电⼦传递体。
氢传递体包括⼀些脱氢酶的辅助因⼦,主要有NAD+、FMN、FAD、UQ等。
它们既传递电⼦,也传递质⼦;电⼦传递体包括细胞⾊素系统和某些黄素蛋⽩、铁硫蛋⽩。
呼吸链传递体传递电⼦的顺序是:代谢物→NAD+→FAD→UQ→细胞⾊素系统→O2。
呼吸链中五种酶复合体(enzyme complex)的组成结构和功能简要介绍如下(图5-11,5-12)。
图 5-11 植物线粒体内膜上的复合体及其电⼦传递Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ分别代表复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ; UQ库代表存在于线粒体中的泛醌库1.复合体Ⅰ⼜称NADH∶泛醌氧化还原酶(NADH∶ubiquinone oxidoreductase)。
基本内容第三节电子传递与氧化磷酸化(electron transport and oxidative phosphorylation)。
有机物质在生物体细胞内进行氧化分解,生成二氧化碳、水和释放能量的称为生物氧化(biological oxidation)。
一、呼吸链(respiratory chain)糖酵解和三羧酸循环中所产生的NADH+H+不能直接与游离的氧分子结合,需要经过电子传递链传递后,才能与氧结合。
电子传递链(electron transport chain)亦称呼吸链(respiratory chain),就是呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程。
组成电子传递链的传递体可分为氢传递体和电子传递体。
氢传递体传递氢(包括质子和电子,以2H++2e-表示),它们作为脱氢酶的辅助因子,有下列几种:NAD(即辅酶Ⅰ)、NADP(即辅酶Ⅱ)、黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),它们都能进行氧化还原反应。
电子传递体是指细胞色素体系和铁硫蛋白(Fe-S),它们只传递电子。
细胞色素是一类以铁卟啉为辅基的结合蛋白质,根据吸收光谱的不同分为a、b和c 3类,每类又再分为若干种。
细胞色素传递电子的机理,主要是通过铁卟啉辅基中的铁离子完成的,Fe3+在接受电子后还原为Fe2+,Fe2+传出电子后又氧化为Fe3+。
植物线粒体的电子传递链位于线粒体的内膜上,由5种蛋白复合体(protein complex)组成(图4-6)。
1、复合体Ⅰ(complex I)也称NADH脱氢酶(NADH dehydrogenase),由结合紧密的辅因子FMN和几个Fe-S中心组成,其作用是将线粒体基质中的NADH+H+的2对电子即4个质子泵到膜间间隙(intermembrane space),同时复合体也经过Fe-S中心将电子转移给泛醌(ubiquinone, UQ或Q)。
第三节电子传递与氧化磷酸化三羧酸循环等呼吸代谢过程中脱下的氢被NAD+或FAD所接受。
细胞内的辅酶或辅基数量是有限的,它们必须将氢交给其它受体之后,才能再次接受氢。
在需氧生物中,氧气便是这些氢的最终受体。
这种有机物在生物活细胞中所进行的一系列传递氢和电子的氧化还原过程,称为生物氧化(biological oxidation)。
生物氧化与非生物氧化的化学本质是相同的,都是脱氢、失去电子或与氧直接化合,并产生能量。
然而生物氧化与非生物氧化不同,它是在生活细胞内,在常温、常压、接近中性的pH和有水的环境下,在一系列的酶以及中间传递体的共同作用下逐步地完成的,而且能量是逐步释放的。
生物氧化过程中释放的能量可被偶联的磷酸化反应所利用,贮存在高能磷酸化合物(如ATP、GTP等)中,以满足需能生理过程的需要。
线粒体中氧化磷酸化反应的一般机理一、呼吸链的概念和组成所谓呼吸链(respiratory chain)即呼吸电子传递链(electron transport chain),是线粒体内膜上由呼吸传递体组成的电子传递总轨道。
呼吸链传递体能把代谢物脱下的电子有序地传递给氧,呼吸传递体有两大类:氢传递体与电子传递体。
氢传递体包括一些脱氢酶的辅助因子,主要有NAD+、FMN、FAD、UQ等。
它们既传递电子,也传递质子;电子传递体包括细胞色素系统和某些黄素蛋白、铁硫蛋白。
呼吸链传递体传递电子的顺序是:代谢物→NAD+→FAD→UQ→细胞色素系统→O2。
呼吸链中五种酶复合体(enzyme complex)的组成结构和功能简要介绍如下(图5-11,5-12)。
图 5-11 植物线粒体内膜上的复合体及其电子传递Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ分别代表复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ; UQ库代表存在于线粒体中的泛醌库1.复合体Ⅰ 又称NADH∶泛醌氧化还原酶(NADH∶ubiquinone oxidoreductase)。
分子量700X103~900X103,含有25种不同的蛋白质,包括以黄素单核苷酸(flav in mononucleotide,FMN)为辅基的黄素蛋白和多种铁硫蛋白,如水溶性的铁硫蛋白(iron sulfur protein,IP)、铁硫黄素蛋白(iron sulfur flavoprotein,FP)、泛醌(ubiquinone,UQ)、磷脂(phospholipid)。
复合体Ⅰ的功能在于催化位于线粒体基质中由TCA循环产生的NADH+H+中的2个H+经FMN转运到膜间空间,同时再经过Fe-S将2个电子传递到UQ(又称辅酶Q,CoQ);UQ再与基质中的H+结合,生成还原型泛醌(ubiquinol,UQH2)。
该酶的作用可为鱼藤酮(rotenone)、杀粉蝶菌素A(piericidin A)、巴比妥酸(barbital acid)所抑制。
它们都作用于同一区域,都能抑制Fe-S簇的氧化和泛醌的还原。
线粒体复合物I(NADH︰UQ氧化还原酶)的假想结构与膜局部结构2.复合体Ⅱ又称琥珀酸泛醌氧化还原酶(succinate∶ubiquinone oxidoreductase)分子量约140×103,含有4~5种不同的蛋白质,主要成分是琥珀酸脱氢酶(succinate dehydro genase,SDH)、黄素腺嘌呤二核苷酸(flavin adenine dinucleotide, FAD)、细胞色素b(cytochrome b)和3个Fe-S蛋白。
复合体Ⅱ的功能是催化琥珀酸氧化为延胡索酸,并将H转移到FAD生成FADH2,然后再把H转移到UQ 生成UQH2。
该酶活性可被2-噻吩甲酰三氟丙酮(thenoyltrifluoroacetone,TTFA)所抑制。
线粒体复合物Ⅱ(琥珀酸︰泛醌)的假想结构与膜局部结构3.复合体Ⅲ 又称UQH2∶细胞色素C氧化还原酶(ubiquinone∶cytochrome c oxidoreductase),分子量250×103,含有9~10种不同蛋白质,一般都含有2个Cyt b,1个Fe-S蛋白和1个Cyt c1。
复合体Ⅲ的功能是催化电子从UQH2经Cyt b→FeS→Cytc1传递到Cyt c,这一反应与跨膜质子转移相偶联,即将2个H+释放到膜间空间。
也有人认为在电子从Fe-S传到Cyt c1之前,先传递给UQ,同时UQ与基质中的H+结合生成UQH2。
UQH2再将电子传给Cytc1,同时将2个H+释放到膜间空间。
线粒体复合物Ⅲ(泛醌︰细胞色素c 氧化还原酶)的假想构成和膜局部构造4.复合体Ⅳ 又称Cyt c∶细胞色素氧化酶(Cyt c∶cytochrome oxidase)分子量约160~170×103,含有多种不同的蛋白质,主要成分是Cyta和Cyta3及2个铜原子,组成两个氧化还原中心即Cyta CuA和Cyta3 CuB,第一个中心是接受来自Cyt c 的电子受体,第二个中心是氧还原的位置。
它们通过Cu+Cu2+的变化,在Cyta和Cyta3间传递电子。
其功能是将 Cyt c中的电子传递给分子氧,氧分子被Cyta3、CuB 还原至过氧化物水平;然后接受第三个电子,O-O键断裂,其中一个氧原子还原成H2O;在另一步中接受第四个电子,第二个氧原子进一步还原。
也可能在这一电子传递过程中将线粒体基质中的 2个H+转运到膜间空间。
CO、氰化物(cyanide,CN-)、叠氮化物(azide,N3-)同O2竞争与Cytaa3中Fe的结合,可抑制从Cytaa3到O2的电子传递。
线粒体复合物Ⅳ(细胞色素c氧化酶)的假想结构和膜局部结构5.复合体Ⅴ 又称ATP合成酶(adenosine triphosphate synthase)或H+-ATP酶复合物。
由8种不同亚基组成,分子量分别是8.2×103~55.2×103,它们又分别组成两个蛋白质复合体(F1-F0)。
F1从内膜伸入基质中,突出于膜表面,具有亲水性,酶的催化部位就位于其中。
F0疏水,嵌入内膜磷脂之中,内有质子通道(图5-12),它利用呼吸链上复合体Ⅰ、Ⅲ、Ⅳ运行产生的质子能,将ADP和Pi合成ATP,也能催化与质子从内膜基质侧向内膜外侧转移相联的ATP水解。
图5-12 ATP合成酶示意图示传递质子的F2单位和合成ATP的单位在电子传递链0组分中UQ和Cyt c是可移动的。
其中UQ是一类脂溶性的苯醌衍生物,含量高,广泛存在生物界,故名泛醌,是电子传递链中非蛋白质成员,能在膜脂质内自由移动,通过醌/酚结构互变,在传递质子、电子中起“摆渡”作用。
它是复合体Ⅰ、Ⅱ与Ⅲ之间的电子载体。
Cyt c是线粒体内膜外侧的外周蛋白,是电子传递链中唯一的可移动的色素蛋白,通过辅基中铁离子价的可逆变化,在复合体Ⅲ与Ⅳ之间传递电子。
二、氧化磷酸化(一)磷酸化的概念及类型生物氧化过程中释放的自由能,促使ADP形成ATP的方式一般有两种,即底物水平的磷酸化和氧化磷酸化。
1.底物水平磷酸化(substrate level phosphorylation)指底物脱氢(或脱水),其分子内部所含的能量重新分布,即可生成某些高能中间代谢物,再通过酶促磷酸基团转移反应直接偶联ATP的生成。
在高等植物中以这种形式形成的ATP只占一小部分,糖酵解过程中有两个步骤发生底物水平磷酸化:(1) 甘油醛-3-磷酸被氧化脱氢,生成一个高能硫酯键,再转化为高能磷酸键,其磷酸基团再转移到ADP上,形成ATP。
(2) 2-磷酸甘油酸通过烯醇酶的作用,脱水生成高能中间化合物(PEP),经激酶催化转移磷酸基团到ADP上,生成ATP。
在TCA循环中,α-酮戊二酸经氧化脱羧形成高能硫酯键,然后再转化形成高能磷酸键生成ATP。
2. 氧化磷酸化(oxidative phosphorylation) 是指电子从NADH或FADH2经电子传递链传递给分子氧生成水,并偶联ADP和Pi生成ATP 的过程。
它是需氧生物合成ATP的主要途径。
电子沿呼吸链由低电位流向高电位是个逐步释放能量的过程。
有些学者认为,电子在两个电子传递体之间传递转移时释放的能量如可满足ADP磷酸化形成ATP的需要时, 即视为氧化磷酸化的偶联部位(coupled site)或氧化磷酸化位点。
2mol电子在从NADH传递到O2这一氧化过程中,其自由能变化△G°′为-220kJ·mol-1。
已知在pH为7和存在Mg2+的条件下,由ADP 磷酸化形成ATP至少需要35.1kJ·mol-1的能量,电子从NADH到UQ之间△G°′为-51.90kJ·mol-1(部位I),从Cyt b到Cyt c之间△G°′为-38.5kJ·mol-1(部位Ⅱ),从Cytaa3到O2之间△G°′为-103.81kJ·mol-1部位Ⅲ),这样在三个部位释放的能量都大于35.1kJ·mol-1,即都足以分别合成 1molATP。
氧化磷酸化作用的活力指标为P/O比,是指每消耗一个氧原子有几个ADP变成ATP。
呼吸链从NADH开始至氧化成水,可形成3分子的ATP,即P/O比是3。
NADH+H++3ADP+3Pi+1O2NAD++3ATP+H2O(5-15)如从琥珀酸脱氢生成的FADH2通过泛醌进入呼吸链,则只形成2分子的ATP,即P/O比是2。
FADH2+2ADP+2Pi+O2→FAD+2ATP+H2O (5-16)呼吸链中各物质在氧化还原作用中的位置解偶联剂对呼吸的控制和对ADP/O比率的影响。
(二)氧化磷酸化的机理在电子传递过程中所释放出的自由能是怎样转入ATP分子中的,这就是氧化磷酸化作用的机理问题。
有多种假说,如化学偶联学说、化学渗透学说和构象学说。
不过,目前为大家所公认的、实验证据较充足的是英国生物化学家米切尔的化学渗透学说。
根据该学说的原理,呼吸链的电子传递所产生的跨膜质子动力是推动ATP合成的原动力(图5-13)。
其要点如下:图 5-13 化学渗透偶联机制示意图1.呼吸传递体不对称地分布在线粒体内膜上呼吸链上的递氢体与电子传递体在线粒体内膜上有着特定的不对称分布,彼此相间排列,定向传递。
2.呼吸链的复合体中的递氢体有质子泵的作用它可以将H+从线粒体内膜的内侧泵至外侧。
一般来说一对电子从NADH传递到O2时,共泵出6个H+。
从FADH2开始,则共泵出4个H+。
膜外侧的H+,不能自由通过内膜而返回内侧,这样在电子传递过程中,在内膜两侧建立起质子浓度梯度(△pH)和膜电势差(△E),二者构成跨膜的H+电化学势梯度△μH+,若将△μH+转变为以电势V为单位,则为质子动力[见(4-32)式]。