当前位置:文档之家› DWDM传输距离受限的理论分析及计算方法

DWDM传输距离受限的理论分析及计算方法

DWDM传输距离受限的理论分析及计算方法
DWDM传输距离受限的理论分析及计算方法

DWDM传输距离受限的理论分析及计算方法(下半部分)

-----------色散引起传输距离受限的理论分析

本部用服部

郑洪良

光传输系统的传输距离受两种因素的限制:第一种是光功率受限,即WDM复用段距离由光源的发送功率、接收机灵敏度和通道的光衰减来决定;第二种是光源的色散受限,即WDM复用段距离由光源的类型和光通道总色散所限定。设备的最大传输距离必需同时满足上述两个受限条件。我们这里分析色散引起的传输距离受限。

色散受限传输距离理论计算

光纤色散就是光脉冲信号中的不同频谱成份在光纤中的传输速度不同,导致脉冲信号传输后展宽甚至离散,限制电中继器之间的距离。

色散主要是指集中的光能(例如光脉冲)经过光纤传输后在输出端发生能量分散,导致传输信号畸变。在数字通信系统中,由于信号的各频率成分或各模式成分的传输速度不同,在光纤中传输一段距离后,将互相散开,脉冲加宽。严重时,前后脉冲将互相重叠,形成码间干扰,增加误码率,影响了光纤的带宽,限制了光纤的传输容量。

与光纤色散有关的系统性能损伤有多种因素,主要有码间干扰、模分配噪声和啁啾噪声(chirping)三种。详细资料可以查阅相关光通信理论的资料。

DWDM色散受限传输距离理论计算公式

对于高比特率的传输系统,光纤色散是限制中继段传输长度的主要因素。色散功率代价随传输距离、光谱宽度和色散系数这些参数值的增加而迅速增加。为了防范由于色散功率代价的迅速增加而导致的系统性能恶化,应该使系统有足够的工作余度,避开高功率代价区。一般认为1dB功率代价所对应的光通道色散值(D*L)定义为通道最大色散值。

受限距离:假设光源啁啾等为零,无电中继距离满足以下公式:

B2×D×L<105

式中:

B —为信号带宽,(Gb/s)

L —线路长度,(km)

D —光纤色散系数,G.652光纤的色散系数

一般取18ps/(nm·km),G.655光纤的色散系数一般取6ps/(nm·km),实际参数根据具体情况确定。

实际受限距离将比理论值低20%——40%左右。

在工程中,若色散受限距离小于实际需要传输距离,则要配置色散补偿模块DCM,进行色散补偿。

对于2.5Gb/s系统:

由公式可以知道,对于G.652光纤(D=18ps/nm.km),B=2.5Gb/s, L<960km;B=10Gb/s, L<60km;对于G.655光纤(D=6ps/nm.km),B=2.5Gb/s, L<4800km;B=10Gb/s, L<300km。

对于10Gb/s系统:

10Gb/s OTU采主要有两种:其一,M-Z调制,色散容限 1600ps/nm,带波长锁定,可用于80波系统,啁啾系数-0.7;其二,EA调制,色散容限800ps/nm,不带波长锁定,不能用于80波系统。

补偿原则:对于色散容限小于800 ps/nm的复用段,不进行色散补偿。对于色散容限大于800

1

2

ps/nm 的复用段,需进行色散补偿。

综合考虑色散冗余度和非线性效应等因素,补偿后的残余色散容纳值在200ps/nm~800ps/nm 之间,最佳值在450~700ps/nm 之间 ,光放站站点的最佳色散补偿量为前段光纤色散的94%。 DCM 模块在系统中的位置

光纤的色散工程计算值和实际值如下表1所示。

我们目前的10G

光发模块的色散容限为800ps/nm ,按照工程量计算在G .652光纤中能传40km ,G .655光纤中能传130km 。超过这个传输距离,就要用色散补偿光纤进行补偿。原则上,我们都采用100%补偿的DCF

配置色散补偿的原则有:(为简化计算以下补偿量的单位按km

算)

1.(总线路光纤长度 – 光源的最大传输距离)≤

总补偿量 ≤ 总线路光纤长度

2.进入DCM 的单通道入纤光功率<-3dBm 。

3.DCM 增加系统损耗,要核算系统接收端的OSNR 满足要求。DCM 增加系统损耗,要核算系统接收端的OSNR 满足要求。

4.DCM 设置要以增加OA 数量最少考虑。 5.在OMU32(应为AWG 型)和OBA 之间一般配置

DCM20,最多不能超过DCM40。节点放大站中的OPA 与OBA 之间,前置节点放大站中的OPA 与OPA 之间最大允许插损是10dB 。在OMU32(应为AWG 型)和OBA 之间一般配置DCM20,最多不能超过DCM40。节点放大站中的OPA 与OBA 之间,前置节点放大站中的OPA 与OPA 之间最大允许插损是10dB 。

根据上述原则,G.652的色散大,DCM 插损较大,

只能采用分布式补偿的方法,补偿方案有以下5种:

1. 置于发送端的OBA 与OMU 之间(如图1),

此时发送端的OMU 采用介质膜滤波器型。此方案为预补偿,即本节点的DCM 补偿下一段线路光纤的色散。G .652光纤系统,这里补偿最大为DCM40,G .655光纤系统最大为DCM100。

2. 在接收端采用OPA+DCM 进行后补偿(如图

2)。考虑到接收机的入光功率,G.652光纤系统这里补偿最大为DCM40。G.655光纤系统最大为DCM60。

3. 置于线路中,DCM 插在OLA 放大前面(如

图3),采用DCM+OLA 作为放大站。此方案为后补偿,即DCM 补偿前一段线路光纤的色散。当(线路损耗+DCM 插损)<33dB 并且系统信噪比核算满足要求时,可以采用这种方案。

4. 对于32×10Gb/s 系统,当OTM 收端前级线

路插损<12dB 时,无须配置OPA 板但是需要配置SDMR 板,可在接收端采用SDMR+DCM 进行后补偿(如图4)。

表1 光纤的色散值

图1 DCM 置于发送端的OBA 图2 DCM 在接收端采用OPA+DCM 进

图3 DCM 插在OLA 放大前面

图4 接收端采用SDMR+DCM 进行后

距离计算方法

1.欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: 2.曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 5.标准化欧氏距离(Standardized Euclidean distance ) (1)标准欧氏距离的定义

标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= (标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 7.夹角余弦(Cosine) 有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦 类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。 即:

镜头角度与距离计算方法

监控摄像头镜头可视角度表 镜头焦距搭配1/3" CCD搭配1/4" CCD二者的角度差异 2.8 mm89.9°75.6°14.3° 3.6 mm75.7°62.2°13.5° 4 mm69.9°57.0°12.9° 6 mm50.0°39.8°10.2° 8 mm38.5°30.4°8.1° 12 mm26.2°20.5° 5.7° 16 mm19.8°15.4° 4.4° 25 mm10.6°8.3° 2.3° 60 mm 5.3° 4.1° 1.2° 监控摄像头镜头可视距离表 镜头焦 距(毫米数) 距离5米 (宽×高) 距离10米 (宽×高) 距离15米 (宽×高) 距离20米 (宽×高) 距离30米 (宽×高) 2.8mm13×9.8米26×19.5米39×29.3米52×39米78×58.5米 3.6mm8.5×6.4米17×12.8米25.5×19米34×25.5米51×38.3米4mm8×6米16×12米24×18米32×24米48×36米

6mm 5.5×4.1米11×8.3米16.5×12.4米22×16.5米33×24.8米8mm 3.5×2.6米7×5.3米10.5×7.9米14×10.5米21×15.8米12mm2×1.5米4×3米6×4.5米8×6米12×9米16mm 1.5×1.1米3×2.3米 4.5×3.4米6×4.5米9×6.8米25mm 1.3×1米 2.5×1.9米 3.8×2.9米5×3.8米7.5×5.6米60mm0.5×0.4米1×0.75米 1.5×1.1米2×1.5米3×2.3米

摄像机选型、安装需要考虑的几个问题 摄像机选型、安装通常有八点需要考虑,具体如下(1)应根据监控目标的的照度选着不同灵敏度的摄像机。监控目标的最低环 境照度应高于摄像机最低照度的10倍。 监视目标的照度要求与摄像机的灵敏度密切相关,通常闭路 电视监控系统是由被监视视场所监视时刻的自然光,一般画 面的典型照度见表1-1 表1-1 一般画面的典型照度 各种天气下的自然光照度值照度估计值(lx) 直射阳光100000—130000 晴天(非阳光直射)10000—20000 阴天1000 工作场所内(白天)200—400 非常阴暗的白天100 黄昏(拂晓)10 入夜1 满月0.1 弦月0.01 没有月亮的晴朗夜空0.001 没有月亮的多云夜空0.0001 监视目标的最低环境照度应高于摄像机最低照度的10倍以上,

镜头角度与距离计算方法

专用的镜头角度计算方法 镜头焦距的计算 1公式计算法:视场和焦距的计算视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。 1、镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下; f=wL/W 2、f=hL/h f;镜头焦距 w:图象的宽度(被摄物体在ccd靶面上成象宽度) W:被摄物体宽度 L:被摄物体至镜头的距离 h:图象高度(被摄物体在ccd靶面上成像高度)视场(摄取场景)高度 H:被摄物体的高度 ccd靶面规格尺寸:单位mm 规格 W H 1/3" 1/2" 2/3" 1" 由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,当L不变,H或W增大时,f变小,当H或W不变,L增大时,f增大。 2视场角的计算如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。水平视场角β(水平观看的角度)β=2tg-1= 垂直视场角q(垂直观看的角度) q=2tg-1= 式中w、H、f同上水平视场角与垂直视场角的关系如下: q=或=q 表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W. H=2Ltg、W=2Ltg 例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。W=2Ltg=2×2tg= 则H=W=×= 焦距f越和长,视场角越小,监视的目标也就小。 图解法如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就由来3个因素决定; *.欲监视景物的尺寸 *.摄像机与景物的距离 *.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。图解选择镜头步骤:所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:视场宽50m,距离40m,使用 1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用的镜头则可以完全覆盖视场。 f=vD/V 或 f=hD/H 其中,f代表焦距,v代表CCD靶面垂直高度,V代表被观测物体高度,h代表CCD靶面水平宽度,H代表被观测物体宽度。 举例:假设用1/2”CCD摄像头观测,被测物体宽440毫米,高330毫米,镜头焦点距物体2500毫米。由公式可以算出: 焦距f=440≈36毫米或 焦距f=330≈36毫米

定位误差计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准)由夹 具定位元件的定位工作面体现的,用于调 整加工刀具位置所依据的基准。必须指出, 对刀基准与上述两工艺基准的本质是不 同,它不是工件上的要素,它是夹具定位 元件的定位工作面体现出来的要素(平面、 轴线、对称平面等)。如果夹具定位元件是 支承板,对刀基准就是该支承板的支承工 a) 作面。在图3.3中,刀具的高度尺寸由对 导块2的工作面来调整,而对刀块2工作 面的位置尺寸7.85±0.02是相对夹具体4 的上工作面(相当支承板支承工作面)来 确定的。夹具体4的上工作面是对刀基准, 它确定了刀具在高度方向的位置,使刀具 加工出来的槽底位置符合设计的要求。图 3.3中,槽子两侧面对称度的设计基准是工 b 图3.21 钻模加工时的基准分析

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

最大最小距离算法以及实例

最大最小距离算法实例 10个模式样本点{x1(0 0), x2(3 8), x3(2 2), x4(1 1), x5(5 3), x6(4 8), x7(6 3), x8(5 4), x9(6 4), x10(7 5)} 第一步:选任意一个模式样本作为第一个聚类中心,如z1 = x1; 第二步:选距离z1最远的样本作为第二个聚类中心。 经计算,|| x6 - z1 ||最大,所以z2 = x6; 第三步:逐个计算各模式样本{x i, i = 1,2,…,N}与{z1, z2}之间的距离,即 D i1 = || x i - z1 || D i2 = || x i – z2 || 并选出其中的最小距离min(D i1, D i2),i = 1,2,…,N 第四步:在所有模式样本的最小值中选出最大距

离,若该最大值达到||z1 - z2 ||的一定比例以 上,则相应的样本点取为第三个聚类中心 z3,即:若max{min(D i1, D i2), i = 1,2,…,N} > θ||z1 - z2 ||,则z3 = x i 否则,若找不到适合要求的样本作为新的 聚类中心,则找聚类中心的过程结束。 这里,θ可用试探法取一固定分数,如1/2。 在此例中,当i=7时,符合上述条件,故 z3 = x7 第五步:若有z3存在,则计算max{min(D i1, D i2, D i3), i = 1,2,…,N}。若该值超过||z1 - z2 ||的一定 比例,则存在z4,否则找聚类中心的过程 结束。 在此例中,无z4满足条件。 第六步:将模式样本{x i, i = 1,2,…,N}按最近距离分到最近的聚类中心: z1 = x1:{x1, x3, x4}为第一类 z2 = x6:{x2, x6}为第二类 z3 = x7:{x5, x7, x8, x9, x10}为第三类最后,还可在每一类中计算各样本的均值,得到更具代表性的聚类中心。

定位误差计算方法

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸 H 1所产生的定位误差: 故得: O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε 2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量 C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1C O ='' 所以: C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε 3. 工序基准为上母线 如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为 K K ''',就是对加工尺寸H 3 所产生的定位误差。

关于距离计算的总结

关于距离计算的总结 距离计算在自然语言处理中得到广泛使用,不同距离计算方式应用与不同的环境,其中也产生了很多不同的效果。 1 余弦距离 余弦夹角也可以叫余弦相似度。集合中夹角可以用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,词余弦值就可以用来表示这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向就更加吻合,即更加相似。当两个向量的方向完全相反时,夹角的余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度于向量的幅值无关,于向量的方向相关。 公式描述: Python代码实现: import numpy as np # np.dot(vec1,vec2) 量向量(数组):两个数组的点积,即元素对应相乘后求和 # np.linalg.norm(vec1):即求vec1向量的二范数(向量的模) vec1 = [1,2,3,4] vec2 = [5,6,7,8] dist1 = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)) print("余弦距离测试结果为:\t"+str(dist1)) 2 欧氏距离 欧几里得距离即欧几里得空间中两点间的直线距离。 Python实现: import numpy as np vec1 = np.mat([1,2,3,4]) # 生成numpy矩阵 vec2 = np.mat([5,6,7,8]) # 根据公式求解1 dist1 = np.sqrt(np.sum(np.square(vec1 - vec2))) print("欧式距离测试结果是:\t"+ str(dist1)) dist2 = np.sqrt((vec1-vec2)*(vec1-vec2).T) # 根据公式求

距离计算

摘要:颜色恒常性算法通常使用距离测量是基于数学方法进行评价,如角误差。然而,并不知道这些距离与人类视觉距离是否相关。因此,本文的主要目的是分析的几个性能指标和质量之间的相关性,通过心理物理实验,用不同的颜色恒常性算法获得输出图像。随后处理的问题是性能指标的分布,表明在一个大的图像中可以提供更多附加的和替代的信息,而且得到了改进的感性意义,即人类观察者之前存在的差异得到了明显的改善。?2009美国光学学会 颜色恒常性是视觉系统的能力,无论是人或机器,尽管光源颜色发生了巨大变化也可以保持稳定的物体颜色。颜色恒常性是颜色和计算机视觉的一个主题部分。为了解决颜色恒常性的问题,通常的方法是通过估计从视觉场景中的光源,然后恢复这些反射光源。 许多的颜色恒常性的方法已经被提出,例如,[ 1,4 ]–。为基准,颜色恒常性算法的精度是通过计算在相同数据的距离度量集如[ 5,6 ]评价。事实上,这些距离的措施计算到什么程度原光源向量近似估计。两种常用的距离度量是欧氏距离和角度误差,后者可能是更广泛的应用。然而,这些距离的措施本身是基于数学原理和归一化RGB颜色空间计算,它是未知的是否与人类视觉距离措施。此外,其他的距离度量可以基于人眼视觉原理的定义。 因此,在本文中,一种颜色恒常性算法分类法不同距离的措施第一,

从数学基础的距离知觉和颜色恒常性的特定距离。然后,设置距离这些措施的颜色恒常知觉的比较。显示距离的措施和看法之间的相关性,颜色校正后的图像与视觉检测的参考光照下的原始图像相比。在这种方式中,距离度量的心理物理学实验涉及的颜色校正后的图像进行配对比较。此外,以下[ 7 ],一个绩效指标的分布的讨论,表明附加的和替代的信息可以提供进一步的洞察在一个大的组的图像的颜色恒常性算法的性能。 最后,除了性能措施的心理评估,颜色恒常性算法之间的感知差异分析。这种分析是用来提供一个获得的性能改进的感性意义的指示。换句话说,这种分析的结果可以用来表明是否观察者可以看到之间的颜色校正两颜色恒常性算法产生的图像的差异。 本文的组织如下。在2节中,讨论了颜色恒常性和图像变换。进一步,设计了一套颜色恒常性的方法。然后,进行了3不同距离的措施。第一类问题的数学方法,包括角度误差和欧氏距离。第二类型涉及测量距离在不同的色彩空间,例如,设备无关的,感性的,或直观的色彩空间。第三,两域特定距离的措施进行了分析。在4节中,心理物理实验的实验装置进行了讨论,这些实验的结果在第5节。6节各种颜色恒常性算法进行比较,表明距离测量的影响,并在7节中两种算法之间的差异的感性意义的讨论。最后,对得到的结果进行了讨论在8节。 2、颜色恒常性 朗伯表面的图像值f取决于光源的颜色e(λ),表面的反射率S(x,

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

常见定位方式定位误差的计算

常见定位方式定位误差得计算 ⑴工件以平面定位 平面为精基面 基准位移误差△基=0 定位误差△定=△不 、⑵工件以内孔定位 ①工件孔与定位心轴(或销)采用间隙配合得定位误差计算△定= △不+ △基 工件以内孔在圆柱心轴、圆柱销上定位。由于孔与轴有配合间隙,有基准位移误差,分两种情况讨论: a、心轴(或定位销)垂直放置,按最大孔与最销轴求得孔中心线位置得

变动量为: △基= δD+ δd+△min = △max =孔Dmax-轴dmin (最大间隙) b、心轴(或定位销)水平放置,孔中心线得最大变动量(在铅垂方向上)即为△定 △基=OO'=1/2(δD+δd+△mi n)=△max/2 或△基=(Dmax/2)-(dmin /2)=△max/2 = (孔直径公差+轴直径公差) / 2 ②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时得定位误差

此时,由于工件孔与心轴(销)为过盈配合, 所以△基=0。 对H1尺寸:工序基准与定位基准重合,均为中心O,所以△不=0 对H2尺寸:△不=δd/2 ⑶工件以外圆表面定位 A、工件以外圆表面在V型块上定位 由于V型块在水平方向有对中作用。基准位移误差△基=0 B.工件以外圆表面在定位套上定位 定位误差得计算与工件以内孔在圆柱心轴、圆柱销上定位误差得计算相同。

⑷工件与"一面两孔"定位时得定位误差 ①“1”孔中心线在X,Y方向得最大位移为: △定(1x)=△定(1y)=δD1+δd 1+△1min=△1max(孔与销得最大间隙) ②“2”孔中心线在X,Y方向得最大位移分别为: △定(2x)=△定(1x)+2δLd(两孔中心距公差) △定(2y)=δD2+δd2+△2min=△2max ③两孔中心连线对两销中心连线得最大转角误差:

地球上两点的经纬度计算他们距离的公式

假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,北纬为正,南纬为负, 则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny) B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb) 于是,AB对于球心所张的角的余弦大小为 cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny 因此AB两点的球面距离为 R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]} 注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。 2.所谓的“东经为正,西经为负,北纬为正,南纬为负”是为了计算的方便。 比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°) 3.AB对球心所张角的球法实际上是求两向量的夹角K。 用公式*=|OA|*|OB|*cosK 可以得到 其中地球平均半径为6371.004 km

假设地球是个标准的球体:半径可以查出来,假设是R: 如图: 要算出A到B的球面距离,先要求出A跟B的夹角,即角AOB, 求角AOB可以先求AOB的最大边AB的长度。在根据余弦定律可以求夹角。 AB在三角形AQB中,AQ的长度可以根据AB的纬度之差计算。 BQ在三角形BPQ中,BP和PQ可求,角BPQ可以根据两者的经度求出,这样BQ的长度也可以求出来, 所以AB的长度是可以求出来的。因为三角形ABQ是直角三角形,已经得到两个边 知道了角AOB后,AB的弧长是可以求的。 这样推出其公式就不难了 关于用经纬度计算距离: 地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下: 40075.04km/360°=111.31955km 111.31955km/60=1.8553258km=1855.3m 而每一分又有60秒,每一秒就代表1855.3m/60=30.92m 任意两点距离计算公式为 d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]} 其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。至于比例尺计算就不废话了

常见定位方式定位误差的计算

常见定位方式定位误差的计算 ⑴工件以平面定位 平面为精基面 基准位移误差△基=0 定位误差△定=△不 .⑵工件以内孔定位 ①工件孔与定位心轴(或销)采用间隙配合的定位误差计算△定= △不+ △基

工件以内孔在圆柱心轴、圆柱销上定位。由于孔与轴有配合间隙,有基准位移误差,分两种情况讨论: a.心轴(或定位销)垂直放置,按最大孔和最销轴求得孔中心线位置的变动量为: △基= δD + δd + △min = △max =孔Dmax-轴dmin (最大间隙) b.心轴(或定位销)水平放置,孔中心线的最大变动量(在铅垂方向上)即为△定 △基=OO'=1/2(δD+δd+△min)=△max/2 或△基=(Dmax/2)-(dmin/2)=△max/2

= (孔直径公差+轴直径公差) / 2 ②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时的定位误差 此时,由于工件孔与心轴(销)为过盈配合, 所以△基=0。 对H1尺寸:工序基准与定位基准重合,均为中心O ,所以△不=0 对H2尺寸:△不=δd/2 ⑶工件以外圆表面定位 A、工件以外圆表面在V型块上定位

由于V型块在水平方向有对中作用。基准位移误差△基=0

B.工件以外圆表面在定位套上定位定位误差的计算与工件以内孔在圆柱心轴、圆柱销上定位误差的计算相同。

⑷工件与"一面两孔"定位时的定位误差 ①“1”孔中心线在X,Y方向的最大位移为: △定(1x)=△定(1y)=δD1+δd1+△1min=△1max(孔与销的最大间隙) ②“2”孔中心线在X,Y方向的最大位移分别为: △定(2x)=△定(1x)+2δLd(两孔中心距公差) △定(2y)=δD2+δd2+△2min=△2max ③两孔中心连线对两销中心连线的最大转角误差:

计算方法第一章习题

第一章习题 2.按四舍五入原则,将下列各数舍入成5位有效数字: 816.9567 6。000015 17。32250 1.235651 93。18213 0。01523623 答案:816。96 6。0000 17。323 1.2357 93。182 0。015236 3.下列各数是按四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0。00813 6。32005 0。1800 答案:5 3 6 4 4.若1/4用0。25来表示,问有多少位有效数字? 答案:任意多位 5.若a=1.1062 , b=0.947 是经过舍入后得到的近似值,问:a+b, ab 各有几位有效数字? 答案:3 , 3 因为45110211021--?=?= da 33102 11021--?=?=db 31234102 1102110211021)(----?=?≤?+?=+=+db da b a d 4)15(102110121---?=??=a d r ,2)13(1018 110921---?=??=b d r 22410181101811021)(---?≈?+?=+=b d a d ab d r r r 6.设y 1=0.9863, y 2=0.0062是经过舍入后作为x 1和x 2的近似值,求1/y 1和1/y 2的计算值与真值的相对误差限及y 1y 2和真值的相对误差限。 答案: 53)14()1(*1*111*11*1*11*11*1*1 1106.51018 110921102111 11------?=?=??=?≤-=-=-=-n y y y y y y y y y y y y y y α也可用5)14(111 121111106.5109 21111)1(1---?=??====y dy y dy y y y d y d r 同理 31)12()1(*2*22*2*2 2103.81012 11062110211 11------?=?=??=?≤-==-n y y y y y y α 3 35*2*22)1*11*2*1*2*12*12*121*2*1*2 *121104.8103.8106.5---?≈?+?≤-+-=-+-=-y y y y y y y y y y y y y y y y y y y y y y

相关主题
文本预览
相关文档 最新文档