当前位置:文档之家› 医学超声谐波成像技术研究进展

医学超声谐波成像技术研究进展

医学超声谐波成像技术研究进展
医学超声谐波成像技术研究进展

第36卷 第5期2004年5月 

哈 尔 滨 工 业 大 学 学 报

JOURNA L OF H ARBI N I NSTIT UTE OF TECH NO LOGY

 

V ol 136N o 15M ay ,2004

医学超声谐波成像技术研究进展

刘贵栋,沈 毅,王 艳

(哈尔滨工业大学航天学院,黑龙江哈尔滨,150001,E 2mail :gtomasd @https://www.doczj.com/doc/922746290.html, )

摘 要:对目前所采用的谐波成像技术作了简要的叙述,并探讨了应用前景.由于在组织和造影剂成像中利用了谐波频率,明显地改善了超声图像质量.超声中的谐波是由组织和造影剂产生.造影谐波来源于所注入的造影剂对超声的反射,与组织的反射无关.当不使用造影剂时,谐波是由非线性传播产生的.组织和造影剂的谐波成像在图像分辨力和对比度之间的折衷使得非线性信号大打折扣.关键词:医学超声;对比谐波成像;组织谐波成像;脉冲反相谐波成像中图分类号:R312

文献标识码:A

文章编号:0367-6234(2004)05-0599-04

The technical progress of medical ultrasonic harmonic imaging

LI U G ui 2dong ,SHE N Y i ,W ANG Y an

(S ch ool o f As tr onautics ,H arbin Ins titute o f T echn ology ,H arbin 150001,China ,E 2m ail :g tom asd @https://www.doczj.com/doc/922746290.html, )

Abstract :Medical ultras ound scanners are widely used in hospitals all over the w orld for diagnostic purposes.While many technological im provements have been achieved over the years that resulted in better images ,a large number of patients are still difficult to image due to inhom ogeneous skin layers and limited penetration.In recent years ,harm on 2ic frenquency is adopted in tissue imaging and contrast agents imaging ,which im proves the image quality.Harm onics in ultras ound are generated by tissue or by contrast agents.C ontrast 2agent harm onics are generated by reflections from the injected contrast agent and not from reflections from tissue.When no contrast is em ployed ,harm onics are generated by tissue itself as a result of nonlinear propagation.Harm onic imaging of tissues or contrast agent forces an inherent com promise between image res olution and contrast that limits its sensitivity to nonlinear signals.This paper describes the technical progress of harm onic imaging briefly.Its clinical application prospect has been discussed al 2s o.

K ey w ords :medical ultras ound ;contast harm onic imaging ;tT issue harm onic imaging ;pulse inversion harm onic imaging

收稿日期:2003-05-29.

基金项目:跨世纪优秀人才培养计划资助项目;高等学校骨干教

师资助计划资助项目;哈尔滨工业大学校基金资助项目(HIT.2002.11).

作者简介:刘贵栋(1976-),男,博士研究生;

沈 毅(1965-),男,博士,教授,博士生导师.

医学超声在医学诊断中起着十分重要的作用.但是,医学超声所包含的诊断技术,无论是B 型成

像还是血流检测,都沿用了线性声学的规律.但是线性是相对的、局部的,非线性是绝对的、全面的.实际上医学超声中存在着非线性现象[1].过去它处

于次要地位而被忽略,但是,随着人们对超声研究的深入,研究医学超声中非线性现象将有助于人们

进一步提高现有的诊断水平.近年来产生的谐波成像技术就是非线性声学在超声诊断中的一项卓有成效的新技术.传统的超声影像设备是接收和发射频率相同的回波信号成像,称为基波成像(funda 2mental imaging ).实际上回波信号受到人体组织的非线性调制后产生基波的二次三次等高次谐波,其中二次谐波幅值最强,为此利用人体回声的二次等高次谐波构成人体器官的图像,可提高图像清晰分辨率.这种用回波的二次等高次谐波成像的方法叫

做谐波成像(harm onic imaging).当前应用较广的有对比谐波成像,组织谐波成像[2,3].国外的SIE ME NS、G E、ME DIS ON、PHI LIPS等公司都已经有了应用谐波成像技术的产品,而且把此项功能作为超声诊断设备的主要功能之一.因此,开展谐波成像技术的研究对提高国内超声成像设备的诊断水平具有现实意义.

1 对比谐波成像

对比谐波成像(contrast harm onic imaging),或称造影谐波成像是指用超声造影剂UC A(ultra2 s ound contrast agent)的谐波成像方法[4,5].UC A在医学领域的研究始于1968年.早期的UC A是含有自由气泡的液体,、不稳定、不适于软组织造影.90年代,UC A的研究工作取得很大进展.含有包膜的液体、自由气泡、含悬浮颗粒的胶状体、乳剂、水溶液相继研究成功.目前正在使用和研究的约有10余种,常用的主要有3种:Lev ovist、Albunex和Optis on.文献[6]对超声造影剂的进展、特点、制备技术和评价方法进行了综述.

UC A注入血管可改变组织的超声特性,其最基本性质就是增强组织的回波能力,可在B型超声成像中提高图像的清晰度和对比度.直径<10μm的气泡明显增强散射信号,具有丰富的二次谐波,能够有效地抑制不含造影剂的组织(背景噪音)回声.利用谐波成像和谐波D oppler技术可测量体内微小血管血流与组织灌注,能抑制不含UC A的组织运动在基波上产生的杂波信号,大大提高信噪比.在血流D oppler测量中,利用UC A作用下的谐波D oppler效应是项新技术.文献[7]报道了谐波D oppler产生的机理、频移公式,测量条件、校正方法等研究内容,指出了谐波D oppler的主要优点是扩展了测量低速血流的速度下限,减少背景噪声.

二次谐波得到了广泛的研究和应用,然而二次谐波成像主要的问题是组织中谐波的产生和积累.UC A和组织之间的差异通常用二者散射功率(或强度)的比值(contrast-to-tissue,CTR)来表示.理论和实验都证明了当超声波照射到含微气泡的液体时会产生二分之一基波频率的信息,(次谐波(subharm onic)),即发射频率为f0的超声波,而接收频率为f0/2的回波信号.以UC A的后散射强度和组织的后散射强度的比值来比较次谐波和二次谐波,则次谐波的比值高于二次谐波的比值,而且在一定的范围内次谐波的比值随声压增加而增加,二次谐波比值随声压增加而减少[8].为此,利用次谐波成像似乎更能突出血流和组织之间的对比度.此外,因为次谐波频率低于二次谐波频率(两者相差4倍),它在组织中的衰减就小.当然,次谐波成像也存在着缺点,主要是空间分辨力欠佳.对于次谐波成像的研究刚刚起步,寻找最适于次谐波成像的造影剂,设计新型探头和对成像方法的研究对于能否发挥出次谐波成像的优势至关重要.

文献[9]的研究表明二次谐波及以上频率的CTR随着谐波频率的阶次的增加而增加.文中采用三次、四次、五次等高次谐波(super harm onics)成像,同时提出一种新型相控阵探头,该探头含有两种类型的阵元,阵元交错排列,阵元总数为96.两组阵元分别工作在不同的频率,48个阵元工作在218MH z中心频率上,带宽为80%;其余48个工作在900kH z中心频率,带宽为50%.实验表明,利用该双频率探头,高次谐波的CTR相对于二次谐波成像提高40dB.由于高次谐波成像中采用了较低的能量,所以易受背景噪声的影响,信噪比的降低是不可避免的缺点.

以往的造影谐波技术,为了避开基波段背景噪声,提高信噪比,利用数字化滤波器,检出造影剂的二次谐波信息进行成像.但是这种方法,经过一段时期的临床应用,暴露了一些潜在的缺点:造影剂用量较多,检查成本较高;采集的信息量较少,敏感性和特异性差;对各类造影剂的兼容性差;多普勒血流信号过度敏感,造成彩色怒放现象(color blooming).为了解决上述问题,推出了脉冲反相技术,但这种方法忽略了基波频段的有用的回波信号.与此同时,造影剂经过静脉注射,沿途经过了血液稀释,组织吸附及气泡自行破裂,到达靶目标时,浓度仅为起始浓度的5%,故提高造影剂回波信号的利用率对于提高造影的敏感性是必要的.造影剂的三频段成像技术是目前最先进的造影剂成像技术[10].这一技术不仅提取了造影剂二次谐波信息(2f0),还同时提取了次谐波信息f0/2和基波信息(f0),对三频段信息进行融合处理,所得到的图像清晰细致,尤其善于捕捉细节信息.对于造影状态下的二维图像及血流灌注的细节检查而言,该技术展现在医生面前的将是一幅清晰细致的造影剂分布图像,无异于给广大医务工作者带来了一双明察秋毫的慧眼,带来了前所未有的诊断信心.

UC A的作用在于人为地扩大非线性现象.其谐波信号强,所需发射声强可相对降低,对于超声

?

6

?哈 尔 滨 工 业 大 学 学 报 第36卷 

安全性而言是有利的.但注入UC A是一种微损伤行为.

2 组织谐波成像

临床上大约有20%~30%的病人,由于肥胖、肋间隙狭窄、胃肠气体干扰、腹壁较厚或疾病等原因,而被超声称为显像困难病人.对于此类病人需进一步的诊断研究或较低频率的超声检查以增加穿透力.组织谐波成像能够解决该问题.利用宽频探头,接收组织对发射波非线性调制而产生的高频信号及组织细胞的谐波信号,并对信号进行实时平均处理,增强较深组织的回声信号,改善图像质量,提高信噪比[11,12].

由有限振幅失真现象而来的组织谐波成像已经被证实具有较好的影像解析度,这主要是因为由非线性传播所产生的谐波信号和由线性传播而来的同频率的信号相比较,谐波信号可以在成像时提供较低的旁瓣强度,而且不管声波传播经过的是均匀的介质或是由不同组织构成的不均匀介质,都可以观察到同样的现象.而在超声波图像中,低旁瓣代表的就是高对比解析度,因此组织谐波图像比基波图像有着更好的对比,可以在诊断上给医生提供更明确的诊断信息.

另外,组织谐波成像不同于造影谐波成像,其谐波频率绝大部分产生于组织的传播过程中,而不是组织的反射.在改善图像质量中,最关键的因素为:谐波能量随着传播距离的增长而增加.在探头表面,超声脉冲仅由基波频率组成.而一旦在组织中传播,能量将在二次谐波频率处产生,经过一段距离后,将有足够的能量由基波转换而产生明显的二次谐波频率.由于超声中大部分伪像(arti2 facts)来源于腹壁或接近于腹壁的反射和散射信号,这些信号中含有极少的谐波能量,如果利用谐波成像,近场伪像的大部分将被消除.谐波成像的另一个关键是基波频率能量和谐波频率能量的非线性关系.弱的基波频率几乎不产生谐波频率能量.超声中的大部分伪像由异常的传播途径而来,其能量肯定弱于中心成像声束.

然而,组织在超声照射下的非线性现象是微弱的,它的检测依赖于接收系统的灵敏度和处理的先进性.显然加大声强会提高组织中的谐波分量,但是要以满足超声安全性为前提.从工程技术的角度来看,组织谐波成像系统更具先进性和复杂性,但是实现的难度较大.即使在最佳的环境条件下,来自组织的谐波频率能量也远远小于基波频率能量.因此,对仪器的设计需要解决3个主要问题.首先,仪器必须有超宽大的动态范围.谐波成像时,会损失10~20dB的信号强度,为保持信噪比,必须设定非常宽的动态范围以接收这种相当弱的信号而成像.其次,发射源必须在谐波频率上发射极小的能量.第三,在成像过程中,必须有一锐利的滤波器,仅使谐波频率通过至解调器.

另一个技术难点是单纯组织谐波信号的提取问题.虽然只有组织非线性而产生的谐波信号才具有比较优异的成像品质,不过利用超声波探头所接收回来的回波信号并不都是由组织的非线性特性而来,系统本身也可能产生谐波信号,而且系统所产生的谐波信号和由组织所产生的谐波信号是互相独立的.换句话说,在距离探头一定距离之后所探测的谐波信号事实上是由两种来源不同的谐波混合而成的,其中之一是有限振幅失真而来的,另外一部分则是在声波传播之前就存在于超声波成像系统中,将这种谐波信号的来源称之为谐波溢漏(harm onic leakage).文献[13]借助波束品质研究了组织谐波影像在谐波溢漏现象下影像品质的恶化情形.当谐波溢漏现象发生时,系统所发射出去的信号就已经有了谐波成分,因此,如何有效抑制谐波溢漏就显得尤为重要.K rishnan和O,D onnell所提出的alternate phasing方法可以改善在对比谐波影像上的对比能力[14].不过由于在组织谐波影像中,谐波波束是由基波波束经由非线性传播而来的,因此基波波束的品质(例如主瓣的宽度和旁瓣的高低)会决定谐波波束的品质,而alternate phasing方法会对基波波束有不良的影响,故运用到组织谐波成像上仍然有许多问题.研究发现,脉冲反相法可以有效消除谐波溢漏,产生最低的旁瓣,但是会使得帧频降低,产生运动伪像[15].因此,发展一套能有效在组织谐波成像上使用的抑制谐波溢漏方法是亟待研究的课题.

目前,国内对组织谐波成像研究仅限于临床应用研究,研究工作者也仅限于医生,尚缺少对该项技术在理论和实验方面的深入研究.国外已经开展了组织谐波成像模型的理论研究,取得了一些成果.Y adong Li研究了用于产生谐波B型超声图像的计算模型[16].他所提出的计算机模型考虑到了超声成像的几乎所有方面,包括介质的特性,探头的形状,频率,带宽,以及信号处理.

对于显像困难的病人,谐波成像较基波成像在心内膜边界显示、室壁血栓、心包腔肿物、腹部肿物的边界及混合性肿物性质的判定等方面发挥了很大的优势,但是对于显像良好的病人,可能使

?

1

6

?

第5期刘贵栋,等:医学超声谐波成像技术研究进展

图像质量退化,主要原因是一定数量动态范围的

消耗.

3 结 语

近5年来,人们对谐波成像技术进行了诸多理论和实验研究,做出了一些成果.谐波成像已经得到证实是临床上一种有效的超声成像技术.谐波成像作为一种附加的成像功能,具有更强的信号穿透能力,明显减少杂波和图像阴霾,并提供增强的对比分辨率.最重要的是这些优点可以通过多种类型的换能器和频率获得,而无需增强超声能量.最新的全息造影谐波成像技术能够在高频和低频成像,使得包括那些显像困难的病人在内的所有病人均可以得到更加清晰的图像.今后,谐波成像技术将作为一种获取高质量图像并且价值不断增加的工具继续活跃在临床造影的前台,从而提高诊断的准确性.正如专家所讲,超声可能从来不能完全代替其他的成像方式,但是这些最新的创新技术使得超声成为一种更加有效且经济的诊断选择.

参考文献:

[1]DUCK F A.N onlinear acoustics in diagnostic ultras ound[J ].Ultras ound in Med &Biol ,2002,28(1):1-18.

[2]BURNS P N ,SI MPS ON D H ,AVERKI OU A.N onlinear

Imaging[J ].Ultras ound in Med &Biol ,2000,26(1):19-22.

[3]TRANQUART F ,G RE NIER N ,E DER V ,et al.Clinical use of ultras ound tissue harm onic imaging[J ].Ultras ound in Med &Biol ,1999,25(6):889-894.

[4]FRI NKI NG P A.Ultras ound contrast imaging :current and new potential methods[J ].Ultras ound in Med &Biol ,2000,26(1):965-975.

[5]DE JONG N ,BOUAK AZ A ,FRI NKI NG P.Harm onic imaging for ultras ound contrast agents [A ].2000IEEE Ultras onics

Sym posium[C].San Juan :[s.n.],2000.1869-1876.[6]李 莉,万明习.超声造影剂研究进展[J ].应用声学,1997,16(4):37-42.

[7]王威琪,余建国,汪源源.关于血流测量中的谐波D oppler 效应[J ].中国生物医学工程学报,1999,18(4):395-401.

[8]FORS BERG F ,SHI W T ,G O LDBERG B B.Subharm onic imaging of contrast agents[J ].Ultras onics ,2000,38:93-98.[9]BOUZK AZ A ,FRIG ST AD S ,TE N C ATE F J ,et al.Super harm onic imaging :a new imaging technique for im proved con 2trast detection[J ].Ultras ound in Med &Biol ,2002,28(1):59-68.

[10]黄翠萍.C 3-M ode T M ———领先的超声对比造影成像技

术[J ].医疗装备,2002,15(2):8-9.

[11]AVERKI OU M A ,ROUNDHI LL D N ,POWERS J E.A new

imaging technique based on the nonlinear properties of tis 2sues[A ].1997IEEE Ultras onics Sym posium[C ].T oronto :[s.n.],1997.1561-1566.

[12]丛淑珍,王连生.组织谐波成像技术及其临床应用价

值[J ].世界医疗器械,1999,5(5):68-76.

[13]SHE N C C ,LI P C.Harm onic leakage and image quality

degradation in tissue harm onic imaging[J ].IEEE T ransac 2tions on Ultras onics ,ferroelectrics ,and frequency control ,2001,48(3):728-736.

[14]K RISH NAN S ,DONNE LL M O.T ransmit aperture process 2

ing for non 2linear contrast agent imaging [J ].Ultras onic Imaging ,1996,18(2):77-105.

[15]SHE N C C ,LI P C.M otion artifacts of pulse inversion 2

based tissue harm onic imaging [J ].IEEE T ransactions on Ultras onics ,ferroelectrics ,and frequency control ,2002,49(9):1203-1211.

[16]Y ADONGL ,JAMES A.Z agzebski.C om puter m odel for har 2

m onic ultras ound imaging[J ].IEEE T ransactions on Ultra 2s onics ,ferroelectrics ,and frequency control ,2000,47(5):1259-1272.

(编辑 杨 波)

热烈祝贺“试验卫星一号”“纳星一号”升空

北京时间4月18日23时59分,我国在西昌卫星发射中心用“长征”二号丙运载火箭,成功地将“试

验卫星一号”和搭载的“纳星一号”科学实验小卫星送入太空,这标志着我国小卫星研制技术取得了重要突破.

“试验卫星一号”是我国第一颗传输型立体测绘小卫星,重204kg ,由哈尔滨工业大学联合中国航天科技集团公司所属的中国空间技术研究院、中国科学院长春光机所和西安测绘研究所共同研制,主要用于国土资源摄影测量、地理环境监测和测图科学试验.卫星经在轨测试后,将交由中国科学院卫星遥感地面站使用.

(摘自2004年4月19日光明日报)

?206?哈 尔 滨 工 业 大 学 学 报 第36卷 

医学影像工作原理及图像获取方式

医学影像工作原理及图像获取方式 2.2医学超声影像工作原理 超声是指高于人耳听觉范围的声波,通常是指频率高于20 kHz的高频振动机检波,应用于医学诊断的超声频率一般在1MHz至几十MHz之间。自1958年商用超声成像产品问世以来,超声医学设备以其实时性、对人体无损伤、无痛苦、显示方法多样,尤其对人体软组织的探测和心血管脏器的血流动力学观察有其独到之处而成为在医学中应用最为广泛的成像设备之一。 超声在医学中的重要作用在于它不但可以穿透人体,而且可以与身体组织相互作用。超声波穿过人体时要经过折射和反射,这可发生在超声波经过的任何交界面上,其作用就如同光束经过一个非均匀物质一样。超声波的波长很短,从而易于窄脉冲波束的实现,因此超声换能器可以做得小而紧凑。 超声在临床应用中主要分为诊断与治疗两个方面:超声诊断采用的是较高频率(多在2MHz以上)与较低声强的超声波,高频可提高对组织的分辨率,用以获得清晰、细致的声像图,而低声强则可降低对组织损伤的副作用。超声治疗采用的是较低频率(通常<1MHz)与较高声强的超声波,低频超声增大对组织的穿透率,而高声强(特别是聚焦后)超声可对组织产生生物效应,用于选择性破坏局灶性病变。 2.2.1超声设备与种类 超声诊断主要应用超声良好的指向性和与光相似的反射、散射、衰减及多普勒(Doppler)效应等物理特性,采用不同的扫查方法,将超声发射到人体内,并在组织中传播,当正常组织或病理组织的声阻抗有一定差异时,它们组成的界面就会发生反射和散射,再将此回波信号接收,加以检波等处理后,显示为波形、曲线或图像等。由于各种组织的界面形态、组织器官的运动状况和对超声的吸收程度等不同,其回波有一定的共性和某些特性,结合生理、病理解剖知识与临床医学,观察、分析、总结这些不同的规律,可对患病的部位、性质或功能障碍程度做出概括性以至肯定性的判断。 超声诊断仪由主机和探头构成,均包括发射、扫查、接收、信号处理和显示等五个部分。超声诊断仪的种类很多,而且互有交叉,按照显示回波方式和空间的不同,主要包括以下几种: 1.A型(Amplitude Mode)超声 A型超声是最早出现的一维超声诊断技术,它将声束传播位置上的组织按距离分布的回波信息在显示器上以幅度调制的形式显示,并从回波的幅度大小、形状及位置进行诊断,回波强则波幅高,回波弱则波幅低。常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,它是现代各种超声成像的物理基础。 2.B型(Brightness Mode)超声 B超是把组织的一个断层面上的超声回波信息以二维分布形式显示出来,组织内的散射、反射回波信息以辉度调制方式显示,回波强则光点亮,回波弱则光点暗。光点随探头的移动或晶片的交替轮换而移动扫查,由于扫查连续,可以由点、线而扫描出脏器的解剖切面,它是二维空间显示,又称二维超声。 按其成像速度的不同,可分为慢速成像和快速成像,慢速成像只能显示脏器的静态解剖图像,由于每帧图像线数甚多,图像清晰,扫查的空间范围较大。快速成像能显示脏器的活动状态,也称为实时(ReaITime)显像诊断法,但所显示的面积较小,每幅图像线数与每秒显示的帧数相互约制,互为反比。按照扫描方式的不同,又可分为电子线性扫描、电子凸阵扫描、机械扇形扫描和相控阵扫描等。 3.M(Motion Mode)型超声

核医学成像设备

第八章核医学成像设备 §8-1 概述 概念:是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。 一、核医学成像的过程和基本条件: (1)、先把某种放射性同位素标记在药物上,形成放射性药物并引人人体内,当它被人体的脏器和组织吸收后,就在体内形成了辐射源。 (2)、用γ射线检测装置可以从体外检测体内放射性核素在衰变过程中放出的γ射线,从而构成放射性同位素在体内分布密度的图像。 由于放射性药物与一般天然元素或其他化合物一样,能够正常地参与机体的物质代谢,因此核医学成像的图像不仅反映了脏器和机体组织的形态,更重要的是提供了有关脏器功能及相关的生理、生化信息。 二、核医学成像的基本特点如下: (1)、核医学成像是以脏器内、外,或脏器内各部分之间的放射性浓度差别为基础,显示的静态和动态图像,该图像不仅反映了人体组织、脏器和病变的位置、形态、大小,而且还提供了包括整体或局部组织功能,以及脏器功能的每个微小局部变化和差别。 (2)、核医学成像具有多种动态成像方式。由于脏器对放射性药物的摄取、吸收、排泄等作用,使脏器、病变的血流和功能情况得以动态且定量地显示出来,同时提供多种功能参数以反映机体及组织的血流功能、代谢和受体等方面的信息。 (3)、一些放射性核素具有向脏器或病变的特异性聚集,由此而获得的核素成像具有较高的特异性,可显示不同组织类型的肿瘤、各种神经受体、炎症、转移

灶等组织器官的影像。而这些单靠形态学检查常常难以实现。 三、核医学成像设备分类及特点 (一)、γ相机 1、组成: (1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。 (2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。 (3)、显示装置:示波器、照相机等。 (4)、附加设备: 2、特点:(见书P226) (1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究; (2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查; (3)、由于显像迅速,便于多体位、多部位观察; (4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。 (二)、单光子体层成像设备(SPECT ) 1、成像原理: 利用γ照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的γ光子并计数,然后利用X-CT 中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。 目前SPECT 的能量测量范围为50~600keV ,空间分辨率6~11mm 。 2、与X-CT 的区别: (1)、图像粗造,空间分辨率低。 (2)、属发射型体层摄影; (三)、正电子发射体层成像设备(PET) 1、使用发射正电子的放射性核数,如:O N C 151311,,等都是人体组织的基本元素,易于标记各种生命必需的化合物及其代谢产物或类似物而不改变它们的生物活性,且可参与人体的生理、生化代谢过程;其次这些核素的半衰期都比较短,检查时可给予较大的剂量,从而提高图像的对比度和空间分辨力。因此它所获得

超声成像在医学中的应用

超声成像在医学中的应用 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,超声波因其频率下限大于人的听觉上限而得名。而超声成像是利用超声声束扫描人体,通过对反射信号的接收、处理,以获得体内器官的图像的技术。 一、超声成像在医学中的应用 超声成像以其使用安全、成像速度快、价格便宜和使用方便等优势在临床诊断中被大量使用,是临床诊断的重要工具之一。随着超声在医学诊断领域的广泛而深入的应用,以及微电子技术、计算机技术、图像处理技术和探头技术等工程技术的进步,促进了超声诊断技术不断发展。不仅仪器的图像质量明显提高,而且诊断的模式和方法也更加丰富。国内外很多研究人员从事着超声的研究,使超声技术从模拟技术扩展到数字技术,从二维成像扩展到三维成像;从线性技术扩展到非线性技术,以适应临床不同的需求。 在医学实践中,常用的超声仪器有多种:A型,即幅度调制型,是以波幅的高低表示反射信号的强弱,显示的是一种“回声图”。M型,光点扫描型。是以垂直方向代表从浅至深的空间位置,水平方向代表时间,显示为光点在不同时间的运动曲线图。B型,辉度调制型。即超声切面成像仪,简称“B超”。是以亮度不同的光点表示接收信号的强弱,在探头沿水平位置移动时,显示屏上的光点也沿水平方向同步移动,将光点轨迹连成超声声束扫描的切面图,为二维成像。至于D型是根据超声多普勒原理制成。 近年来,超声成像技术不断发展,如灰阶显示和彩色显示、实时成像、超声全息摄影、穿透式超声成像、超声计并机断层圾影、三维成像、体腔内超声成像等。这些超声成像在医学上的应用,给医生在病情诊断及治疗方面带来了极大的方便,同时也给无数人带来了健康的希望。 二、二维技术与三维技术对比 二维多普勒组织成像技术是将低速高振幅的心肌运动信息进行彩色编码显示心脏运动信息的图像诊断的技术。该技术能够直观的观察心动周期内各时相的室壁运动方向,并定量分析心脏各节段的室壁运动速度。与传统超声目测分析室壁运动相比,能够更为客观地评价心脏的运动特点。但多普勒组织成像无法克服多普勒声束与室壁运动方向夹角所产生的影响,该技术对甲状腺良恶性肿瘤的鉴别有一定的诊断价值。 三维超声成像技术包括数据获取、三维图像重建和三维图像的显示。三维超声成像是在采集二维图像的基础上进行重建而成。要获得理想而准确的三维图像,需要清楚地了解二维图像的位置及角度,还需尽快扫查以避免运动伪像。常用机械驱动扫查、自由扫查、一体化容积探头扫查等方式获取。获取二维图像数据后,便可形成三维立体数据库。当选择一个参考切面对三维立体数据库进行任意方向的切割和观察时,即可完成对感兴趣结构的三维重建与显示。常用的重建方法有基于特征的三维图像重构法、基于体素的三维图像重构方法。显示方式有断面成像、表面成像、透明成像。 与传统二维超声成像相比,三维超声成像具有明显的优势。主要表现在以下几个方面:直接显示脏器的三维解剖结构;可对三维成像的结果进行重新断层分层,从而能从传统成像方式无法实现的角度进行观察;可对生理参数进行精确测量,对病变位置精确定位。 当然,三维超声成像还存在不足之处。如成像速度慢、空间分辨力低、成像效果未达到临床诊断要求等也制约着三维超声技术的应用。

医学影像超声诊断第一部分名词解释+试题含答案

医学影像超声诊断第一部分名词解释 一、名词解释 1、超声医学:是利用超声的物理特性用于诊断人体疾病的一门影像学科。 2、声波:是一种机械波,是由频率在20~20 000 Hz之间声振动源激起的疏密波,该疏密波传播至人的听觉器官(耳)时,可以引起声音的感觉。 3、超声波:声波按其频率分类:<20 Hz为次声波,低于人耳听觉低限;频率20~20 000Hz之间为可听声;>20 000 Hz为超声波,高于人耳听觉。诊断用超声波的频率在1~300 MHz之间,常用2~20 MHz。 4、频率(f):声波在介质中传播时,每秒钟质点完成全振动的次数,单位是赫兹(Hz)。 5、波长(λ):声波在一个周期内振动所传播的距离,单位是毫米(mm)。超声波波长愈短,频率愈高,分辨率愈强。 6、声速(C):声波在介质中传播,单位时间内所传播的距离,单位是米/秒(m/s)。人体软组织的平均声速为1 540 m/s,和水的声速相近。 7、声阻抗:即声阻抗率或声特性阻抗,可以理解为声波在介质中传播所受到的阻力,等于介质的密度与超声在该介质中传播速度的乘积。设Z为声阻,ρ为密度,C为声速,则Z=ρ·C。两介质声阻相差之大小决定其界面处之反射系数。两介质声阻相差愈小,则界面处反射愈少,透入第二介质愈多;反之,声阻相差愈大,则界面处反射愈强,透入第二介质愈少。 8、反射、透射与折射:声波从一种介质向另一种介质传播时,由于声阻抗Z不同(密度ρ、声速C不同),在二种介质之间形成一个声学界面,如果该界面尺寸大于超声波波长,则一部分超声波能量返回到第一介质此即反射。另有一部分能量穿过界面进入第二介质并继续向前传播,称为透射。当两种介质的声速不同时,就会偏离入射声束的方向而传播,称折射。 9、散射:超声波在介质中传播,如果介质中含有大量杂乱的微小粒子,超声波激励这些小粒子成为新的波源,再向四周发射超声波。 10、衍射:超声波在介质中传播,如遇到的物体其直径小于1~2个波长时,则绕过物体继续向前传播,这种现象称为绕射(也称衍射)。 11、吸收与衰减:当声波穿过介质时,由于“内摩擦”或所谓“黏滞性”而使声能逐渐减小,声波的振幅逐渐减低,介质对声能的此种作用即为吸收。这种在介质中传播时出现的声波衰减称为吸收衰减。而声波在前向传播过程中因发生反射、折射及散射等现象使声能随着距离的增加而逐渐减弱,此种现象称为距离衰减。吸收与衰减的程度与超声的频率、介质的黏滞性、导热性、温度及传播的距离等因素有密切关系。 12、换能器:能使电能和机械能相互转变的装置,又称探头。 13、正压电效应:某些特异性的材料,在外部拉力或压力的作用下引起材料内部原来重合的正负电荷中心发生相对偏移,在材料表面出现符号相反的表面电荷,即由机械力的作用产生了电场,这种将机械能转变为电能的效应称为

医学影像学题库及答案

医学影像学题库及答案 第一章总论 一、填空题 1、医学影像学包括、、、和等项内容。 2、X线具有穿透性、、和、和电离效应等特性,它们分别 是、、和基础。 X线穿透性 受、和的影响。 3、在阅片时, 应分析病变的要点是、、 、、、和等。 4、人体组织器官有不同的和差,使透过人体后的剩余X线量不均匀。 5、人为引入一种物质到人体器官或间隙使其产生密度差异而形成的对比称对比。引入的这种物质称引入这种物质的方法称。 6、X线图像特点包括、、和等。 7、数字X线成像包括、和。 8、水的CT值为 HU,骨皮质的CT值约为 HU,空气的CT值约为 HU 9、在T1加权像上水和大部病变(如肿瘤.炎症.变性.坏死.液化.水肿)为即长T1信号。T1加权像上的即短T1信号通常为脂肪和亚急性血肿。在T2加权像上,水和大部分病变呈高信号即信号。

二、名词解释 人工对比自然对比 CT MRI PACS 介入放射学 CR DDR CT值 T1 T2 MRA T1WI T2WI

三、选择题(可单选或多选) 1、摄胸部平片显示心肺等结构属于()。 A、人工对比 B、天然对比 C、造影检查 D、特殊检查 2、最适合心血管造影的造影剂()。 A、硫酸钡 B、泛影葡胺 C、欧乃派克 D、碘化油 3、X线图像显示的不同灰度与X线透过的物质密度的关系是()。 A、物质密度高,吸收X线量多,显白影 B、物质密度低,吸收X线量少,显黑影 C、物质密度高,吸收X线量少,显黑影 D、物质密度低,吸收X线量多,显白影 4、CT值为负值可能为() A、脂肪 B、气体 C、肌肉组织 D、血液 5、数字X线成像特点是() A、数字化图像,清晰度、分辨率高,对比好。 B、曝光宽容度大: C、X线剂量低: D、多种后处理功能:调整窗位窗宽、图像放大等。 6、骨皮质在MRI图像上的表现正确的是() A、长T2信号 B、长T1信号 C、短T2信号 D、短T1信号 7、MRI在哪些方面优于CT() A、脑垂体病变 B、脊髓病变 C、肺内病变 D、关节积液 8、有关磁共振成像特点正确的是() A、磁共振信号高低与密度无关。 B、无骨伪影干扰 C、体内顺磁性金属异物不影响图像失真 D、自旋回波序列血管内流动的血液无信号

医学超声成像的进展

医学超声成像的进展 张海澜 (中国科学院声学研究所,北京100080) 1 引言 用于医学诊断的超声成像具有安全、设备比其他影像诊断方法简单、价格便宜、能够区分不同的软组织等优点,是超声技术最主要的应用之一[1]。由于事关人类健康,长期以来国内外在这一方向投入了大量的人力和物力,发展非常迅速。新的原理和方法不断出现,并迅速向实际应用转化,使超声成像的性能有了很大的提高,已与X射线层析成像、核磁共振并列为三大影像诊断手段,在各级医院中广泛地运用。 超声诊断成像采用多阵元的阵列换能器向人体内发射超声波,改变各个阵元激发的相对延迟和幅度,可以形成向一定方向发射的聚焦声束。当声束遇到体内不同器官和组织的界面时产生反射回波,再被阵列换能器接收。各个阵元接收的信号经过不同的延迟后叠加,可以加强特定方向的回波,形成接收声束。改变发射和接收波束的方向,使它们在体内扫描,得到的回波幅度反映体内不同位置的组织对声波的反射率。经过处理,在屏幕上的相应位置用灰阶表示体内各点的反射率,形成反映体内解剖结构的图像。这样的图像称为B超图像。如果对同一方向连续多次发射声束,接收到的多次回波包含了体内组织运动的信息,如心脏的搏动,血液的流动等,这样可以形成M超图像。根据多普勒频移原理,进一步利用自相关方法处理多次发射得到的血流的回波,可以得到不同位置的血流速度信息,再用彩色编码表示,得到表示体内血流分布的彩色血流图,俗称彩超。也可以对同一位置的血流作多普勒频谱分析,得到流速随时间的变化,称为频谱多普勒。在上世纪80年代,这几种成像方式成为医学超声成像的主流技术,当时的发射、接收和处理主要由模拟电路完成,而数字电路开始用于控制、成像和与多普勒频移有关的处理。此后二十年,超声成像有了令人瞩目的新发展,本文选择几个重要的发展作简单的介绍。 2 相干成像 为了实时连续地反映器官的动态图像,每秒钟至少需要产生25帧图像,因此每幅图像的成像时间不能超过40毫秒,这个要求对心脏等运动器官尤为重要。人体软组织的声速大约是1500m/s,如果体表以下探测区域的深度是0.2m,声束入射和反射的传播距离是0.4m,大约需要270纳秒的时间,因此40ms内可以完成150次发射,也就是说每幅图像最多由150个声束组成。实际上声束之间还需要有时间间隔,因此每幅图像的声束数还要少一些,上世纪80年代的超声成像设备通常采用128个声束。 由128个声束产生的超声图像在横向只有128个独立的数据点,像素点比较少,图像质量不高。为了加密像素点,又不增加声束,只能根据实际声束的数据插值得到所谓的虚拟声束。超声成像采用窄带脉冲信号,回波信号包括幅度和相位两部分的信息。上世纪80年代以前的成像方法把接收信号送入检波电路,得到包络信号,形成图像。这种方法只利用了回波信号中的幅度信息,丢失了相位信息,成像效果比较差。用包络信号插值,得不到插值点上真实的数据,由此得到的图像只是原有图像的平滑,图像质量不好。随着电子技术的发展,特别是数字化技术的运用,上世纪九十年代开始在超声诊断成像中采用相干处理的方法,用正交解调求得信号的复包络。复包

核医学成像设备分类、特点及核医学成像过程简介

核医学成像设备分类、特点及核医学成像过程简介 核医学成像设备是指探测并显示放射性核素药物(俗称同位素药物) 体内分布图像的设备。核医学成像是一种以脏器内外或脏器正常组织与病变组织之间的放射性浓度差别为基础的脏器或病变组织的显像方法。核医学成像检查ECT与CT、MRI等相比,能够更早地发现和诊断某些疾病。核医学成像属于功能性的显像,即放射性核素显像。 一、核医学成像设备分类及特点核医学成像设备(一)、相机 1、相机组成: (1)、闪烁探头:包括准直器、闪烁探测器、光电倍增管等。 (2)、电子线路:包括前置放大器、单脉冲高度分析器、校正电路等。 (3)、显示装置:示波器、照相机等。 (4)、相机附加设备。 2、特点: (1)、通过连续显像,追踪和记录放射性药物通过某脏器的形态和功能进行动态研究; (2)、由于检查时间相对较短,方便简单,特别适合儿童和危重病人检查; (3)、由于显像迅速,便于多体位、多部位观察; (4)、通过对图像相应的处理,可获得有助于诊断的数据或参数。 核医学成像设备(二)、单光子体层成像设备(SPECT) 1、成像原理:利用照相机围绕着诊断感兴趣的人体区域,采集各种不同角度上放射出的光子并计数,然后利用X-CT中所使用的图像重建方法,得到人体某一体层上的放射性药物浓度的分布,即可得到多层面的各方位的体层图像或三维立体像。 目前SPECT核医学成像设备的能量测量范围为50~600keV,空间分辨率6~11mm。 2、与X-CT的区别:(1)、图像粗造,空间分辨率低。 (2)、属发射型体层摄影; 核医学成像设备(三)、正电子发射体层成像设备(PET) 1、使用发射正电子的放射性核数,如:等都是人体组织的基本元素,易于标记各种生命

医学影像学试题及答案

医学影像学试卷 单选题,(共25小题,每小题4分) 1. 下列哪种方法为颅脑疾病诊断的基本方法:( ) A. 脑室造影 B. 计算机体层 C. 头颅平片 D. 磁共振成像 E. 脑血管造影 2. 形成正位肺门阴影最重要的的解剖结构是:( ) A. 淋巴组织 B. 支气管动脉 C. 支气管 D. 肺动脉 E. 肺静脉 3. 下列那项不是成骨肉瘤的X线表现:( ) A. 死骨形成 B. 骨膜反应 C. 软组织肿块 D. 溶骨性骨破坏 E. 瘤骨形成 4. 下述心脏大血管的X线测量其正常值及意义哪项是错误的:( ) A. 肺动脉段基线大于6cm为异常

B. 心脏面积增大百分比小于等于10%无意义 C. 右肺下肺动脉的宽径大小1cm为扩张 D. 心脏横径与胸廓横径之比,正常不超过0.52 E. 心脏横径正常平均11.75±0.93cm 5. 肾结核平片征象:( ) A. 肾影倒"八字"形 B. 肾影不清 C. 病侧"肾下垂" D. 肾区可见不规则钙化灶 E. 肾外形不光整 6. 摄胸片,投照条件适当,显影液温度25℃,显影时间5分钟,会造成:( ) A. 影像对比度欠佳 B. 以上都不是 C. 影像灰雾过高 D. 影像层次不清 E. 影像模糊 7. 摄小儿胸部X线片时,有如下情况,请您找出错误者:( ) A. 不能坐立的婴幼儿,不一定用立位摄影 B. 正常胸腺有时会与心脏增大混淆 C. 用大毫安、短时间 D. 正常也可见气管移位,如头颈的扭转 E. 呼气和吸气相摄片无明显差别

8. X线表现为肺血少,左、右肺门不对称,左侧〉右侧,肺动脉段呈直立样突起,最可靠的诊断是:( ) A. 动脉导管未闭 B. 肺动脉狭窄 C. 肺心病 D. 高血压性心脏病 E. 主动脉缩窄 9. 急性化脓性骨髓炎的病理变化特点是:( ) A. 以骨质破坏为主,周围伴骨质硬化 B. 局部骨质疏松 C. 以骨质增生硬化为主 D. 以骨质破坏为主,一般没有明显骨质增生硬化 E. 早期即有骨质破坏出现 10. 乳腺钼靶摄影最佳时间:( ) A. 月经期 B. 月经中期 C. 与经期无关 D. 月经干净后一周内 E. 月经前期 11. 三岁小儿,钡灌肠发现直肠局限性狭窄,近端肠管明显扩张,诊断应考虑为:( ) A. 先天性巨结肠

医学影像学试题附答案

医学影像学试卷 适用X围:__________ 出题教师:__________ 试卷满分100 分,考试时间60 分钟;书写要工整、清楚、标点符号使用正确。 一、填空题,根据题意,将正确答案补充完整(本大题满分10分,每小题2分) 1. 在CT纵隔窗图象上主肺动脉窗平面,显示的主要大血管有:(上腔静脉),(升主动脉),(降主动脉) 2. 骨膜增生又称骨膜反应,是因骨膜受到刺激,其内层的(成骨细胞)活动增加而产生的(骨膜新生骨)。X线上常表现为与骨皮质平行的线状、层状或(花边)状,已形成的骨膜新生骨可重新被破坏,破坏区两端残留骨膜反应呈三角形或袖口状,称为(骨膜三角或Codman三角)。 3. 输尿管结石的好发部位(肾盂输尿管移行部),(骨盆入口处)和(膀胱入口处)。 4. 胃溃疡之龛影在切线位X线片上的特征是(突出于轮廓线外),边缘光整,形状较规则,(多呈乳头状),可有(粘膜线)、狭颈征、项圈征出现。 5. MRI对(钙化),(细小骨化)的显示不如X线和CT。 二、单选题,以下各题有多个选项,其中只有一个选项是正确的,请选择正确答案(本大题满分30分,每小题1.5分) 1. 下列哪种方法为颅脑疾病诊断的基本方法:( ) A. 脑室造影 B. 计算机体层

C. 头颅平片 D. 磁共振成像 E. 脑血管造影 2. 形成正位肺门阴影最重要的的解剖结构是:( ) A. 淋巴组织 B. 支气管动脉 C. 支气管 D. 肺动脉 E. 肺静脉 3. 下列哪项不是逆行肾盂造影的优点:( ) A. 不通过血液循环,全身反应少 B. 禁忌症少 C. 造影剂量少,显影清楚 D. 能同时了解肾功能情况 E. 碘过敏者同样可以运用 4. 下列那项不是成骨肉瘤的X线表现:( ) A. 死骨形成 B. 骨膜反应 C. 软组织肿块 D. 溶骨性骨破坏 E. 瘤骨形成 5. 对冠心病室壁瘤诊断最可靠的方法是:( )

超声成像原理

第一章超声成像原理和妇产超声诊断临床基础 第一节超声成像原理 一、超声波的概念和基本特性 (一)超声波的概念频率在2万赫兹以上的机械振动波,称为超声波(ultrasonic wave),简称超声(ultrasound)。能够传递超声波的物质,称为传声介质,它具有质量和弹性,包括各种气体、液体和固体;传声介质有均匀的、不均匀的;有各向同性的、各向异性的等。超声波在传声介质中的传播特点是具有明确指向性的束状传播,这种声波能够成束地发射并用于定向扫查人体组织。 (二)超声波的产生医用高频超声波是由超声诊断仪上的压电换能器产生的,这种换能器又称为探头,能将电能转换为超声能,发射超声波,同时,它也能接受返回的超声波并把它转换成电信号。探头具有发射和接受超声两种功能。常用的探头分为线阵型、扇型、凸阵型,探头的类型不同,发射的超声束形状和大小各不相同,而各种探头根据探查部位的不同被设计成不同的形状。见图1-1-1。 图1-1-1 探头示意 (三)超声波的基本物理量 1.频率(f):是指单位时间内质点振动的次数。单位是赫兹(Hz)、千赫(KHz)、兆赫(MHz)。超声的频率在20KHz以上,而医学诊断用超声的频率一般在兆赫级,称为高频超声波,常用频率范围2~10兆赫。频率越高,波的纵向分辨力越好。周期(T)则是一个完整的波通过某点所需的时间。有f·T = 1 。 2.波长(λ):表示在均匀介质中的单频声波行波振动一个周期时间内所传播的距离,也就是一个波周期在空间里的长度。波的纵向分辨力的极限是半波长,因此了解人体软组织中传

导的超声波长有助于估计超声波分辨病灶大小的能力。 3.声速(C):是指声波在介质中传播的速度。声速是由弹性介质的特性决定的,不同介质的声速是不同的。人体各种软组织之间声速的差异很小,约5%左右,所以在各种超声诊断仪器检测人体脏器时,假设各种软组织的声速是相等的,即采用了人体软组织平均声速的概念。目前,较多采用人体软组织平均声速的数值是1540m/s。实际上人体不同软组织脏器及体液的声速是有差别的,因此声像图上显示的目标,无论是脏器或病灶,其位置及大小与实际的结构相比,都存在误差,但不致影响诊断结论,一般可忽略 声速C、波长λ、频率f或周期T之间的关系符合 4.声强(sound intensity):当声波在介质中传播时,声波的能量从介质的一个体积元通过邻近的体积元向远处传播。 声强是指超声波在介质中传播时,单位时间内通过垂直于传播方向的单位面积的平均能量。声强的物理意义为单位时间内在介质中传递的超声能量,或称超声功率。声强小时超声波对人体无害,声强超过一定限度,则可能对人体产生伤害,目前规定临床超声诊断仪安全剂量标准为平均声强小于10mW/cm2。(四)超声波的传播 1. 声特性阻抗(acoustic characteristic impedance):声特性阻抗(Z)定义为平面自由行波在介质中某一点处的声压(p)与质点速度(u)的比值。在无衰减的平面波的情况下,声特性阻抗等于介质的密度(ρ)与声速(C)的乘积。 2. 声特性阻抗差与声学界面:两种介质的声特性阻抗差大于1‰时,它们的接触面即可构成声学界面。入射的超声波遇声学界面时可发生反射和折射等物理现象。人体软组织及脏器结构声特性阻抗的差异构成大小疏密不等、排列各异的声学界面,是超声波分辨组织结构的声学基础。 3. 声波的界面反射与折射:超声入射到声学界面时引起返回的过程,称为声反射(acoustic reflection)。射向声学界面的入射角等于其反射角。而声波穿过介质之间的界面,进入另一种介质中继续传播的现象,称为声透射(acoustic transmission)。当超声的入射方向不

医学影像技术技士试题库完整

基础知识 以下每一道题下面有A、B、C、D、E五个备选答案。请从中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。 [试题1]组成肌腱的主要组织是 A、疏松结缔组织 B、致密结缔组织 C、网状组织 D、脂肪组织 E、肌组织 [答案](B) 答对率66.67% [试题2]下列关于骨构造的叙述,错误的是 A、由骨质、骨膜、骨髓构成 B、骨质分骨密质、骨松质两种 C、骨膜对骨有营养、再生和感觉作用 D、红骨髓具有造血功能 E、成人骨干骨髓腔的骨髓终生具有造血功能 [答案](E) 答对率80.63% [试题3]下列位于颅后窝的结构是 A、筛孔 B、圆孔 C、卵圆孔 D、棘孔 E、舌下神经孔 [答案](E) 答对率49.55% [试题4]动眼神经出颅的部位是 A、圆孔 B、卵圆孔 C、棘孔 D、眶上裂 E、视神经管 [答案](D) 答对率64.86% [试题5]变移上皮分布于 A、血管的表面 B、胆囊的表面 C、气管表面 D、膀胱的表面 E、胃的表面 [答案](D) 答对率64.71% [试题6]颈椎最主要的特征是 A、椎体较小 B、棘突分叉 C、有横突孔 D、关节突不明显 E、椎孔较小 [答案](C) 答对率49.17% [试题7]胸骨角平对于第几肋前端 A、第一肋 B、第二肋 C、第三肋 D、第四肋 E、第五肋 [答案](B) 答对率70.42% [试题8]与肱骨小头相关节的是 A、尺骨头 B、滑车切迹 C、鹰嘴 D、冠突 E、桡骨头 [答案](E) 答对率35.89% [试题9]关于胫骨的叙述,正确的是 A、位于小腿外侧 B、胫骨体呈圆柱形 C、上端膨大形成、外侧髁 D、两髁之间形成髁间凹 E、下端膨大外侧面形成外踝 [答案](C) 答对率53.75% [试题10]一块椎骨的椎体和椎弓围成 A、骶管裂孔 B、椎管 C、骶管 D、椎孔 E、椎间孔 [答案](D) 答对率49.62% [试题11]食管的第二狭窄位于 A、起始处 B、穿膈处 C、与左主支气管交叉处 D、与右主支气管交叉处 E、与胃相接处 [答案](C) 答对率87.84% [试题12]十二指肠乳头位于十二指肠的 A、上部 B、降部 C、水平部 D、升部 E、十二指肠球部 [答案](B) 答对率58.33%

医学影像学试题库含答案

1.医学影像学图像特点,下面的表述哪一项是错误的A A、X线、CT、MR图像的黑白、明暗的对比取决于不同组织的密度和厚度 B、 X线图像是X线透过人体后,有组织和器官的重叠、图像放大或失真 C、组织密度越大,CT值越大 D、MR电信号越强,图像越白,电信号越弱,影像越黑 E、 MR图像可以反映组织内氢原子的分布及它在磁共振过程中的弛豫特性(T1,T2) 2.下列哪种说法不正确 E A、X线管电压愈高,X线波长愈短,X线穿透力愈强 B、X线管电压愈低,X线波长愈长,X线穿透力愈弱 C、物质的密度愈高,对X线吸收愈多,照片影像愈白 D、物质的密度愈低,对X线吸收愈少,照片影像愈黑 E、物质的厚度与其对X线吸收和照片影像的白黑成反比 3. X线摄影主要利用X线特性的 C A. 穿透性与荧光效应 B. 穿透性与电离效应 C. 穿透性与感光效应 D. 荧光效应与电离效应 E. 荧光效应与感光效应 4. X线在体内各部穿透力,由大到小的排列有以下几种,请指出正确者: E A:气体,液体及软组织,脂肪,骨骼 B:骨骼,脂肪,液体及软组织,气体 C:气体,脂肪,液体及软组织,骨骼 D:脂肪,气体,液体及软组织,骨骼 E:骨骼, 液体及软组织,脂肪,气体 5. 胸片常规正位摄片指的是 B A.立位前后位 B.立位后前位

C.卧位前后位 D.卧位后前位 E.右侧位 6.关于CT图像的特点,哪项是错误的 C A. CT图像系灰度图像 B. CT图像由像素按矩阵排列构成 C. 像素越大,数目越多,空间分辨力越高 D. 像素反映的是相应体素的X线吸收系数 E. CT图像与X线图像所示的黑白影像一致 7、根据CT值的定义公式,空气的CT值为 D A.-700HU B.-800HU C.-900HU D.-1000HU E.-1100HU 8. MRI图像与CT图像相比,优越性表现为:E A. 断面图像 B. 数字图像 C. 灰度图像 D. 空间分辨力高 E. 软组织对比分辨力高 9 下列关于MR信号的描述,哪一项是正确的A A T1WI上,T1时间越短信号越强;反之,T1时间越长信号越弱 B T1WI上,T1时间越短信号越弱;反之,T1时间越长信号越强 C T2WI上,T2时间越长信号越弱;反之,T2加时间越短信号越强 D 脂肪的T1短,显示为低信号 E 水的T2长,显示为低信号 10.下面的磁共振应用,哪一项不属磁共振功能成像 E A. 磁共振弥散成像(DWI) B. 磁共振灌注成像 (PWI)

医学影像技术试题及答案

医学影像技术试题及答案(X线试题) X线试题 一、选择题 1、变动管电压法计算管电压的公式为(A)。 A. V=2d+c B. V=d+c C. V=3d+c D. V=2d-c E.以上都不是 2、透视和摄影都要利用的X线特性是(A)。 A、穿透性 B、荧光作用 C、感光作用 D、电离作用 E生物效应 3、手正位的中心线经下面哪个部位垂直射入暗盒中心(A)。 A、第三掌指关节 B、第二掌指关节 C、第三指间关节 D、第三掌腕关节 E、都不是 4、用于显示手舟骨最佳摄影体位(E)。 A、手正位 B、手侧位 C、手斜位 D、腕关节正位 E、腕关节尺偏位 5、踝关节正位中心线经内外踝连线上多少垂直射入暗盒中心(C)。 A、3cm B、4cm C、1cm D、2cm E、都不是 6、踝关节侧位中心线经内踝上多少垂直射入暗盒中心(A)。 A、1cm B、2cm C、3cm D、4cm E、5cm 7、髋关节正位中心线经髂前上棘与耻骨联合上缘连线的中垂线向外多少cm处垂直射入暗盒中心(D)。 A、1 B、 C、2 D、 E、3 8、头颅正位(后前位)中心线经以下哪个部位垂直射入暗盒(A)。 A、枕外隆突 B、外耳孔 C、乳突 D、鼻尖 E、都不是 9、头颅侧位中心线经以下哪个部位垂直射入暗盒中心(D)。 A、外耳孔 B、外耳孔前 C、外耳孔上 D外耳孔前、上各 E、以上都不是 10、汤氏位中心线向足侧倾斜多少度角,由前额部经两外耳孔连线中点相应高度射入(D)。 A、15度 B、20度 C、25度 D、30度 E、以上都不是 11、副鼻窦柯氏位中心线向足侧倾斜多少度角,经鼻根射入(D)。 A、10度 B、15度 C、20度 D、23度 E、30度 12、副鼻窦瓦氏位摄影体位要求听眦线与暗盒成多少度角(D)。 A、20度 B、25度 C、30度 D、37度 E、45度 13、乳突许氏位中心线向足侧倾斜多少度角,经被检侧乳突射入暗盒中心(C)。 A、15度 B、20度 C、25度 D、30度 E、以上都不是 14、乳突梅氏位中心线向足侧倾斜多少度角,经被检侧乳突射入暗盒中心(E)。 A、25度 B、30度 C、35度 D、40度 E、45度 15、乳突梅氏位摄影体位要求头转向被检侧,且头正中矢状面与床面成多少度角(D)。 A、30度 B、35度 C、40度 D、45度 E、都不是 16、腰椎正位中心线经以下哪个部位垂直射入暗盒中心(B). A、脐孔 B、脐孔上3cm C、脐孔下3cm D、髂棘 E、以上都不是 17、膈上肋骨正位中心线经以下哪个部位水平射入 (A) 。

医学影像技术试题及答案

医学影像技术试题及答案(C T试题)CT试题 一、单项选择 1 CT的发明者是( ) A. Cormack B. Ambrose C. Hounsfield D. Ledley E.Roentgen 2 第一台CT扫描机研制成功的时间是( ) A.1971年9月 B.1971年10月 C.1972年4月 D.1974年11月 E. 1979年8月 3 CT扫描使影像诊断的范围大大扩大的根本原因是( ) A.病人接受X线量少 B.密度分辨率高 C.空间分辨率高 D.显示的范围大 E.可获得冠状面、矢状面图像( 4 CT扫描的优点不包括( ) A.真正的断面图像 B.密度分辨率高 C.可作定量分析 D.极限分辨率高 E.图像无层面以外结构的干扰 5 关于CT机的工作原理,错误的叙述是( ) A.利用窄束X线穿透被检部位

B.X线穿透被检部位时,其强度呈负指数关系衰减 C.透过被检体的X线被探测器接收直接成像 D.A/D转换是将模拟信号转换为数字信号 E.计算机将模拟信号变成数字信号,再重建图像 6 CT设备硬件的基本结构不包括( ) A.扫描机架系统 B.扫描检查床 C.X线及数据收集系统 D.计算机及阵列处理机 E.自动洗片机 7 扫描时,探测器不动,只有球管旋转的CT机属于( ) A.第一代CT机 B.第二代CT机 C.第三代CT机( D.第四代CT机 E.第五代CT机 8 关于CT机的主要的技术性能指标,正确的叙述是( ) A.重建的矩阵越大,所需的重建时间越短 B.CT机扫描机架孔径越小越好 C.硬磁盘容量大小决定着对图像数据的存储量 D.探测器的数目越多,扫描时间越长 E.X线球管的热容量越小越好

医学超声基本知识

医学超声基本知识 销售人员内部培训使用 医用超声常识 ●什么是超声波? ●超声波的基本参数:频率、波长、声阻抗、声速等等。 ●医用超声的成像模式和发展历史。 ●医用超声仪的基本知识。 ●超声诊断在医学上的应用。 什么是超声波? ●超声波是频率大于20000赫兹的声波。 ●声波是由物体振动产生的。超声波是由压电晶体振动产生的。 ●超声波在人体介质里的传播方式:反射、折射、衍射、散射和衰减等,其中反射是超声成像的基本原理。 ●回声:反射回来的超声信号叫回声。 超声波基本参数 ●波长和频率的关系:成反比。频率为超声最常用参数。频率越高,超声穿透力越差。 ●医用超声波的频率范围:2-10兆赫较常用,其中腹部3.5兆赫最常用。 ●声速:在人体一般为1500米/秒。 ●声阻抗:决定回声的强弱。(类似X线诊断中的密度概念)。 超声波的成像模式和发展历史 ●A超:即Amplitude超声(类似示波器波形),以振幅的大小来表示回声的强弱,临床已基本淘汰。 ●某些科室如肺科胸水测量、眼科眼球径线的测量可能还在使用。 超声波的成像模式和发展历史 ●B超:即Brightness超声,它将回声用灰阶二维图象表示出来,是医用超声诊断的主要手段。 ●B超显示的是一种断面解剖图象,类似于CT和磁共振图象。 超声波的成像模式和发展历史 ●M超:即Motion超声,是B型超声的一维取样图象随时间的变化图象,主要用于心脏径线测量以及各种心功能的测量。 ●M型也可用在胎心率的测量。 超声波的成像模式和发展历史 ●频谱多普勒:分脉冲多普勒和连续多普勒两种,主要用于心脏和血管的血流动力学参数测量。 ●脉冲多普勒:简称PW。最常用的血流动力学测量方法。 ●连续多普勒:简称CW。主要用于高速血流的测量。 两种频谱多普勒的简单区别 ●脉冲多普勒:可以定位测量血流的动力学参数,但所能测量的最高流速受到多种因素如频率、取样深度、脉冲重复频率等的限制。它广泛用于心脏和血管检查。 ●连续多普勒:可测量高速血流,但不能定位,主要用于心脏测量。 超声波的成像模式和发展历史 ●彩色血流成像技术:传统上是彩色多普勒技术CDFI。新近出现了能量图和方向性能量图技术。CDFI和能量图的区别 ●CDFI:最主流的彩色成像技术。在高速血流显示上有特征性的伪差--“混叠”出现,表现心脏的湍流较直观。成像受角度影响。

医学影像技术试题及答案磁共振试题样本

医学影像技术试题及答案( 磁共振试题) 磁共振试题 1 核磁共振的物理现象是哪一年发现的( ) A.1946年 B.1952年 C.1972 ( w D.1977年 E. 1978年 2 第一幅人体头部MR图像是哪一年获取的( ) A.1946年 B.1952年 C.1972年 ( D.1977年 E.1978年 3 下列哪一项不是MRI的优势( ) A.不使用任何射线, 避免了辐射损伤 B.对骨骼, 钙化及胃肠道系统的显示效果 C.能够多方位直接成像 D.对颅颈交界区病变的显示能力 E.对软组织的显示能力. 4 下列元素中哪个不能进行MR成像( ) A.13C B.31P C.2H D.23Na E.19F w 5 下列哪一项是正确的( ) A. 由于静磁场的作用, 氢质子全部顺磁场排列 B.由于静磁场的作用, 氢质子全部逆磁场排列 C.由于静磁场的作用, 氢质子顺, 逆磁场排列数目各半 D.顺磁场排列的质子是低能稳态质子 E.逆磁场排列的质子是高能稳态质子 6 下列哪一项是正确的( ) A. 逆磁场方向排列的质子是高能不稳态质子 B.顺磁场方向排列的质子是高能稳态质子 C.顺磁场方向排列的质子是高能不稳态质子 D.逆磁场方向排列的质子是低能稳态质子

E.逆磁场方向排列的质子是低能不稳态质子 7 下列等式中, 哪一项是正确的( ) A.1T=10G B.1T=102G ( C.1T=103G D.1T=104G E.1T=105G 8 在0.5Tesla的场强中, 氢质子(1H)的共振频率约为( ) w A.6.4MHz B.21.3MHz C.42.6MHz ( w D.63.9MHz E.85.2MHz 9 横向弛豫是指( ) A.T1弛豫 B.自旋-自旋弛豫 C.自旋-晶格弛豫 D.氢质子顺磁场方向排列 E.氢质子逆磁场方向排列 10 纵向弛豫是指( ) A.T2弛豫 B.自旋-自旋弛豫 C.自旋-晶格弛豫 D.氢质子顺磁场方向排列 E.氢质子逆磁场方向排列 11 磁场梯度包括( ) A. 层面选择梯度 B.相位编码梯度 C.频率编码梯度 D.以上均是 E.以上均不是 12 在三个梯度磁场的设置及应用上, 下述哪一项正确( ) A. 只有层面选择梯度与相位编码梯度能够互换 B.只有层面选择梯度与频率编码梯度能够互换 C.只有相位编码梯度与频率编码梯度能够互换 D.三种梯度磁场均不能互换 E.三种梯度磁场均能互换 13 下列哪种说法是错误的( ) A. 梯度场越大, 层面越薄 B.梯度场越小, 层面越厚 C.梯度场越大, 层面越厚 D.射频频带宽度越窄, 层面越薄 E.射频频带宽度越宽, 层面越厚 14 在MR成像过程中, 三个梯度磁场启动的先后顺序是( ) A.层面选择—相位编码—频率编码 B.层面选择—频率编码—相位编码 C.相位编码—频率编码—层面选择 D.频率编码—相位编码—层面选择 E.相位编码—层面选择—频率编码 15 在MR成像过程平面信号的定位中( )

医学影像学考试试题及答案大全(三)

医学影像学考试试题及答案 一填空题 1、X射线管的负极,包括灯丝和聚焦罩两部分。 2、想获得大的管电流需要选取大的管电压和灯丝的温度。 3、在普通X射线摄影中,用钨作为阳极靶。 4、高速运动的电子与靶物质相互作用时,其能量损失分为__碰撞损失__和__辐射损失__. 5、X射线在空间某一点的强度是指单位时间内通过垂直于X射线传播方向上的单位面积上的光子数量与能量乘积的总和。 6、在医学应用中,常用X射线的量和质来表示X射线的强度,量是质是光子数。 7、在X射线野中靠近阳极侧的有效焦点比靠近阴极侧的要小。 8、光电质量衰减系数与原子序数、光子能量之间的关系可表示为_ μτ/ρ Z3/(hυ)3_____。 9、康普顿质量衰减系数与入射光子能量之间的关系可表示为_ μc/ρ 1/(hυ)3____。 10、康普顿效应发生的概率与原子序数Z无关,仅与物质的___每克电子数___有关。 11、电子对质量衰减系数与原子序数的光子能量的关系可表示为__ 当hυ>2m e c2_时,__μp/ρ Z hυ 当hυ>>2m e c2 _时,μp/ρ Zln(hυ)________________。 12、在X射线与物质的相互作用时,整个诊断X射线的能量范围内

都有__ 10keV-100keV __产生,所占比例很小,对辐射屏蔽的影响不大。 13、在X射线与物质的相互作用时,总的衰减系数μ/ρ=_μτ/ρ+μc/ρ+μp/ρ+μcoh/ρ____。 14、在X射线与物质的相互作用时,在10keV~100MeV能量范围的低能端部分_____光电__效应占优势,中间部分____康普顿___效应占优势,高能端部分___电子对___效应占优势。 15、宽束X射线是指含有____散射____的X射线束。 16、滤过是把X射线束中的____低能成分___吸收掉。 17、滤过分为___固有滤过___和___附加滤过___。 18、X射线传播过程中的强度减弱,包括距离所致的____扩散___衰减和物质所致的_____吸收____衰减. 19、X射线影像是人体的不同组织对射线____衰减___的结果。 20、增感屏—胶片组合体在应用时,胶片的光密度直接取自X射线的能量不足___10%__,其余的光密度都是靠___增感屏受激后发出的可见光获得的。 21、量化后的___整数灰度值__又称为灰度级或灰阶,灰度级之间的最小变化称为____灰度分辨率___。 22、每个单独像素的大小决定图像的____细节可见度____. 23、CR系统X射线照射量与发射的荧光强度呈___五位数___的直线相关。 24、X-CT的本质是___衰减系数___成像.

相关主题
文本预览
相关文档 最新文档