(湖北武汉专用)中考数学必刷试卷10(含解析)-人教版初中九年级全册数学试题
- 格式:docx
- 大小:376.63 KB
- 文档页数:22
2024年湖北省中考数学试卷一、选择题(每小题3分,共30分)1.在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作( )A .+10元B .﹣10元C .+20元D .﹣20元2.如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A .B .C .D .3.2x •3x 2的值是( )A .5x 2B .5x 3C .6x 2D .6x 34.如图,直线AB ∥CD ,已知∠1=120°,则∠2=( )A .50°B .60°C .70°D .80°5.不等式x +1≥2的解集在数轴上表示为( )A .B .C .D .6.下列各事件,是必然事件的是( )A .掷一枚正方体骰子,正面朝上恰好是3B .某同学投篮球,一定投不中C .经过红绿灯路口时,一定是红灯D .画一个三角形,其内角和为180°7.《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A.B.C.D.8.AB为半圆O的直径,点C为半圆上一点,且∠CAB=50°.①以点B为圆心,适当长为半径作弧,交AB,BC于D,E;②分别以DE为圆心,大于DE为半径作弧,两弧交于点P;③作射线BP.则∠ABP=( )A.40°B.25°C.20°D.15°9.平面坐标系xOy中,点A的坐标为(﹣4,6),将线段OA绕点O顺时针旋转90°,则点A的对应点A′的坐标为( )A.(4,6)B.(6,4)C.(﹣4,﹣6)D.(﹣6,﹣4)10.抛物线y=ax2+bx+c的顶点为(﹣1,﹣2),抛物线与y轴的交点位于x轴上方.以下结论正确的是( )A.a<0B.c<0C.a﹣b+c=﹣2D.b2﹣4ac=0二、填空题(每小题3分,共15分)11.写一个比﹣1大的数 .12.中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽是概率是 .13.计算:= .14.铁的密度约为7.9kg/m3,铁的质量m(kg)与体积V(m3)成正比例.一个体积为10m3的铁块,它的质量为 kg.15.△DEF为等边三角形,分别延长FD,DE,EF,到点A,B,C,使DA=EB=FC,连接AB,AC,BC,连接BF并延长交AC于点G.若AD=DF=2,则∠DBF= ,FG = .三、解答题(75分)16.计算:(﹣1)×3++22﹣20240.17.▱ABCD中,E,F为对角线AC上两点,且AE=CF,连接BE,DF.求证BE=DF.18.小明为了测量树AB的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C地与树AB相距10米,眼睛D处观测树AB的顶端A的仰角为32°;方案二:如图(2),测得C地与树AB相距10米,在C处放一面镜子,后退2米到达点E,眼睛D在镜子C中恰好看到树AB的顶端A.已知小明身高1.6米,试选择一个方案求出树AB的高度.(结果保留整数,tan32°≈0.64)19.为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD四组,制成了不完整的统计图.分组:0≤A<5,5≤B<10,10≤C<15,15≤D<20.(1)A组的人数为 ;(2)七年级400人中,估计引体向上每分钟不低于10个的有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.20.一次函数y=x+m经过点A(﹣3,0),交反比例函数y=于点B(n,4).(1)求m,n,k.(2)点C在反比例函数y=第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.21.Rt△ABC中,∠ACB=90°,点O在AC上,以OC为半径的圆交AB于点D,交AC于点E,且BD=BC.(1)求证:AB是⊙O的切线.(2)连接OB交⊙O于点F,若AD=,AE=1,求弧CF的长.22.学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42米,篱笆长80米.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为S米2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750米2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.23.如图,矩形ABCD中,E,F在AD,BC上,将四边形ABFE沿EF翻折,使E的对称点P落在CD上,F的对称点为G,PG交BC于H.(1)求证:△EDP∽△PCH.(2)若P为CD中点,且AB=2,BC=3,求GH长.(3)连接BG,若P为BC中点,H为AB中点,探究BG与AB大小关系并说明理由.24.如图,二次函数y=﹣x2+bx+3交x轴于A(﹣1,0)和B,交y轴于C.(1)求b的值.(2)M为函数图象上一点,满足∠MAB=∠ACO,求M点的横坐标.(3)将二次函数沿水平方向平移,新的图象记为L,L与y轴交于点D,记DC=d,记L 顶点横坐标为n.①求d与n的函数解析式.②记L与x轴围成的图象为U,U与△ABC重合部分(不计边界)记为W,若d随n增加而增加,且W内恰有2个横坐标与纵坐标均为整数的点,直接写出n的取值范围.参考答案一、选择题(每小题3分,共30分)1.解:“正”和“负”相对,所以,在生产生活中,正数和负数都有现实意义.例如收20元记作+20元,则支出10元记作﹣10元.故选:B.2.解:从正面看有两层,底层4个正方形,上层左边个正方形.故选:A.3.解:2x•3x2=6x3.故选:D.4.解:∵AB∥CD,∴∠1+∠2=180°,∵∠1=120°,∴∠2=60°.故选:B.5.解:x+1≥2,解得:x≥1,在数轴上表示,如图所示:.故选:A.6.解:A、掷一枚正方体骰子,正面朝上恰好是3,是随机事件,不符合题意;B、某同学投篮球,一定投不中,是随机事件,不符合题意;C、经过红绿灯路口时,一定是红灯,是随机事件,不符合题意;D、画一个三角形,其内角和为180°,是必然事件,符合题意;故选:D.7.解:依据题意得:,故选:A.8.解:∵AB为半圆O的直径,∴∠ACB=90°,又∵∠CAB=50°,∴∠ABC=40°.根据作图步骤可知,BP平分∠ABC,∴∠ABP=.故选:C.9.解:过A作AC⊥y轴于点C,过A′作A′B⊥x轴于点B,则:AC=4,CO=6,∠ACO=∠A′BO=90°,∴∠A+∠AOC=∠AOC+∠CAA′=90°,∴∠A=∠COA′,∵AO=A′O,∴△AOC≌△A′OB(AAS),∴A′B=AC=4,OB=OC=6,∴A′(6,4),故选:B.10.解:由题意,∵抛物线与y轴的交点位于x轴上方,∴令x=0,y=c>0,故B错误.又抛物线的顶点为(﹣1,﹣2),∴可设抛物线为y=a(x+1)2﹣2.∴y=ax2+2ax+a﹣2.∴b=2a,c=a﹣2.∵c>0,∴a﹣2>0,即a>2>0,故A错误.∵顶点为(﹣1,﹣2),∴当x=﹣1时,y=a﹣b+c=﹣2,故C正确.∵b=2a,c=a﹣2,∴b2﹣4ac=4a2﹣4a(a﹣2)=8a>0,故D错误.故选:C.二、填空题(每小题3分,共15分)11.解:比﹣1大的数如:0,故答案为:0(答案不唯一).12.解:因为总共有5人,所以从中任选一个,恰好是赵爽是概率是.故答案为:.13.解:原式==1,故答案为:1.14.解:由题意,m=ρV,∴m=7.9V.又V=10,∴m=10×7.9=79(kg).故答案为:79.15.解:∵△DEF为等边三角形,且DE=EB,∴DE=BE=EF,∠DEF=∠DFE=∠EDF=60°,∴∠DBF=∠EFB=30°,∴∠AFB=90°,作CH⊥BG,交BG的延长线于点H,∵∠CFH=∠BFE=30°,AD=DF=CF=2,∴CH=CF=1,∴FH=,∵∠AFG=∠CHG=90°,∠AGF=∠CGH,∴△AFG∽△CHG,∴,∴FG=FH=.故答案为:30°;.三、解答题(75分)16.解:原式=﹣3+3+4﹣1=3.17.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△BAE和△DCF中,,∴△BAE≌△DCF(SAS),∴BD=DF.18.解:方案一:过D作DE⊥AB于点E,由题意得:CD⊥BC,AB⊥BC,∴∠C=∠B=∠DEB=90°,∴四边形BCDE为矩形,∴BE=CD=1.6m,DE=BC=10m,在Rt△ADE中,tan∠ADE=,∴AE=DE tan∠ADE≈0.64×10=6.4m,∴AB=AE+EB=1.6+6.4=8m.方案二:由题意得:CE=2,BC=10,DE=1.6,∠E=∠B=90°,∠DCE=∠ACB,∴△ABC∽△DEC,∴,即:,解得:AB=8m.答:树AB的高度为8米.19.解:(1)样本容量为14÷35%=40,∴A组的人数为40﹣10﹣14﹣4=12(人);故答案为:12人;(2)400×=180(人),答:估计引体向上每分钟不低于10个的有180人;(3)平均数为=8.75(个),说明平均每人每分钟做引体向上8.75个(答案不唯一,言之有理即可).20.解:(1)由题意得:﹣3+m=0,n+m=4,k=4n,解得:m=3,n=1,k=4;(2)∵S△AOC<S△AOB,∴点B到x轴的距离大于点C到x轴的距离,∴点C位于点B的右侧,∴a>1.21.(1)证明:连接OD,在△BOD和△BOC中,,∴△BOD≌△BOC(SSS),∴∠BDO=∠BCO,∵∠ACB=90°,∴∠BDO=90°,即OD⊥AB,又∵点D在⊙O上,∴AB是⊙O的切线.(2)解:令⊙O的半径为r,在Rt△AOD中,()2+r2=(r+1)2,解得r=1,∴AO=2,∴sin A=,∴∠A=30°,∴∠DOC=120°.又∵△BOD≌△BOC,∴∠DOB=∠COB=60°,∴弧CF的长为:.22.解:(1)由题意,2x+y=80,∴y=﹣2x+80.由0<﹣2x+80≤42,且x>0,∴19≤x<40.由题意,S=AB•BC=x(﹣2x+80),∴S=﹣2x2+80x.(2)由题意,令S=﹣2x2+80x=750,∴x=15(舍去)或x=25.答:当x=25时,围成的矩形花圃的面积为750米2.(3)由题意,根据(2)S=﹣2x2+80x=﹣2(x﹣20)2+800,又∵﹣2<0,且19≤x<40,∴当x=20时,S取最大值为800.答:围成的矩形花圃面积存在最大值,最大值为800米2,此时x的值为20.23.(1)证明:如图,∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∴∠1+∠3=90°,∵E,F分别在AD,BC上,将四边形ABFE沿EF翻折,使A的对称点P落在DC上,∴∠EPH=∠A=90°,∴∠1+∠2=90°,∴∠3=∠2,∴△EDP∽△PCH;(2)解:∵四边形ABCD是矩形,∴CD=AB=2,AD=BC=3,∠A=∠D=∠C=90°,∵P为CD中点,∴,设EP=AP=x,∴ED=AD﹣x=3﹣x,在Rt△EDP中,EP2=ED2+DP2,即x2=(3﹣x)2+1,解得,∴,∴,∵△EDP∽△PCH,∴,∴,解得,∵PG=AB=2,∴;(3)解:如图,延长AB,PG交于一点M,连接AP,∵E,F分别在AD,BC上,将四边形ABFE沿EF翻折,使A的对称点P落在CD上,∴AP⊥EF,BG⊥直线EF,∴BG∥AP,∵AE=EP,∴∠EAP=∠EPA,∴∠BAP=∠GPA,∴△MAP是等腰三角形,∴MA=MP,∵P为CD中点,∴设DP=CP=y,∴AB=PG=CD=2y,∵H为BC中点,∴BH=CH,∵∠BHM=∠CHP,∠CBM=∠PCH,∴△MBH≌△PCH(ASA),∴BM=CP=y,HM=HP,∴MP=MA=MB+AB=3y,∴,在Rt△PCH中,,∴,∴,在Rt△APD中,,∵BG∥AP,∴△BMG∽△MAP,∴,∴,∴,∴.24.解:(1)∵二次函数y=﹣x2+bx+3与x轴交于(﹣1,0),∴0=﹣1﹣b=3,解得b=2.(2)∵b=2,∴二次函数表达式为:y=﹣x2+2x+3=﹣(x﹣1)2+4,令y=0,解得x=﹣1或3,令x=0得y=3,∴A(﹣1.0),B(3,0),C(0,3),作MN⊥x轴于点N,设M(m,﹣m2+2m+3),当点M在x轴上方时,如图1,∵∠MAB=∠ACO,∴tan∠MAB=tan∠ACO,即,∴,解得m=或﹣1(舍去),当点M在x轴下方时,如图2,∵∠MAB=∠ACO,∴tan∠MAB=tan∠ACO,即,∴=,解得m=或﹣1(舍去),综上:m=或m=.(3)①∵将二次函数沿水平方向平移,∴纵坐标不变是4,∴图象L的解析式为y=﹣(x﹣n)2+4=﹣x2+2nx﹣n2+4,∴D(0,﹣n2+4),∴CD=d=|﹣n2+4﹣3|=|﹣n2+1|,∴d=,②由①得d=,则函数图象如图,∵d随着n增加而增加,∴﹣1≤n≤0或n≥1,△ABC中含(0,1),(0,2),(1,1)三个整点(不含边界),当W内恰有2个整数点(0,1),(0,2)时,当x=0时,y L>2,当x=1时,y L≤1,∴,∴﹣<n<,n≥1+或n≤1﹣,∴﹣<n<1﹣,∵﹣1≤n<0 或n≥1,∴﹣1≤n≤1﹣;当W内恰有2个整数点(0,1),(1,1)时,当x=0时,1<y L≤2,当x=1时,y L>1,∴,∴﹣<n≤﹣或≤n<,1﹣<n<1+,∴,∵﹣1≤n<0 或n≥1,∴;当W内恰有2个整数点(0,2),(1,1)时,此种情况不存在,舍去.综上,n的取值范围为﹣1≤n≤1﹣或.。
2020年中考数学必刷试卷03(湖北武汉专用)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣13的相反数是( ) A .3 B .﹣3 C .-13 D .132x 的取值范围是( )A .2x >B .2x <C .2x ≥D .2x ≤3.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C ..D .5.下列几何体中,俯视图...为三角形的是( )A.B.C.D.6.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(古代1斤=16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两、y两,下列方程组正确的为()A.1645x yx y x y+=⎧⎨+=+⎩B.561656x yx y x y+=⎧⎨+=+⎩C.561645x yx y x y+=⎧⎨+=+⎩D.651656x yx y x y+=⎧⎨+=+⎩7.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.23B.12C.13D.258.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x 轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C 的对应点C′的坐标为A .1)B .(2,1)C .(2D .(1)10.如图,AB 是半圆O 的直径,点D 在半圆O 上,AB=AD=10,C 是弧BD 上的一个动点,连接AC ,过D 点作DH ⊥AC 于H ,连接BH ,在点C 移动的过程中,BH 的最小值是( )A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:3x 3﹣12x=_____.12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____.13.化简2221m m nm n ---的结果是____.14.如图,在▱ABCD 中,AB AD =4,将▱ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为_____.15.如图,直线y =12x 与双曲线y =k x (k >0,x >0)交于点A ,将直线y =12x 向上平移2个单位长度后,与y 轴交于点C ,与双曲线交于点B ,若OA =3BC ,则k 的值为____.16.如图,∠AOC =90°,P 为射线OC 上任意一点(点P 不与点O 重合),分别以AO ,AP 为边在∠AOC 的内部作两个等边△AOE 和△APQ ,连接QE 并延长交OP 于点F ,则∠OEF 的度数是_____.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .19.(本小题满分8分)某服饰公司为我学校七年级学生提供L 码、M 码、S 码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D (1)求证:AC是⊙O的切线;(2)如图2,连接CD,若tan∠BCD⊙O BC的长.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1nBC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OP A=2S△OQA,试求出点P的坐标.。
2022年湖北武汉中考数学一、选择题(共10小题,每小题3分,共30分)1.实数2 022的相反数是()A.-2 022B.-12 022C.12 022D.2 0222.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性。
下列汉字是轴对称图形的是()A B C D4.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a75.如图是由4个相同的小正方体组成的几何体,它的主视图是()A B C D6.已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y27.匀速地向一个容器内注水,最后把容器注满。
在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线)。
这个容器的形状可能是()A B C D8.班长邀请A,B,C,D四位同学参加圆桌会议。
如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.239.如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9 cm,AB=20 cm,BC=24 cm。
现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.11013cm B.8 cm C.6√2cm D.10 cm10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格。
将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方。
图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12二、填空题(共6小题,每小题3分,共18分)11.计算√(−2)2的结果是.12. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表。
2020年中考数学必刷试卷09(湖北武汉专用)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,,,﹣2中,最小的是( )A .0B .C .D .﹣2【答案】B【解析】∵<﹣2<0<,∴所给的数中,最小的数是. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。
即1x y x+=-的自变量取值范围是0x ≠。
故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A . 6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a>0,c<0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:BM=2222+=+=10,86BC CM∴DN+MN的最小值为10,故选C.10.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为()A.27﹣3B.3C.54﹣3D.54【答案】C【解析】设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=63=33MN=2(6﹣3312﹣3∴FM=12(6﹣12+3333,∴阴影部分的面积=4S△AFM=4×12(333)×3354﹣183;故选C.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.计算:﹣tan60°=_____.【答案】1+【解析】原式==1+,故答案为1+.12.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能有_____个.【答案】34【解析】设白球有x 个,根据题意得:4040x-=15%, 解得:x =34,即白色球的个数为34个, 故答案为:34.13.方程22111x x =-- 的解为_____. 【答案】x=-3【解析】 方程两边都乘以(x-1)(x+1) 得,-2=x+1, 解得 x=-3,经检验x=-3是原方程的解, 所以原方程的解为:x=-3.14.如图,在矩形ABCD 中,AB=4,AD=2,点E 在CD 上,DE=1,点F 是边AB 上一动点,以EF 为斜边作Rt △EFP .若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是________.【答案】0或1<AF <113或4. 【解析】以EF 为斜边的直角三角形的直角顶点P 是以EF 为直径的圆与矩形边的交点, 取EF 的中点O,(1) 如图1, 当圆O与AD相切于点G时, 连结OG, 此时点G与点P重合,只有一个点, 此时AF=OG=DE=1;(2) 如图2,当圆O与BC相切于点G, 连结OG,EG, FG, 此时有三个点P可以构成Rt△EFP,∵OG是圆O的切线,∴OG⊥BC∴OG∥AB∥CD∵OE=OF,∴BG=CG,∴OG=12(BF+CE),设AF=x, 则BF=4-x, OG=12(4-x+4-1)=12(7-x)则EF=2OG=7-x, EG2=EC2+CG2=9+1=10,FG2=BG2+BF2=1+(4-x) 2,在Rt△EFG中, 由勾股定理得EF2=EG2+FG2 ,得(7-x) 2=10+1+(4-x)2,解得x=113,所以当1<AF<113时,以EF为直径的圆与矩形ABCD的交点 (除了点E和F) 只有两个;(3)因为点F是边AB上一动点:当点F 与B 点重合时, AF=4, 此时Rt △EFP 正好有两个符合题意,如图3;故答案为0或1<AF <113或4. 15.如图,直线y =x 与双曲线y =1x交于点A ,将直线y =-x 向右平移使之经过点A ,且与x 轴交于点B ,则点B 的坐标为______.【答案】(2,0)【解析】依题意得1y xy x =⎧⎪⎨=⎪⎩,解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩,()1,1A ∴,设直线y x =-向右平移b 个单位长度经过点A ,则平移后的解析式为()y x b x b =--=-+,代入()1,1A 得,11b =-+, 解得2b =,∴平移后的解析式为2y x =-+,令0y =,则求得2x =,()2,0B ∴, 故答案为()2,0.16.直线y =k 1x +3与直线y =k 2x ﹣4在平面直角坐标系中的位置如图所示,它们与y 轴的交点分别为点A 、B .以AB 为边向左作正方形ABCD ,则正方形ABCD 的周长为_____.【答案】28【解析】当x =0时,y =k 1x +3=3, ∴点A 的坐标为(0,3); 当x =0时,y =k 2x ﹣4=﹣4, ∴点B 的坐标为(0,﹣4), ∴AB =3﹣(﹣4)=7,∴C 正方形ABCD =4AB =4×7=28.故答案为28.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:a •a 3﹣(2a 2)2+4a 4【解析】原式=a4﹣4a4+4a4=a4.18.(本小题满分8分)直线a,b,c,d的位置如图所示,已知∠1=∠2,∠3=70°,求∠4的度数.【解析】∵∠1=∠2,∴a∥b,∴∠3+∠4=180°,∴∠4=180°﹣∠3=180°﹣70°=110°.19.(本小题满分8分)某调查机构将今年黄石市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人,请在图.上补全条形统计图并标出相应数据;(2)若黄石市约有260万人口,请你估计最关注教育问题的人数约为多少万人?(3)随着经济的发展,人们越来越重视教育,预计关注教育的人数在每年以10%的增长率在增长,预计两年后我市关注教育问题的人数.【解析】(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).(2)350260651400⨯=(万)(3)65×(1+10%)2=78.65(万)20.(本小题满分8分)图1,图2均为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图使得每个图形的顶点均在格点上.()1以AB为一边,画一个成中心对称的四边形ABCD,使其面积等于20;()2以EG为对角线,画一个成轴对称的四边形EFGH,使其面积等于20.并直接写出这个四边形的周长.【解析】(1)如图,BC=5,BC边上的高为4的平行四边形ABCD为所求;(2)如图,由两个等腰直角三角形组成的正方形EFGH为所求,边长为25,则周长为85.21.(本小题满分8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F(1)求证:AC是⊙O的切线;(2)若CF=2,CE=4,求⊙O的半径.【解析】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠C,∵∠ACB=90°,∴∠OEA=90°,∴AC是⊙O的切线;(2)解:设⊙O的半径为r.过点O作OH⊥BF交BF于H,由题意可知四边形OECH为矩形,∴OH=CE=4,CH=OE=r,∴BH=FH=CH-CF=r-2,在Rt△BHO中,∵OH2+BH2=OB2,∴42+(r-2)2=r2,解得r=5.∴⊙O的半径为5.22.(本小题满分10分)某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.(1)请求出购进这两种水果每箱的价格是多少元?(2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;(3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?【解析】(1)设每箱冰糖橙进价为x元,每箱睡美人西瓜进价为y元,由题意,得40152000 20301900x yx y+=⎧⎨+=⎩,解得:3540 xy=⎧⎨=⎩,即设每箱冰糖橙进价为35元,每箱睡美人西瓜进价为40元;(2)根据题意得,w=(40﹣35)a+(50﹣40)(200﹣a)=﹣5a+2000;(3)设购买冰糖橙a箱,则购买睡美人西瓜为(200﹣a)箱,则200﹣a≥5a且a≥30,解得30≤a1 333≤,由(2)得w=﹣5a+2000,∵﹣5,w随a的增大而减小,∴当a=30时,y最大.即当a=30时,w最大=﹣5×30+2000=1850(元).答:当购买冰糖橙30箱,则购买睡美人西瓜170箱该水果零售商店能获得的最大利润,最大利润为1850元.23.(本小题满分10分)如图,四边形中ABCD,AB∥CD,BC⊥AB,AD=CD=8cm,AB=12cm,动点M从A出发,沿线段AB作往返运动(A﹣B﹣A),速度为3(cm/s),动点N从C出发,沿着线段C﹣D﹣A运动,速度为2(cm/s),当N到达A点时,动点M、N运动同时停止.(1)当t=5(s)时,则MN两点间距离等于(cm);(2)当t为何值时,MN将四边形ABCD的面积分为相等的两个部分?(3)若线段MN与AC的交点为P,探究是否存在t的值,使得AP:PC=1:2?若存在,请求出所有t的值;若不存在,请说明理由.【解析】(1)如图所示,当t=5(s)时,点N移动的路程为10,点M移动的路程为15,∴点N在AD上,DN=10﹣8=2,点M在AB上,BM=15﹣12=3,∴AN=6,AM=9,过D作DE⊥AB,过N作NF⊥AB,则BE=CD=8,AE=12=8=4,∴Rt△ADE中,DE2243AD AE-=∵NF∥DE,∴NF AN AFDE AD AE==6AF8443==∴NF=3,AF=3,∴FM=9﹣3=6,∴Rt△MNF中,MN22NF FM6337+==故答案为37 ;(2)∵四边形中ABCD 中,AB ∥CD ,BC ⊥AB ,AD =CD =8cm ,AB =12cm ,而BC =43 ,则梯形ABCD 的面积=(812)434032+⨯=①当0≤t ≤4时,如图,则BM =12﹣3t ,CN =2t ,∴梯形BCNM 的面积=1(12)4323(12)2t t -=- ∵MN 将四边形ABCD 的面积分为相等的两个部分, ∴23(12)203t -= ∴t =2.②当4<t ≤8时,如图,则AM =24﹣3t ,AN =16﹣2t ,∴△AMN 的面积=21333(243)(162)(8)222t t t ⨯-⨯-=- ∵MN 将四边形ABCD 的面积分为相等的两个部分,233)203t -=∴23083 t=±又∵4<t≤8,∴23083 t=-综上所述:或t=2或82303 -(3)①当0≤t≤4时,如图,则AM=3t,CN=2t.∵AB∥CD,AP AM31PC CN22==≠∴不存在符合条件的t值.②当4<t≤8时,如图,分别延长CD、MN交于点Q.则AM=24﹣3t,AN=16﹣2t,DN=2t﹣8.∵AB∥CD,∴QD DNAM AN=,即28243162DQ tt t-=--解得DQ=3(t﹣4),∴CQ=3t﹣4.∵AB∥CD,∴AM APCQ PC=,即2431342tt-=-解得t=529,综上可知:存在实数t=529使得AP:PC=1:2成立.24.(本小题满分12分)如图1,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),抛物线顶点为D,连接AC,BC,CD,BD,点P是x轴下方抛物线上的一个动点,作PM⊥x轴于点M,设点M 的横坐标为m.(1)求抛物线的解析式及点D的坐标;(2)试探究是否存在这样的点P,使得以P,M,B为顶点的三角形与△BCD相似?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,PM交线段BC于点Q,过点P作PE∥AC交x轴于点E,交线段BC于点F,请用含m的代数式表示线段QF的长,并求出当m为何值时QF有最大值.【解析】(1)设抛物线解析式为:y=a(x+1)(x﹣3),将C(0,-3),代入可得:﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3,根据顶点坐标公式得出D的坐标为∴点D的坐标为(1,﹣4);(2)由(1)知,点B、C、D的坐标分别为(3,0)、(0,﹣3)、(1,﹣4),则BC=3,CD=,BD=,则△BCD是直角三角形,∠BCD=90°,①当△PMB∽△BCD时,则∠MPB=∠DBC,即:tan∠MPB=tan∠DBC=,∵点M(m,0),则点P(m,m2﹣2m﹣3),tan∠MPB=,解得:m=2或3(舍去3),故点P(2,﹣3);②当△BMP∽△BCD时,同理可得:点P(﹣,﹣);故点P的坐标为:(2,﹣3)或(﹣,﹣);(3)设QF为y,作FH⊥PM于点H,∵OB=OC,∴∠OCB=∠OBC=45°则FH=QH=y,∵PE∥AC,PM∥OC,则∠PEM=∠HFP=∠CAO,∴△FHP∽△AOC,则PH=3FH=y,∴PQ==2y,根据点B、C的坐标求出直线BC的表达式为:y=x﹣3,则点P(m,m2﹣2m﹣3),点Q(m,m﹣3),所以PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,即:2y=﹣m2+3m,则y=,.∴当m=时,QF有最大值.。
2024年湖北省武汉市部分学校九年级五月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数5的相反数是( )A.B .C .﹣5D .52.当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.如图图案是我国的一些国产新能源车企的车标,图案既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.投掷一枚普通的正方体骰子,下列事件中,确定事件是( )A .掷得的点数是2B .掷得的点数是奇数C .掷得的点数小于7D .掷得的点数是大于34.《清朝野史大观•清代述异》称:“中国讲求烹茶,以闽之汀、漳、泉三府,粤之潮州府功夫茶为最.”如图1是喝功夫茶的一个茶杯,关于该茶杯的三视图,下列说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .三视图都相同5.下列运算正确的是( )A .(a 3)2=a 5B .a 2•a 3=a 5C .(ab )2=ab 2D .6.如图是某款婴儿手推车的平面示意图,若AB ∥CD ,∠1=130°,∠3=25°,则∠2的度数为( )5151A.50°B.65°C.85°D.75°7.《周髀算经》《九章算术》《海岛算经》《孙子算经》都是中国古代数学著作,是中国古代数学文化的瑰宝.小华要从这四部著作中随机抽取两本学习,则抽取的两本恰好是《周髀算经》和《九章算术》的概率是( )A.B.C.D.8.圆圆想把一些相同规格的塑料杯,尽可能多地放入高40cm的柜子里(如图1).她把杯子按如图这样整齐地叠放成一摞(如图2),但她不知道一摞最多能叠几个可以一次性放进柜子里.圆圆测量后发现,按这样叠放,这摞杯子的总高度随着杯子数量的变化而变化,记录的数据如表所示:杯子的数量x(只)123456…总高度h(cm)1011.412.814.215.617…请帮圆圆算一算,一次性放进高40cm的柜子里,一摞最多能叠的杯子个数是( )A.21B.22C.23D.249.蚊香具有悠久的历史,我国蚊香的发明与古人端午节的习俗有关.如图为某校数学社团用数学软件制作的“蚊香”.画法如下:在水平直线上取长度为1的线段AB,作一个等边三角形ABC,然后以点B 为圆心,AB为半径逆时针画圆弧交线段CB的延长线于点D(第一段圆弧),再以点C为圆心,CD为半径逆时针画圆弧交线段AC的延长线于点E,再以点A为圆心,AE为半径逆时针画圆弧…以此类推,当得到的“蚊香”恰好有12段圆弧时,“蚊香”的长度为( )A.36πB.52πC.72πD.80π10.已知抛物线y=x2+6ax﹣a的图象与x轴有两个不同的交点(x1,0),(x2,0),且﹣=8a﹣3,则a的值为( )A.a=0B.a=C.a=1D.a=0或a=二、填空题(共6小题,每小题3分,共18分)11.2024年“五一”假期首日,游客出游热情高涨,景区景点人气旺盛.据湖北省文旅厅数据显示,湖北省A级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为 .12.请写出一个图象分布在第二、四象限的反比例函数的解析式为 .13.计算的结果是 .14.如图,在远离铁塔150m的D处,用测角仪测得塔顶的仰角为30°,已知测角仪高AD=2m,那么塔高BE= m(结果保留根号).15.如图,在平面直角坐标系xOy中,点A、D在第一象限内且点A(a﹣1,3a),点C(﹣1,0),点B (2,0),∠ACD=45°,点B到射线CD的最小值是 .16.抛物线y=ax2+bx+c(a、b、c是常数)的顶点在第一象限,且a﹣b+c<0.下列四个结论:①b>0;②2b﹣a﹣c>0;③若4a+c=0,则当时,y随x的增大而减小;④若抛物线的顶点为P(1,n),则方程ax2+bx+c+4a=0无实数根.其中正确的结论是 (填写序号).三、解答题(共8小题,共72分)17.(8分)解不等式组:并写出它的所有整数解.18.(8分)如图,E、F是平行四边形ABCD的对角线AC上两点,AF=CE.(1)求证:△ADF≌△CBE;(2)连接BF,DE和BD,请添加一个条件: 使得四边形BEDF为矩形.19.(8分)某学校七年级体育测试已经结束,现从七年级随机抽取部分学生的体育测试成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:60≥x≥54为优秀,B:53.9≥x≥45为良好,C:44.9≥x≥30为合格,D:x≤29.9为不合格),绘制了如下所示的统计图,请根据统计图信息解答下列问题:(1)请补全条形统计图;本次共调查了 名学生;(2)在扇形统计图中,m= ,本次调查的学生体育成绩中位数位于等级 ;(3)若该校共有900名七年级学生,请估计本次体育成绩为合格及以上的学生人数.20.(8分)如图,AB为⊙O的直径,BE与⊙O相交于点C,过点C的切线CD⊥AE,垂足为点D.(1)求证:AE=AB;(2)若AB=6,CB=4,求CD的长.21.(8分)如图,在由小正方形组成的6×6的网格中,每个小正方形的顶点叫做格点,图中A、B、C为格点,仅用无刻度直尺按要求作图:(1)在图1中,将线段AC绕某一点旋转90°得到线段BD(其中点B和点C对应),画出线段BD;延长BD交AC于点E,在BC上找点F,使得AF+EF的值最小.(2)在图2中,找点G,使得AG=BG=CG;找一格点M使得∠ACB+∠AMB=180°.(找出一个即可)22.(10分)一块土地上有一个蔬菜大棚(如图1),其横截面顶部为抛物线型,大棚的一端固定在墙体OA 上,另一端固定在墙体BC上(墙体足够高),其横截面有2根支架DE,FG,相关数据如图2所示,其中DE=BC,OF=DF=BD.(1)在图2中以点O为原点,OA所在直线为y轴建立平面直角坐标系,则A点坐标为( , ),E点坐标为( , ),抛物线的函数表达式为 ;(2)已知大棚有300根长为DE的支架和300根长为FG的支架,为增加棚内空间,拟将图2中棚顶向上调整,支架总数不变,对应支架的长度变化如图3所示,调整后C与E上升相同的高度,增加的支架单价为20元/米(接口忽略不计),现有改造经费30000元.①当CC′=1米,只考虑经费情况下,请通过计算说明能否完成改造;②只考虑经费情况下,直接写出CC′的最大值 .23.(10分)如图1,在菱形ABCD中,AB=2,∠B=60°,点F为CD边上的动点.(1)E为边AD上一点,连接EF,将△DEF沿EF进行翻折,点D恰好落在BC边的中点G处,①求DE的长;②tan∠GFC= .(2)如图2,延长CD到M,使DM=DF,连接BM与AF,BM与AF交于点N,连接DN,设DF=x (x>0),DN=y,求y关于x的函数表达式.24.(12分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A、C(C在A的左侧),与y轴交于点B.(1)若A(3,0),B(0,﹣3),C(﹣1,0).①直接写出抛物线解析式: ;②若D点与C点关于y轴对称,在直线AB上是否存在点M使△ABC与△ADM相似,若存在,求出点M的坐标;(2)如图2,点P和点Q在抛物线y=ax2+bx+c上,其中P在点C左侧抛物线上,Q点在y轴右侧抛物线上,直线CQ交y轴于点F,直线PC交y轴于点H,设直线PQ解析式为y=kx+t,当S△HCQ=2S △BCQ,试证明为一个定值,并求出定值.参考答案一、选择题(共10小题,每小题3分,共30分)1.C.2.D.3.C.4.A.5.B.6.D.7.B.8.B.9.B.10.B.二、填空题(共6小题,每小题3分,共18分)11.2.498×106.12.y=﹣(答案不唯一).13..14.(50+2).15..16.①②④.三、解答题(共8小题,共72分)17.解:∵解不等式①得:x<4,解不等式②得:x≥1,∴不等式组的解集为1≤x<4,∴不等式组的整数解为1,2,3.18.(1)证明:∵在平行四边形ABCD中,AD∥BC,AD=BC,∴∠DAF=∠BCE,又∵AF=CE,∴△ADF≌△CBE(SAS);(2)解:添加一个条件:BD=EF,理由:连接BF,DE,BD,由(1)得△ADF≌△CBE,∴∠DFA=∠BEC,DF=BE,∴DF∥BE,∴四边形BEDF是平行四边形,∵BD=EF,∴四边形BEDF为矩形,故答案为:BD=EF.19.解:(1)本次调查的总人数为6÷12%=50(名),C等级人数为50﹣(10+14+6)=20(人),补全图形如下:故答案为:50;(2)m%=×100%=40%,即m=40,本次调查的学生体育成绩的中位数位于等级C,故答案为:40;C;(3)900×=792(名),答:估计本次体育成绩为合格及以上的学生人数为792名.20.(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD,又∵CD⊥AE,∴AE∥OC,∴∠E=∠OCB,∵OC=OB,∴∠ABC=∠OCB,∴∠ABC=∠E,∴AE=AB;(2)解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得,∵AB=AE,AC⊥BE,∴∠EAC=∠BAC,又∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴,即,∴.21.解:(1)如图,线段BD,点F即为所求;(2)如图,点G,点M即为所求.22.解:(1)∵OA=1,∴A点坐标为(0,1).∵DE=BC=4,OF=DF=BD,OB=6,∴OD=4.∴点E的坐标为(4,4),点C的坐标为(6,4).设抛物线的函数表达式为:y=ax2+bx+c(a≠0).∴.解得:.∴抛物线的函数表达式为:y=﹣x2+x+1.故答案为:0,1;4,4;y=﹣x2+x+1;(2)①∵CC′=1,∴点C′的坐标为(6,5).∴点E′的坐标为(4,5).设向上调整后的抛物线解析式为:y=mx2+nx+p(m≠0).∴.解得:.∴向上调整后的抛物线解析式为:y=﹣x2+x+1.当x=2时,FG=﹣×22+×2+1=3,FG′=﹣×22+×2+1=.∴增加的高度GG′=﹣3=(米).∵EE′=CC′=1米,∴所需经费为:(300×+1×300)×20=10000(元).∵10000<30000,∴能完成改造.(3)由题意得:调整后抛物线的对称轴是直线x=5.∴设调整后的抛物线解析式为:y=d(x﹣5)2+e(d≠0).∵经过点(0,1),∴1=d(0﹣5)2+e.∴e=1﹣25d.∴调整后的抛物线解析式为:y=d(x﹣5)2+1﹣25d.当x=2时,FG=3,FG′=1﹣16d.∴增加的高度GG′=1﹣16d﹣3=(﹣2﹣16d)米.当x=4时,DE=﹣×42+×4+1=4,DE′=1﹣24d.∴增加的高度EE′=1﹣24d﹣4=(﹣3﹣24d)米.∴所需经费为:(﹣2﹣16d﹣3﹣24d)×300×20=(﹣240000d﹣30000)元.∵﹣240000d﹣30000≤30000,解得:d≥﹣.∴d=﹣时,所需经费最少,此时CC′=EE′=3米.23.解:(1)①连接AC,AG,如图,∵四边形ABCD是菱形,∴AB=BC=2,∵∠ABC=60°,∴△ABC为等边三角形,∵BG=GC,∴AG⊥BC,BG=GC=1.∴.∵AD∥BC,∴AG⊥AD.由题意得ED=EG.设EG=ED=x,则AE=2﹣x,在Rt△AEG中,∠GAE=90°,∴AG2+AE2=EG2,∴,∴.∴;②过点G作GH⊥CD,交CD的延长线于点H,如图,∵AB∥CD,∴∠BCH=∠B=60°,∴∠CGH=30°,∴,.由题意得FD=FG,设FG=FD=m,则FC=2﹣m,在Rt△FHG中,∠GHF=90°,∴GH2+FH2=FG2,∴,∴,,∴.(2)延长DN交AB于点K,连接AC交DK于点P,连接BP交CD的延长线交于点Q,如图,∵四边形ABCD是菱形,∴AB∥CP,∴△AKN∽△FDN,△BKN∽△MDN,∴,,∴,∵DM=DF,∴.过点D作DL⊥AB交BA延长线于L,在Rt△ALD中,∠ALD=90°,∠LAD=60°,AD=2,∴,,∴KL=AL+AK=2,∴,∵DF=x(x>0),DN=y,∴,.24.解:(1)①将A(3,0),B(0,﹣3),C(﹣1,0)代入y=ax2+bx+c得:,解得:,故抛物线解析式为y=x2﹣2x﹣3,故答案为:y=x2﹣2x﹣3;②在直线AB上存在点M使△ABC与△ADM相似;理由如下:过M作MF⊥x轴,如图1,∵点D与点C关于y轴对称,∴D(1,0),AC=4,AB=3,AD=2,当△ADM∽△ACB时,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=,∴M(,);当△AMD∽△ACB时,∴=,∴AM=,∵OA=OB,∴∠OAB=45°,∴AF=MF=;∴M(,),故M(,﹣)或M(,);(2)∵抛物线解析式为y=ax2+bx+c,当x=0时,y=c,∴B(0,c),设直线PC的解析式为y=mx+n,直线CQ的解析式为y=dx+e,∴H(0,n),F(0,e),∴FH=y F﹣y H=e﹣n,FB=y F﹣y B=e﹣c,∵S△HCQ=2S△BCQ,∴FH×(x Q﹣x C)=2×BF×(x Q﹣x C),∴e﹣n=2(e﹣c),∴e=2c﹣n(即=c=y B,即点B是FH的中点),∵,∴ax2+(b﹣m)x+c﹣n=0,∴x P x C=,∵,∴ax2+(b﹣d)x+c﹣e=0,∴x Q x C===,∴x P x C=,x Q x C=,x C≠0,∴x p x C+x Q x C=x C(x P+x Q)=0,∴xp+x Q=0,又∵直线y=kx+t经过抛物线y=ax2+bx+c上两点P、Q,∴,∴ax2+(b﹣k)x+c﹣t=0的两个根为xp和x Q,∴x P+x Q=﹣,∴﹣=0而a≠0,∴b=k,∴=1,∴为定值1.。
九年级数学 ?中考模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 120 分,考试时间 120 分钟第Ⅰ卷(选择题) 一、选择题(共 10 小题,每题 3 分,共 30 分)1. 以下 4 个温度值,此中温度最低的是().A . 12CB. 20CC. 2CD. 30C2. 分式 x 1存心义,则 x 的取值范围是().x 23. A. x 2B. x 2C. x 1D. x1以下计算正确的选项是().A .3a22a21B . a 2 a3a 6 C .2a 3a26a3D .(2a 2 )32a 64. 用频次预计概率,能够发现投掷硬币 “正面向上 ”的概率为 0.5 是指 ( ).A. 连续掷 2 次,结果必定是 “正面向上”和“反面向上 ”各 1 次B. 连续投掷 100 次,结果必定是 “正面向上”和“反面向上 ”各 50 次C. 投掷 2n 次硬币,恰巧有 n 次“正面向上 ”D. 投掷 n 次,当 n 愈来愈大时,正面向上的频次会愈来愈稳固于0.5 3)2等于(5.计算 (2x ).A . 2x 2 6x 9B . 2x 212x 9 C .4x 2 6x 9 D .4x 212x 96. 点( 1,4) 对于 y 轴对称的点的坐标为( ).A . (1,4)B .( 1, 4)C . (1, 4) .(4, 1)D7. 如图,桌上放着一摞书和一个茶杯,从正面看的图形是( )A. B .C .D .8. 为认识某班学生每日使用零花费的状况,童老师随机检查了 30 名同学,结果以下表:每日使用零花费(单5 10 15 20 25元:元) 人2 5 8 9 6数).则这30 名同学每日使用零花费的众数和中位数分别是(A .20 、 15B . 20 、 17.5C . 20 、20D .15 、 159.在方格中,若三角形的极点都落在格点上,则这个三角形叫格点三角形,在 3×3 的方格中,与图中 ABC 相像的三角形(不含 ABC )有() A.17 B.23 C.27 D.3110 .如图,在以 AB 为直径的半圆 O 中,有两个正方形 CDEF 、GEIH ,它们都有一边落在直径 AB 上,点 C 、F 、H 在半圆上,若正方形 CDEF 边长为 2,则 IB= ()A.5B.6 2 C.52D.1422第Ⅱ卷(非选择题)二、填空题(共 6 小题,每题 3 分,共 18 分)11.计算: 3 ( 5) 的结果为 .12. 计算 2x1的结果为.x 1 x 113. 学校为认识九年级学生 “一分钟跳绳次数 ”状况,随机精选了 4 名女生和 2 名男生,从 这6 名学生中选用 2 名同时跳绳,恰巧选中 一男一女的概率是.14. 小明同学将一副直角三角板如图搁置,若 AE ∥BC ,则 DAC 的 度数是 .15. 已知平行四边形一个内角为 60 ,且60 的两边长分别为 3 、 4 ,如有一个圆与这个平 行四边形的三边相切,则这个圆的半径为.221 10 恒建立,16. 二次函数 y9x 6ax a 2a 6 ,当≤≤ 时, y3 x3则实数 a 的取值范围为.第2页 /共5页三、解答题(共 8 题,共 72 分)17.(8 分)解方程: 5(x 2)3x4.18.(8 分)已知 AD CB , A C ,AE CF ,求证: EB∥DF .A DEFB C 19.(8 分)某校为了检查学生书写汉字能力,从七年级400 名学生中随机抽选若干名学生参加测试,同时听写 50 个常用汉字,每正确听写出一个汉字得 1分,依据测试成绩绘制出不完好的频数散布直方图以下:频数散布表频数散布直方图频数(人数)16128425 30 35 40 45 50测试成绩O请联合图表达成以下各题:(1)写出表中部分字母的值: a,x,m;(2)请把频数散布直方图增补完好;(3)若测试成绩不低于 35 分为合格,请你预计该校七年级汉字书写合格的人数?第3页 /共5页20.(8 分)已知甲、乙两种货车都可同时装运香蕉和荔枝若干吨,现检查两车满载时的装运能力,获得四组数据如表所示.甲车 乙车 荔枝 香蕉 共计 (辆) (辆) (吨) (吨) (吨)1 1 6 3 92 4 16 10 363 6 24 15 39 4 9 34 22 56(1)依据表中数据,分别求出甲、乙货车每辆能够装运荔枝和香蕉各多少吨;(2)现计划将荔枝 30 吨,香蕉 13 吨运往外处,若租用甲、乙两种货车共 10 辆,求安 排甲、乙两种货车有哪几种方案.21.(8 分)如图, AB 、 BC 、 CD 分别与⊙ O 相切于 E 、 F 、 G 三点,且 AB ∥CD .()求证:OB OC ;16 、 CO 8 ,求 tan BCD 的值.()若BO222.( 10 分)在平面直角坐标系中,直线 AB : y=kx+7(k < 0)交坐标轴于点 A 、 B ,交双曲线 y m于点 M 、 N , M,N 点的横坐标分 别为 1,6.x( 1)求 k 和 m 的值;( 2)将双曲线向右平移 n 个单位: ①当 n=3 时,直接写出函数的分析式; ②双曲线平移后的图像仍旧是对称图形,当 n=5 时,直接写出其对称轴的分析式。
原创精品资源学科网独家享有版权,侵权必究!
1 2020年中考数学必刷试卷05(湖北武汉专用)
第Ⅰ卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.给出﹣2,﹣1,0,1
3这四个数,其中最小的是( )
A .1
3 B .0 C .﹣2 D .﹣1
2.函数y 2
x +中自变量x 的取值范围是( )
A .2x ≥-且1x ≠
B .2x ≥-
C .1x ≠
D .21x -≤<
3.下面由7个完全相同的小正方体组成的几何体的左视图是( )
A .
B .
C .
D .
4.下列说法正确的是
A .一组数据1,2,5,5,5,3,3,这组数据的中位数和众数都是5
B .了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.试题2:如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.评卷人得分试题3:某校两次购买足球和篮球的支出情况如表:足球(个)篮球(个)总支出(元)第一次 2 3 310第二次 5 2 500(1)求购买一个足球、一个篮球的花费各需多少元?(请列方程组求解)(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?试题4:如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若tan∠BCD=,⊙O的半径为,求BC的长.试题5:如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.试题6:某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?试题7:如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,求证:BE∥AC.试题8:解不等式组:.试题9:如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE 和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.试题10:如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.试题11:如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.试题12:化简的结果是____.试题13:在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____.试题14:因式分解:3x3﹣12x=_____.试题15:如图,AB是半圆O的直径,点D在半圆O上,AB=,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5 B.6 C.7 D.8 试题16:我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为A.(,1) B.(2,1)C.(2,) D.(1,)试题17:一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.试题18:一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.试题19:《九章算术》中的方程问题:“五只雀、六只燕,共重斤(古代斤=两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为两、两,下列方程组正确的为()A. B.C. D.试题20:下列几何体中,俯视图为三角形的是()A. B. C. D.试题21:在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B.C.. D.试题22:下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次试题23:要使代数式有意义,则的取值范围是A. B. C. D.试题24:﹣的相反数是()A.3 B.﹣3 C.- D.试题1答案:【解析】(1)由题意得:,解得:,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).试题2答案:【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=x,∴x=﹣x+n,∴x=,∴点G坐标(,),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=n,点O坐标(,),∴OG=,∴tan∠OBG=;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=3,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC=,∴BE=BC﹣EC=2,∴,∴BE=BC=BC,∴n=.试题3答案:【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得,解得:.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.试题4答案:【解析】(1)证明:连接OD,OA,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)过D作DF⊥BC于F,连接OD,∵tan∠BCD=,∴,设DF=a,OF=x,则CF=4a,OC=4a﹣x,∵O是底边BC中点,∴OB=OC=4a﹣x,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠DOF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴,∴,解得:x1=x2=a,∵⊙O的半径为,∴OD=,∵DF2+FO2=DO2,∴(x)2+x2=()2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.试题5答案:【解析】(1)AE=;故答案为:;(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).试题6答案:【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×=480(件).试题7答案:【解析】∵BE平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.试题8答案:【解析】不等式(1)可化为,解得,不等式(2)可化为,,解得.把解集表示在数轴上为:原不等式组的解集为.试题9答案:30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.试题10答案:.【解析】如图,∵将直线y=向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+2上,∴B(x,x+2),∵点A、B在双曲线y=,∴,解得x=,∴.故答案为:试题11答案:3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴.故答案为3.试题12答案:.【解析】原式===.故答案为:试题13答案:90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90,故答案为:90.试题14答案:3x(x+2)(x﹣2)【解析】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).试题15答案:D【解析】如图,连接BD,作以AD为直径的⊙E,连接BE,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=,AD=10,∴BD=,∵AD是⊙E的直径,AD=10,∴DE=5,∴在Rt△BDE中,BE=∵在点C在弧BD上移动的过程中,始终保持了DH⊥AC于点H,∴点H始终在⊙E上,且HE=5,∴当点B、H、E三点在同一直线上时,BH最短,此时BH最短=BE-HE=13-5=8.试题16答案:C【解析】∵AD′=AD=2,AO=AB=1,OD′=,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.试题17答案:C【解析】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.试题18答案:A【解析】∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是,故选A.试题19答案:C【解析】由题意可得,,故选C.试题20答案:C【解析】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.试题21答案:B【解析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.试题22答案:A【解析】不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.试题23答案:C【解析】根据题意,得x-2≥0,解得,x≥2.故选C.试题24答案:D【解析】﹣与只有符号不同,所以﹣的相反数是,故选D.。
2020年中考数学必刷试卷10(某某某某专用)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)--2的结果是( )1.计算:2A.4 B.1 C.0 D.-4【答案】C--=-=,故答案为C.【解析】222202是同类二次根式的是()A B C D【答案】A【解析】不是同类二次根式;故选A.3.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .掷一个正六面体的骰子,出现3点朝上C .从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D .一副去掉大小王的扑克牌洗匀后,从中任抽一X 牌的花色是红桃 【答案】C【解析】A 、抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误;B 、掷一个正六面体的骰子,出现3点朝上的频率约为:16≈0.17,故本选项错误;C 、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是13≈0.33,故本选项正确;D 、一副去掉大小王的扑克牌洗匀后,从中任抽一X 牌的花色是红桃的概率是1352=0.25,故本选项错误;故选C .4.下列图形中,即是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】A 、不是轴对称图形,是中心对称图形;B 、是轴对称图形,是中心对称图形;C 、是轴对称图形,不中心对称图形;D 、是轴对称图形,不是中心对称图形.故选B .5.下列立体图形中,主视图是三角形的是( )A .B .C .D .【答案】B【解析】A 主视图是矩形,C 主视图是正方形,D 主视图是圆,故A 、C 、D 不符合题意; B 、主视图是三角形,故B 正确; 故选B .6.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y x y x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩【答案】B【解析】由题意可得,4.5112y x y x =+⎧⎪⎨=-⎪⎩,故选B.7.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.12【答案】C【解析】画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:41123=.故选:C.8.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7 B.5 C.4 D.1【答案】C【解析】设下面中间的数为x,如图所示:p+6+8=7+6+5, 解得P=4. 故选C .9.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA ′,反比例函数y =kx的图象恰好经过点A ′、B ,则k 的值是( )A .9B .133C .16915D .【答案】C【解析】如图,过点C 作CD⊥x 轴于D ,过点A′作A′G⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF⊥x 轴于F ,设B (2k,2), 在Rt△OCD 中,OD =3,CD =2,∠ODC=90°,由翻折得,AA′⊥OC,A′E=AE ,∴sin∠COD=AE CDOA OC =,∴AE=2kCD OA OC⨯⋅,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°, ∴∠OAE=∠OCD,∴sin∠OAE=EF ODAE OC==sin∠OCD,∴EF=313OD AE k OC ⋅==, ∵cos∠OAE=AF CDAE OC==cos∠OCD,∴213CD AF AE k OC =⋅==, ∵EF⊥x 轴,A′G⊥x 轴, ∴EF∥A′G,∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==,∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ),∴562613k k k ⋅=,∵k≠0,∴169=15k ,故选C . 10.如图,已知⊙O 的半径为2,点A 、B 、C 在⊙O 上,若四边形OABC 是菱形,则图中阴影部分的面积为( )A .23π-2√3 B .23π-√3C .43π-2√3D .43π-√3【答案】C【解析】连接OB 和AC 交于点D ,如图,∵圆的半径为2,∴OB=OA=OC=2,又∵四边形OABC 是菱形,∴OB⊥AC,OD=12OB=1,在Rt△COD 中利用勾股定理可知:CD=√OO 2−OO 2=√3,则AC=2CD=2√3 , ∵sin∠COD=√32,∴∠COD=60°,∴∠COA=2∠COD=120°,∴O 菱形OOOO =12⋅OO ⋅OO =2√3 ,O 扇形OOO =120⋅O ⋅22360=43O ,∴图中阴影部分的面积为:O 扇形OOO −O 菱形OOOO =43O −2√3;故答案为C.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11_____.【答案】3【解析】∵32=9,3,故答案为3.12.为了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体统计如下:则关于这20名学生阅读小时的众数是_____.【答案】3【解析】在这一组数据中3出现了8次,出现次数最多,因此这组数据的众数为3.故答案为3.13.计算1112(1)x x---的结果是_____.【答案】12(1) x-【解析】原式=212(1)2(1) x x---=12(1)x-,故答案为12(1)x-.14.如图,在△ABC中,CD平分∠ACB交边AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B =48°,则∠CDE=_____.【答案】39°【解析】∵∠A=54°,∠B=48°,∴∠ACB=180°-54°-48°=78°,∵CD平分∠ACB,∴∠DCB=12∠ACB=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故答案为39°.15.抛物线y=a(x﹣h)2+k经过(﹣1,0),(5,0)两点,则关于x的一元二次方程a(x﹣h+1)2+k=0的解是_____.【答案】x1=﹣2,x2=4.【解析】将抛物线y=a(x﹣h)2+k向左平移一个单位长度后的函数解析式为y=a(x﹣h+1)2+k,∵抛物线y=a(x﹣h)2+k经过(﹣1,0),(5,0)两点,∴当a(x﹣h+1)2+k的解是x1=﹣2,x2=4,故答案为x1=﹣2,x2=4.16.如图,正方形ABCD中,点E、F分别在AB、CD上,DG⊥EF于点H,交BC于点G,点P在线段BG上.若∠PEF=45°,AE=CG=5,PG=5,则EP=____.【答案】【解析】过点F作FM⊥AB于点M,连接PF、PM,如图所示:则FM=AD,AM=DF,∠FME=∠MFD=90°,∵DG⊥EF,∴∠MFE=∠CDG,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=DC=AD,∴FM=DC,在△MCE和△CDG中,90FME CFM DCMFE CDG⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△MCE≌△CDG(ASA),∴ME=CG=5,∴AM=DF=10,∵CG=PG=5,∴CP=10,∴AM=CP,∴BM=BP,∴△BPM是等腰直角三角形,∴∠BMP=45°,∴∠PMF=45°,∵∠PEF=45°=∠PMF,∴E、M、P、F四点共圆,∴∠EPF=∠FME=90°,∴△PEF是等腰直角三角形,∴EP=FP,∵∠BEP+∠BPE=90°,∠BPE+∠CPF=90°,∴∠BEP=∠CPF,在△BPE 和△CFP 中,BEP CPF EP FP ⎪∠=∠⎨⎪=⎩,∴△BPE≌△CFP(AAS ), ∴BE=CP =10, ∴AB=AE+BE =15, ∴BP=5,在Rt△BPE 中,由勾股定理得:EP故答案为三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:2x 4+x 2+(x 3)2﹣5x 6【解析】2x 4+x 2+(x 3)2﹣5x 6 =2x 4+x 2+x 6﹣5x 6 =﹣4x 6+2x 4+x 2.18.(本小题满分8分)如图,AC 和BD 相交于点O ,OA =OC ,OB =OD ,则线段AB 与CD 有怎样的关系,并证明你的结论.【解析】AB =CD ,AB ∥CD ,在△AOB 和△COD 中,AOB COD OB OD ⎪∠=∠⎨⎪=⎩,∴△AOB ≌△COD (SAS ) ∴AB =CD ,∠B =∠D ∴AB ∥CD .19.(本小题满分8分)某校为了做好全校800名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,如图是利用所得数据绘制的频数分布直方图(视力精确到0.1)请你根据此图提供的信息,回答下列问题:(1)本次调查共抽测了名学生;(2)视力在4.9及4.9以上的同学约占全校学生比例为多少?(3)如果视力在第1,2,3组X 围内(4.9以下)均属视力不良,应给予治疗矫正.请计算该校视力不良学生约有多少名?【解析】(1)10+30+60+40+20=160;(2)视力在4.9及4.9以上的同学人数为40+20=60(人),所占比例为:60160=38;(3)视力在第1,2,3组的人数在样本中所占的比例为100160=58,=500(人).∴该校视力不良学生约有800×5820.(本小题满分8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出△ABC的形状.(2)要求在下图中仅用无刻度的直尺作图:将△ABC绕点A顺时针旋转角度α得到△AB1C1,α=∠BAC,其中B,C的对应点分别为B1,C1,操作如下:第一步:找一个格点D,连接AD,使∠DAB=∠CAB.第二步:找两个格点C1,E,连接C1E交AD于B1.第三步:连接AC1,则△AB1C1即为所作出的图形.请你按步骤完成作图,并直接写出D、C1、E三点的坐标.【解析】(1)由题意:AC=5√2,BC=4√2,AB=3√2,∵AC2=BC2+AB2,∴△ABC是直角三角形;(2)如图,△AB1C1即为所作出的图形.D(9,0),C1(7,6),E(6,﹣1).21.(本小题满分8分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F为CE的中点,连结DB,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若tan∠ABD=3时,求ACDE的值.【解析】(1)∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠CDE=180°-90°=90°;(2)如图,连接OD,∵∠CDE=90°,F为CE的中点,∴DF=CF,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∴∠FDC+∠ODC=∠FCD+∠OCD,即∠ODF=∠OCF,∵CE ⊥AC ,∴∠ODF =∠OCF =90°,即OD ⊥DF ,∴DF 是⊙O 的切线.(3)∵∠E =90°-∠ECD =∠DCA =∠ABD ,∴tan E =tan∠DCA =tan∠ABD =3,设DE =x ,则CD =3x ,AD =9x ,∴AC =,∴AC DE =. 22.(本小题满分10分)①称猴桃的销售价格p (元/kg )与时间x (天)的关系: 当1≤x <20时,p 与x 满足一次函数关系.如下表:当20≤x ≤30时,销售价格稳定为24元/kg ;②称猴桃的销售量y (kg )与时间x (天)的关系:第一天卖出24kg ,以后每天比前一天多卖出4kg . (1)填空:试销的一个月中,销售价p (元/kg )与时间x (天)的函数关系式为;销售量y (kg )与时间x (天)的函数关系式为;(2)求试售第几天时,当天的利润最大?最大利润是多少?【解析】(1)依题意,当1≤x<20时,设p=kx+b,得352336k bk b=+⎧⎨=+⎩,解得p=﹣12x+36,故销售价p(元/kg)与时间x(天)的函数关系式为,p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩,由②得,销售量y(kg)与时间x(天)的函数关系式为:y=4x+24,故答案为p=136(120)224(2030)x xx⎧-+<⎪⎨⎪⎩,y=4x+24;(2)设利润为W,①当1≤x<20时,W=(﹣12x+36﹣16)(4x+24)=﹣2(x﹣17)2+1058∴x=17时,W最大=1058,②当20≤x≤30时,W=(24﹣16)(4x+24)=32x+192∴x=30时,W最大=1152∵1152>1058∴销售第30天时,利润最大,最大利润为1152元.23.(本小题满分10分)如图①,等腰Rt△ABC中,∠C=90o,D是AB的中点,Rt△DEF的两条直角边DE、DF分别与AC、BC相交于点M、N.(1)思考推证:CM+=BC;(2)探究证明:如图②,若EF经过点C,AE⊥AB,判断线段MA、ME、MC、DN四条线段之间的数量关系,并证明你的结论;(3)拓展应用:如图③,在②的条件下,若AB=4,AE=1,Q为线段DB上一点,DQ=23,QN的延长线交EF于点P,求线段PQ的长.【解析】(1)证明:连接CD,∵∠ACB=90º,CA=CB,AD=DB,∴CD=AD=DB=12 AB,∠A=∠B=∠ACD=∠BCD=45º,CD⊥AB,∴∠CDN+∠BDN=90º,∵∠EDF=90º,∴∠CDN+CDM=90º,∴∠BDN=∠CDM,∴△BDN≌△CDM, ∴BN=CM,∴ BC=BN+=CM+;(2)∵AE⊥AB,CD⊥AB,∴AE∥CD∴△AEM∽△CDM,∴AM EMCM DM=, ∵△BDN≌△CDM,∴DN=DM,∴AM EMMC DN=,即••AM DN EM MC =; (3)∵∠EDF=90º,∴∠NDQ+∠ADE=90º ∵EA⊥AD,∴∠AED+∠ADE=90º ,∴∠AED=∠NDQ而AE=1,AD=CD=DB=12=∵△AEM∽△CDM,∴12AE EM CD MD ==,∴DM=DN=23, 而DQ=23,∴AE DQ ED DN ==∴△AED∽△QDN,•43AD DN NQ DE ==过点E 作EH⊥CD 于点H,∴DH=AE=1,EH=AD=2,∴CH=2-1=1,= ∵PQ⊥AB,∴∠B=∠BNQ=∠PNC=45º,而∠P+∠NCD+∠ECD=∠EMA+∠AEM+∠EAM=180º, ∠P=∠AME,而∠EAM=∠PNC=45º,=AM, ∴△PNC≌△EAM,∴PN=AE=1,∴47133PQ PN QN =+=+=. 24.(本小题满分12分)已知直线y =kx ﹣2k+3(k≠0)与抛物线y =a (x ﹣2)2(a >0)相交于A 、B 两点(点A 在点B 的左侧).(1)不论k 取何值,直线y =kx ﹣2k+3必经过定点P ,直接写出点P 的坐标.(2)如图(1),已知B ,C 两点关于抛物线y =a (x ﹣2)2的对称轴对称,当12a =时,求证:直线AC 必经过一定点;(3)如图(2),抛物线y =a (x ﹣2)2的顶点记为点D ,过点A 作AE⊥x 轴,垂足为E ,与直线BD 交于点F ,求线段EF 的长.【解析】(1)∵y=kx ﹣2k+3=k (x ﹣2)+3, ∴直线y =kx ﹣2k+3必过点(2,3). 故答案为(2,3).(2)证明:联立直线AB 和抛物线的解析式成方程组,得:2231(2)2y kx k y x =-+⎧⎪⎨=-⎪⎩,解得:12123x k y k ⎧=+-⎪⎨=-⎪⎩,22223x k y k ⎧=+⎪⎨=+⎪⎩,∴点A的坐标为()223k k +-,点B 的坐标为(k 2+3). ∵B,C 两点关于抛物线y =a (x ﹣2)2的对称轴对称, ∴点C 的坐标为(2﹣k,k 2).设直线AC 的解析式为y =mx+n (m≠0), 将A (k+2,k 2﹣+3),C (2﹣k,k 2+3)代入y =mx+n ,得:((222323k m n k k m n k ⎧+-+=-⎪⎨⎪--+=+⎩,解得:3m n ⎧=⎪⎨=⎪⎩, ∴直线AC 的解析式为y﹣3.﹣3(x ﹣2)﹣3,∴直线AC 必经过定点(2,﹣3).(3)联立直线AB 和抛物线的解析式成方程组,得:223(2)y kx k y a x =-+⎧⎨=-⎩,解得:11223k x a y ⎧=+⎪⎪⎨⎪=+⎪⎩,22223k x a y ⎧+=+⎪⎪⎨⎪=+⎪⎩, ∴点A 的坐标为2+23++3),点B 的坐标为2++2,). ∵抛物线y =a (x ﹣2)2的顶点记为点D ,∴点D 的坐标为(2,0).∴直线BD 的解析式为y k --∵过点A 作AE⊥x 轴,垂足为E ,与直线BD 交于点F ,∴点E 的坐标为(k 22a+,0),点F 的坐标为(k 22a+,﹣3), ∴EF=3.。